
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A DETAILS OF THE DATA GENERATION PIPELINE

A.1 DATASET FILTERING

In Sec. 3.1, we introduce a novel data generation pipeline that leverages text-only LLMs. This
pipeline enables us to collect chart images along with various data and QA pairs without extensive
human effort, thereby reducing the cost of creating pairwise data. However, LLMs are not perfect
and can make mistakes in either data generation or code script generation. Thus, in this section,
we discuss the data filtering techniques we use to improve the quality of the synthetic dataset. The
generation pipeline is split into three parts: shared template generation, data and QA generation, and
code script generation. We now detail the filtering process for each part.

Shared template and README The shared template and README file for each chart type form
the core of the entire data generation process, as the subsequent raw data, QA, and Python script are
based on the shared template. Therefore, for the shared template, we deploy a human check to ensure
the template contains necessary elements for the chart (i.e., title, x-axis, y-axis, data). Additionally,
humans are required to verify the correctness of the chart type definitions in the README. Note that
we consider 20 different chart types; thus, there are 20 template JSON files along with the READMEs
in our dataset.

Data and QA generation Since all the data should follow the template JSON, for the data genera-
tion part, we apply filtering based on the JSON structure. Specifically, we remove generated data that
deviates from the template file by comparing the elements in the keys of the JSON dictionary and the
data types of all the values. As for QA generation, we check the structure of the output dictionary. In
detail, the keys of the output QA dictionary should contain summary, description, literal, inferential,
and reasoning QAs. We filter out QAs with missing attributes.

Code script generation We predefined a code expert GPT-4 to use four different Python libraries
to plot the chart images: Matplotlib, Plotly, Pygal, and Seaborn. The advantage of these libraries is
that if the Python code or input data is incorrect in terms of structure or other errors, the generated
image will either be missing with a Python error or display a "No Data" icon. Thus, we apply a
two-step filtering process: (1) Python Error Filtering: If there is an error while running the Python
script to generate the image, we will remove the script and the corresponding JSON data. (2) OCR
Tool Filtering: If the image is generated but there is some other error, the output image will display a
"No Data" icon on it. To this end, we further use an OCR tool to detect whether there is any "No
Data" icon in the images. If so, we will remove the data and script accordingly.

A.2 DETAILS OF EXPERT GPT-4

In the GPT-4 module, before feeding the prompts for generation, we must specify the system message
for GPT-4. These system messages explicitly inform GPT-4 about the environment for the generation
and the role it must play in this task, helping the model to output precise responses that match users’
needs. Thus, in our data generation pipeline, we encounter three different circumstances, and we
have three different system messages for GPT-4, tailoring it to become an expert accordingly. We
provide the details of these system message in Table A6 for reference.

B IMPLEMENTATION DETAILS

In this paper, unless otherwise specified, we employ LLaVA-7B as our model architecture, based
on the official LLaVA repository.4 We use the CLIP ViT large model with a patch size of 14 as the
vision encoder, and adopt a 2-layer MLP with GeLU (Hendrycks & Gimpel, 2016) as the activation
function.5 For the language model, we use Vicuna v1.5 (Zheng et al., 2023) as the LLM backbone.
Regarding training details, we follow the default settings in LLaVA v1.5, with a batch size of 32
for pretraining and 16 for finetuning. The model is trained for 1 epoch with learning rates of 2e-4
and 2e-5 for pretraining and finetuning, respectively, using a cosine learning rate scheduler, weight

4LLaVA: https://github.com/haotian-liu/LLaVA.
5clip-vit-large: https://huggingface.co/openai/clip-vit-large-patch14-336.

3

https://github.com/haotian-liu/LLaVA
https://huggingface.co/openai/clip-vit-large-patch14-336

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table A6: System messages for GPT-4.

Model System messages

JSON expert GPT-4 You are an AI chatbot designed to help users generate a JSON template file
along with a README for a specific chart type. Once users specify the
chart type, you will have to determine the necessary attributes for plotting a
chart, including but not limited to the title, x-axis, y-axis, and data. The data
part should have a general structure that covers both simple and complex
examples for the chart type. As for the README, it should explain the
meaning and type of each attribute or label, and also the definition for this
chart type. The generated template and README will then be used in
creating raw data and a Python script for visualizing the chart.

Data expert GPT-4 You are an expert in generating question and answer pairs based on raw
chart data. Your role involves carefully examining chart data, which is
presented in JSON format, and creating relevant question and answer pairs.
These pairs will be used for instructional tuning of a vision and language
model. Along with the chart data, you will receive a JSON template and
a README file that provides additional information on the meaning of
each attribute in the JSON data. It is important to review all the provided
materials thoroughly to ensure the question and answer pairs are accurate
and useful for model training.

Code expert GPT-4 You are a Python code AI assistant and good at chart image plotting. Now,
you are asked to modify the Python code to a general version that can take
any JSON data matching the definition in the template.

Table A7: Comparative analysis with existing benchmarks for chart understanding evaluations.
* denotes unbounded chart types. Chart variation refers to whether the dataset contains chart images
with different styles but sharing the same raw data.

Benchmark # Image # Chart type Avg. # QAs
per image

Multi-level QAs
per image

Raw data
per image

Chart
Variation

PlotQA Methani et al. (2020) 33.7k 3 1 7 7 7
ChartQA Masry et al. (2022) 1.5k 3 1 7 3 7
Chart-to-text Kantharaj et al. (2022b) 6.6k 6 1 7 7 7
MMC Liu et al. (2024a) 2k 6 1 7 3 7
Chartbench Xu et al. (2023) 2.1k 9 9 3 7 7
ChartX Xia et al. (2024) 6k 18 1 7 3 7
CharXiv Wang et al. (2024) 2.3k * 5 3 7 7
Ours 5.48k 20 13.5 3 3 3

decay of 0, and a warmup ratio of 0.03. For computational resources, we use 8 A100 GPUs with bf16
settings for both pretraining and finetuning. Considering the amount of data used, pretraining takes
approximately one day and finetuning takes around three days using 8 A100 GPUs.

C DETAILS OF THE GENERATED BENCHMARK

C.1 MOTIVATIONS AND DESIGN PRINCIPLE

To measure the comprehensive chart understanding ability of MLLMs, we assume that models can
understand the underlying data of various chart types and perform QAs related to charts. These QAs
shouldn’t be limited to simple questions about the title or x-axis; instead, they should range from
basic to advanced QAs, requiring models to have a global conceptual understanding or even perform
mathematical reasoning. However, existing benchmarks either lack a diverse range of chart types or
fail to provide comprehensive QAs for each image, lack of a full assessment of understanding from
multiple perspectives. To this end, we leverage our powerful data generation pipeline to generate
a small set of data and apply filtering through an automatic pipeline and human evaluation. The
resulting benchmark has several features to facilitate research in scientific chart understanding: (1)
20 different chart types, covering general use cases to scientific reports; (2) comprehensive QAs for

4

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Area Bar Box Candle. Contour Funnel Donut

Line Bar Gantt Heatmap Histo. Pie Bar S-Area Scatter

Radar Pie Rose Step Line S-Bar

Figure A6: Overview of our benchmark. Left: Data distribution across different chart types. Right:
Comprehensive list of chart types in the dataset with examples.

each image, including literal, inferential, and reasoning questions, similar to the design of the training
data; and (3) raw data for each image, measuring the models’ ability to understand the underlying
data. We provide a comparison with previous benchmarks in Table A7.

C.2 DATASET STATISTICS

We provide the data statistics after filtering in Table A7. Additionally, a comprehensive list of all the
chart types and the data distribution for each type is provided in Fig. A6. Specifically, for each chart
type, we initially create M = 30 JSON data and N = 12 Python scripts. For each JSON dataset, we
generate 15 QAs. As mentioned in Sec. 3.1, since all code scripts and data share the same structure,
our generated data can be universally applied to any generated code and vice versa. In this way, we
obtain approximately 360 unique chart images and around 5.4k chart-QA pairs for each chart type.
After data filtering, we retain 74k chart-QA pairs in total, resulting in an average of 3.5k pairs per
chart type and an average of 13.5 QAs per image. By applying multiple Python scripts to the same
data point, our benchmark includes 608 unique data points, with an average of 9.2 variations per data
point.

C.3 DATA FILTERING

The benchmark is generated by our data generation pipeline, while the LLMs are not faultless,
resulting in some noisy question-answer pairs. Unlike training data, noisy data can be problematic
for benchmark, and cannot accurately access the model performance. Thus, to make sure the quality
of the benchmark, we leverage automatic filtering process and human evaluation to filter chart images
and question-answer pairs. We now detail the data filtering process of the proposed benchmark.

General data filtering. In the first stage of data filtering, we leverage the automatic data filtering
pipeline used for our training data, as mentioned in Appendix A. Specifically, since the JSON
data shares the same structure, we can filter out JSON files with incorrect dictionary structures.
Furthermore, since the generated QAs follow a predefined dictionary structure, we can filter out QAs
with missing attributes or keys. Lastly, when generating chart images using Python code and JSON,
we record any execution errors and further filter out Python scripts that produce error messages.

Human evaluation - image filtering. To make sure the quality of the benchmark, we further adopt
human evaluation. Recall that, in our benchmark, we have 608 unique data points, with an average of
9.2 variations per data point. To reduce the complexity and cost of human evaluation, we first invite
human workers to check the image first, in which human workers have to go through all chart images
and check the readibility of the chart. Specifically, workers will have to remove chart images if they
have missing data points comparing to other variation or they are draw incorrect (potentially due to
incorrect python code).

Human evaluation - QA filtering. After filtering the chart images, we then conduct QA filtering.
In this step, we ask human workers to review 608 unique data points, with each data point having 15
QAs, resulting in approximately 9k test pairs. Specifically, for each test pair, we provide the human

5

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Here are some examples of the evaluation process:
Example of ignoring unit:
Question: What is the box office revenue in Week 1?, Groundtruth answer: 20, Predicted answer: 20 million, Output: True
Example of ignoring unit:
Question: What is the value of the Alternative Rock music genre?, Groundtruth answer: 5, Predicted answer: 5.0%, Output: True
Example of ignoring unit:
Question: What is the total revenue increase from 2013 to 2022?, Groundtruth answer: 250, Predicted answer: Approximately 300 million
USD, Output: False
Example of same meaning:
Question: Which month had the lowest soil moisture level at any farm?, Groundtruth answer: Second month, Predicted answer: 2.0,
Output: True
Example of 5% error tolerance:
Question: What was the highest closing price during the observed period?, Groundtruth answer: 147.10, Predicted answer: 148.00,
Output: True
Example of 5% error tolerance:
Question: By how much does the percentage of viewers for Drama exceed that for Documentary/Educational?, Groundtruth answer: 20,
Predicted answer: 40%, Output: False

In-context
examples

Task
prompt

Imagine you are an intelligent teacher. Thoroughly read both the reference answer and the predicted answer to ensure a clear
understanding of the information provided. Assess the accuracy of the predictions, noting that a prediction will be considered correct if it
conveys the same meaning or value as the reference answer. Please ignore %, $, and other units. Note that if the ground truth answer is
a numeric value, with or without a unit, apply a 5% error tolerance to the answer. Your response should be either "True" or "False".
\n\nQuestion: {q}\nGroundtruth answer: {g}\nPredicted answer: {p}.

Figure A7: Input prompt example for GPT-Acc. q, g, and p in the task prompt denote the question,
ground truth answer, and predicted answer, respectively.
Table A8: Comprehensive evaluation on our benchmark. Note that R-Acc and GPT-Acc denote
relaxed accuracy and GPT accuracy, respectively.

Method Literal QAs Inferential QAs Reasoning QAs Overall Extraction

R-Acc GPT-Acc R-Acc GPT-Acc R-Acc GPT-Acc R-Acc GPT-Acc F1 RNSS

GPT-4o 43.98 47.62 57.23 59.43 23.08 26.15 41.40 44.40 66.10 88.56

LLaVA13B 8.96 8.68 24.91 21.76 2.46 2.46 12.11 10.97 9.22 45.82
ChartLlama13B 21.29 21.01 38.05 35.22 8.92 8.62 22.60 21.50 11.40 64.14
ChartInstruct7B 26.33 21.07 43.40 32.81 13.23 25.23 27.5 26.15 8.65 39.73
ChartAst13B 27.64 24.09 38.22 32.70 14.65 17.97 26.55 24.87 16.73 68.04

CHOPINLLM 34.45 44.82 56.92 58.18 21.85 21.23 37.50 41.40 28.42 75.44

workers with a chart image along with the corresponding question and answers. Human workers
are asked to filter the QA pairs based on two criteria: (1) Answerability: whether the question is
answerable given the chart image, and (2) Correctness: whether the provided answer is correct. After
collecting the feedback, we perform final data filtering to obtain the benchmark set.

C.4 EVALUATION METRICS

To quantitative analyze the performance on our benchmark, we adopt the relaxed accuracy metric
for numeric answers, allowing a 5% margin of error from the exact value, and use exact match for
non-numeric answers as per the standard in previous studies. Since the output of the MLLM model
can be open form, following previous works (Liu et al., 2024a; Han et al., 2023; Xia et al., 2024), we
also provide GPT-accuracy (GPT-Acc) using GPT model to further verify the performance. In Fig. A7,
we show how we leverage the LLM to measure the accuracy by providing the detail prompts.6 Lastly,
for underlying data understanding task, we follow previous work Deplot (Liu et al., 2022a) and
measure performance using F1 score of Relative Mapping Similarity (RMS) and Relative Number
Set Similarity (RNSS) to evaluate numeric accuracy and raw data similarity, respectively.

C.5 PERFORMANCE OF EXISTING MODELS

We evaluate existing models on our benchmark, and the results are provided in Table A8. We
compare our model with four previous works, including ChartLlama Han et al. (2023), LLaVA (Liu

6GPT-4o-mini (2024-07-18)

6

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table A9: Performance comparison with synthetic data using in different training stages.

Idx Model Using synthetic data in ChartQA

human augmented

(1) LLaVA-7B - 36.00 67.44
(2) LLaVA-7B stage 3 37.60 70.40
(3) LLaVA-7B stage 1 & 2 52.28 87.68

et al., 2024b), ChartInstruct (Masry et al., 2024a), and ChartAst (Meng et al., 2024). As shown in
the table, our model consistently outperforms all existing works across three different QA levels
and the raw data extraction task. We note that, compared to existing benchmarks, our benchmark
includes chart images with a greater variety of chart types (i.e., 20 different chart types) and features
comprehensive QAs for each image, along with raw data extraction to assess the fundamental
understanding of scientific charts. Therefore, outperforming previous works demonstrates that our
model has broader understanding of the chart domain and a more comprehensive understanding of
the underlying data. Lastly, we also evaluate the GPT model on our benchmark. We find that while
the GPT model excels at capturing global concepts (i.e., inferential QAs), its performance on raw
data understanding tasks (i.e., literal QAs and Extraction) is below 50% accuracy. Moreover, for
reasoning QAs, it achieves only ⇡ 25% accuracy, highlighting its lack of mathematical reasoning
ability with chart data. We note that evaluating GPT-4o vision on the entire benchmark would be
expensive. To deal with this while having fair comparison, all results in this table are evaluated on
the same small subset of the benchmark, consisting of 1,000 randomly sampled chart QA pairs.

D EXPERIMENTAL RESULTS

D.1 EFFECTIVENESS OF SYNTHETIC DATA IN DIFFERENT TRAINING STAGES

In the experiments of main paper, we showcase that chart data generated by text-only LLMs enhances
MLLM learning in chart understanding. Here, we compare the performance of using the same data
amount in the third stage of LoRA downstream fine-tuning, similar to Chartllama Han et al. (2023).
The results are in Table A9. Specifically, Model (1) is the baseline, trained with LLaVA data in pre-
training and fine-tuning stages, followed by LoRA fine-tuning on ChartQA. Model (2) is similar but
includes synthetic data with ChartQA in the LoRA fine-tuning stage. Model (3), our best 7B model,
uses the same synthetic data as Model (2) but incorporates it in pretraining and fine-tuning before
LoRA fine-tuning on ChartQA. As shown in Table A9, Model (2) shows an ⇡ 2% improvement
over Model (1), indicating the benefit of synthetic data. However, Model (3) shows a significant
improvement over Model (2), suggesting synthetic data is more effective in fundamental training
rather than fine-tuning. We propose two possible reasons for this. First, alignment issues cannot be
effectively resolved via LoRA tuning, as it only adjusts a small portion of the model’s parameters.
Second, the output preference of synthetic data may differ from that of the downstream dataset.
Joint tuning might shift the output preference away from the downstream task, resulting in limited
performance improvement.

D.2 SCALING LAW EXPERIMENTS

When fine-tuning models using generated data, a common question arises: How much data or how
many training tokens should be used to achieve optimal performance for a given model? This question
is similar to the one often asked in LLM research regarding training compute-optimal models (Hoff-
mann et al., 2022; Kaplan et al., 2020). Following previous works (Dubey et al., 2024; Hoffmann
et al., 2022) on model scaling studies, our goal is to explore this by estimating the relationship between
computational cost, model size, and the number of training tokens, providing guidance for future
research on model and data selection within a compute budget. We assume a power-law relationship
between computation and model size, as described in previous works (Clark et al., 2022; Kaplan
et al., 2020). Specifically, we approach this problem from two angles: (1) FLOPs vs. parameters,
where we fix the model size and vary the number of training tokens, and (2) FLOPs vs. training

7

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

FLOPSFLOPS

Va
lid

at
io

n
Lo

ss

Pa
ra

m
et

er
s

109.2

109.0

108.8

108.6

108.4

108.2

108.0

1017.4 1017.6 1017.8 1018.0 1018.2 1018.4 1018.6 1018.81018

Figure A8: Training curve envelope showing the relationship between FLOPs and parameters,
with model size fixed and training tokens varied.

Training Tokens

Va
lid

at
io

n
Lo

ss

Tr
ai

ni
ng

 to
ke

ns

FLOPS
1010 1017.6 1017.8 1018.0 1018.2 1018.4

109.6

109.8

1010.0

1010.2

1010.4

Figure A9: Training curve envelope showing the relationship between FLOPs and training
tokens, with FLOP count fixed and model size varied.

tokens, where we vary the model size while keeping the training FLOP count constant. These two
approaches are discussed in detail in the following sections.

FLOPs vs. Parameters: Fixing Model Size and Varying Training Tokens To determine the
relationship between parameters and FLOPs for compute-optimal models, we need to identify the
FLOPs required to reach the optimal point on the validation set. Specifically, we train models
with varying numbers of tokens, find the optimal point (estimated lowest loss), and measure its
corresponding FLOPs. With these optimal loss points and their respective training FLOPs, we can
leverage the power-law relationship to deduce the relationship between parameters and FLOPs. The
results are shown in Fig. A8. In practice, to construct smaller multimodal LLMs for testing, we
created four different MLLMs by combining the CLIP vision tower with four GPT-2 models of
varying sizes. Similar to LLaVA, a projector is employed to connect the vision and textual modalities.
We then trained each of these models with five different token counts on our generated datasets,
enabling us to collect five distinct points. Using a second-order polynomial fit, we estimate the
optimal points. As shown in Fig. A8, once we have the optimal points for each model and the
corresponding FLOPs, we can plot FLOPs against parameter size on a logarithmic scale. Using these
interpolants, we derive a mapping from any given FLOP count C to the most efficient model size N .
Applying the power-law, we obtain the relationship Nopt = C↵, where ↵ ⇡ 0.72.

FLOPs vs. Training Tokens: Varying Model Size and Keeping Training FLOP Count Constant
Similarly, to determine the relationship between training tokens and FLOPs for compute-optimal
models, we need to identify the FLOPs for the optimal point on the validation set. Unlike the previous
approach, here we keep the training FLOP count constant and vary the model size. Specifically,
we choose four different FLOP counts and train the four previously mentioned models until they
reach the respective FLOP thresholds. We then plot the validation loss against the number of training
tokens for each FLOP count, as shown on the left side of Fig. A9. As with FLOPs vs. parameters, we

8

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

identify the optimal point and its corresponding training tokens, and we can then plot FLOPs against
training tokens on a logarithmic scale. Using these interpolations, we establish a mapping from any
given FLOP count C to the most efficient number of training tokens D. Applying the power-law, we
derive the relationship Dopt = C↵, where ↵ ⇡ 0.9293. Extrapolating this scaling law to 6.188e19
FLOPs suggests training a 13B parameter model on 5.29e12 tokens, which is approximately 7 times
the amount of data used to train a 1.5B model.

E SOCIAL IMPACT

Our model is capable of chart understanding and can interpret the raw data of a chart like a human,
without relying on annotations, while also performing various levels of QA tasks. Thus, our model
can be used in many data analysis scenarios, such as market research, healthcare trend analysis,
and other data science areas. With the help of our model, humans can process large volumes of
chart data more efficiently, make informed decisions, and enhance reporting accuracy. While our
model provides benefits in chart understanding and analysis, there are potential negative impacts. For
instance, it could be employed to create misleading data visualizations or generate false narratives
when combined with other LLM tools. These fake charts and pieces of information can negatively
affect decision-making processes.

F LIMITATION

In this paper, we propose an MLLM model for chart understanding, fundamentally trained on
synthetic data. However, since the synthetic data generated by LLMs cannot be perfect, sometimes
incorrect data can be introduced into the dataset and may not be filtered out by our filtering process.
These data can result in misalignments and incorrect mappings during pre-training and fine-tuning,
potentially leading to incorrect responses and hallucinations. Thus, the performance of our chart
MLLMs is limited by the LLMs’ generation capabilities. We can potentially include more advanced
LLMs in the data generation pipeline to reduce the occurrence of incorrect data. Moreover, another
limitation of our model is that it currently supports understanding only 18 chart types. However,
there are many more chart types in the real world. Developing an open-domain, versatile chart
understanding MLLM remains a task for future work.

9

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

G EXAMPLES FOR JSON TEMPLATE AND READMES

G.1 EXAMPLE 1

The JSON template provided below is designed to generate data for a 'Bar Chart' chart. This template
includes all the necessary attributes and labels to ensure consistent data formatting for the chart.
- `chart_title`: This attribute represents the title or name of the bar chart. Please replace the placeholder
text with an appropriate title for your chart.
- `x_axis_label`: This attribute represents the label for the x-axis of the chart. Please replace the
placeholder text with an appropriate label.
- `y_axis_label`: This attribute represents the label for the y-axis of the chart. Please replace the
placeholder text with an appropriate label.
- `data`: This attribute represents the data points for the chart. It is an array of objects, where each
object represents a category or group and its corresponding value.
For a simple example, the template can be filled as follows:

{ "chart_title": "Chart Title", "x_axis_label": "X-Axis Label", "y_axis_label": "Y-Axis Label", "data": [
{ "category": "Category 1", "value": 0 }, { "category": "Category 2", "value": 0 }, { "category":
"Category 3", "value": 0 }] }

Definition of a 'Bar Chart' chart:
A bar chart, also known as a bar graph, is a visualization tool that uses rectangular bars to represent
data. Each bar represents a category or group, and the length or height of the bar corresponds to the
value it represents. Bar charts are commonly used to compare categorical data or show the distribution
of data across different categories.

Template
JSON

README

G.2 EXAMPLE 2

This JSON file template is designed for generating datasets for a 'Multi-axes Line Bar Chart' chart. It includes the following
attributes:
1. chart:
 - title: (string) The title of the chart.
 - xAxisLabel: (string) The label for the X-axis.
 - yAxisLabel1: (string) The label for the Y-axis corresponding to the line chart.
 - yAxisLabel2: (string) The label for the Y-axis corresponding to the bar chart.
2. datasets:
 - name: (string) The name or label of the dataset.
 - type: (string) The type of chart component for the dataset. Can be 'line' or 'bar'.
 - data: (array) The array to store the data points for the dataset. Placeholder data should be added here.
The template provides a structure to accommodate both simple and complex examples of a Multi-axes Line Bar Chart. Additional
datasets can be added within the "datasets" array.
Please ensure that the generated data adheres to the structure of this JSON template, including the attribute names and data types, to
ensure consistency when plotting the chart using Python.

{ "chart": { "title": "Chart Title", "xAxisLabel": "X-axis Label", "yAxisLabel1": "Y-axis Label 1",
"yAxisLabel2": "Y-axis Label 2", "datasets": [{ "name": "Dataset 1", "type": "line", "data": [] }, {
"name": "Dataset 2", "type": "bar", "data": [] }] } }

Definition of a 'Multi-axes Line Bar Chart':

A multi-axes line bar chart is a type of chart that combines both line and bar charts in a single
visualization. It allows for the comparison of multiple datasets that have different scales or units of
measurement. This chart type uses multiple y-axes, one for each dataset, to display the corresponding
line and bar components.

Template
JSON

README

10

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

H EXAMPLES FOR PRE-DEFINED TOPICS

Public Policy
Healthcare Systems
Mental Health
Renewable Energy
Water Resources
Manufacturing
Retail Trends
Social Issues
Population Dynamics
Digital Media Consumption
Cryptocurrency and Blockchain
Humanitarian Aid and Development

Gender and Diversity
Economic Development
Artificial Intelligence and Robotics
Consumer Spending Habits
Advertising and Marketing
Cultural Trends
Philanthropy and Nonprofits
International Trade and Commerce
Politics
Business and Finance
Science and Research
Agriculture

Transportation
Weather and Climate
Sports and Recreation
Entertainment and Media
Food and Nutrition
Fashion and Lifestyle
Housing and Real Estate
Travel and Tourism
Crime and Safety
International Relations
Religion and Beliefs
History and Heritage

Labor and Employment
Urban Development
Sustainability and Green Initiatives
Education Policy and Reform
Healthcare Access and Equity
Clean Energy Initiatives
E-commerce Trends
Poverty and Homelessness
Immigration and Migration Patterns
Internet and Social Media Usage
Trends
Decentralized Finance (DeFi)

Trends
Disaster Relief and Emergency Response
LGBTQ+ Rights and Advocacy
Regional Economic Disparities
Automation and Job Displacement
Branding and Brand Loyalty
Subcultural Trends and Movements
Social Entrepreneurship and Impact
Investing
Fair Trade and Ethical Consumption
Import-Export Regulations and Tariffs

We provide a word cloud in the figure above to show the frequency of each word in the defined topic
set. A comprehensive list of all the topics is also provided at the bottom of this figure.

11

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

I EXAMPLES OF AUGMENTED QAS

I.1 JSON-ONLY QA: EXAMPLE 1

{ "title": "Box Office Revenue Share by Genre",
 "description": "This pie chart displays the distribution of box
office revenues among five major movie genres in 2021,
illustrating the diversity in consumer preferences and the strategic
positioning of movie studios.",
 "data": [{
 "category": "Action Blockbuster",
 "value": 350,
 "color": "#FF6347"
 },
 {
 "category": "Animated Feature",
 "value": 300,
 "color": "#3CB371"
 },
 {
 "category": "Gripping Thriller",
 "value": 250,
 "color": "#4682B4"
 },
 {
 "category": "Sci-Fi Adventure",
 "value": 200,
 "color": "#DAA520"
 },
 {
 "category": "Historical Drama",
 "value": 150,
 "color": "#A0522D"
 }
]
}

JSON & READMEChart image
Title: The title of the pie chart, which gives an idea of the dataset's
overall topic.

Description: A short summary explaining what the pie chart data
represents and any additional information that might be useful to
understand the context.

Data: An array of objects where each object represents a slice of
the pie chart.
- category: A string representing the name of the category this slice
of the pie chart is about.
- value: A numerical value indicating the size of the category in the
dataset. This determines the size of the pie slice.
- color: A string indicating the color of this slice. It can be a HEX
color code or a standard color name.

The JSON template and README file are designed to ensure that
datasets for pie charts can be created with consistent structure and
clarity, accommodating both simple and complex use cases. Make
sure to replace placeholder text and values with actual data relevant
to the pie chart you are creating.

I.2 JSON-ONLY QA: EXAMPLE 2

{
 "chartTitle": "Cybersecurity Domain Risk Analysis Trends",
 "datasets": [
 {
 "label": "2023 Risk Levels",
 "data": {
 "Network Security": 50,
 "Cloud Security": 75,
 "Endpoint Security": 30,
 "Application Security": 60
 }
 },
 {
 "label": "2022 Risk Levels",
 "data": {
 "Network Security": 50,
 "Cloud Security": 65,
 "Endpoint Security": 45,
 "Application Security": 60
 }
 }
],
 "options": {
 "scale": {
 "min": 0,
 "max": 100,
 "stepSize": 10
 }
 }
}

JSON & READMEChart image
Chart Title: The title of the Radar Chart, which usually describes
the overall data being represented.
Datasets: An array of objects, each representing a different dataset
to be plotted on the Radar Chart.
Dataset Label: A descriptive name for the dataset. This could be the
name of a product, an individual's name, or any other identifier
relevant to the data.
Data: An object containing key-value pairs where the key is the
label for the axis (e.g., 'Communication', 'Battery Life') and the
value is the data point associated with that axis. The number of
axes can vary depending on the use case.
Axis Label: Placeholders for the actual labels of each axis on the
Radar Chart. Replace these placeholders with the appropriate
criteria or variables for your specific use case.
Options: An object containing additional settings and
configurations for the Radar Chart.

Scale: Defines the range and increment of the chart's axes.
Min: The minimum value of the scale (usually 0).
Max: The maximum value of the scale, which should be set
according to the data's range.
StepSize: The interval between values on the scale.

12

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

I.3 DATA-DRIVEN QA: EXAMPLE 1

An example of data extraction QAs

{ "title": "Seasonal Wildlife Population Dynamics in Yellowstone", "xAxis": { "title":
"Species", "categories": ["Elk", "Bison", "Wolves", "Bears"] }, "yAxis": { "title": "Seasons",
"categories": ["Spring", "Summer", "Autumn", "Winter"] }, "colorScale": { "minValue": 0,
"maxValue": 100, "startColor": "#FFFFFF", "endColor": "#FF6347" }, "data": [{ "x": 0, "y": 0,
"value": 40 }, { "x": 0, "y": 1, "value": 70 }, { "x": 0, "y": 2, "value": 60 }, { "x": 0, "y": 3, "value": 30
}, { "x": 1, "y": 0, "value": 50 }, { "x": 1, "y": 1, "value": 80 }, { "x": 1, "y": 2, "value": 55 }, { "x": 1, "y":
3, "value": 35 }, { "x": 2, "y": 0, "value": 20 }, { "x": 2, "y": 1, "value": 60 }, { "x": 2, "y": 2, "value":
45 }, { "x": 2, "y": 3, "value": 25 }, { "x": 3, "y": 0, "value": 30 }, { "x": 3, "y": 1, "value": 50 }, { "x":
3, "y": 2, "value": 40 }, { "x": 3, "y": 3, "value": 20 }] }

Reviewing the heatmap data, Summer has high values for all species:
Elk (70), Bison (80), Wolves (60), and Bears (50). Thus, Summer generally
shows the highest population densities.

Can you please extract the raw data of this chart?

Which season generally shows the highest population densities across all species?

Long answer

SummerShort answer

I.4 DATA-DRIVEN QA: EXAMPLE 2

An example of data extraction QAs

{ "chart": { "title": "Disaster Response Stages Efficiency", "description": "This funnel chart
maps the stages of disaster response from the initial alert to recovery, highlighting the
number of actions completed and the conversion rates between each stage. The cyclical
trend observed suggests repeated challenges in transitioning efficiently from one stage
to the next." }, "stages": [{ "stage": "Early Warning and Alert", "value": 1000,
"conversionRate": "85%" }, { "stage": "Immediate Response", "value": 850, "conversionRate":
"75%" }, { "stage": "Assessment", "value": 638, "conversionRate": "60%" }, { "stage": "Relief
Distribution", "value": 383, "conversionRate": "80%" }, { "stage": "Recovery and
Rehabilitation", "value": 306, "conversionRate": null }] }

The sum of conversion rates for all stages mentioned is calculated by
adding the rates: 85% (Early Warning and Alert) + 75% (Immediate
Response) + 60% (Assessment) + 80% (Relief Distribution) = 300%.

Can you please extract the raw data of this chart?

What is the sum of conversion rates for all stages where it is mentioned?

Long answer

300%Short answer

13

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

J EXAMPLES OF DATA PROMPTING

J.1 EXAMPLE 1

Retrieve the raw data from the image and organize it into a JSON dictionary.

With data extraction QA in the inference

{'chart': {'title': 'Research Paper Publication Funnel', 'xAxisLabel': 'Stage', 'yAxisLabel':
'Number of Papers'}, 'data': [{'stage': 'Submitted Manuscripts', 'count': 1200}, {'stage':
'Passed Initial Screening', 'count': 900}, {'stage': 'Peer Review Completed', 'count': 700},
{'stage': 'Revisions Submitted', 'count': 500}, {'stage': 'Accepted for Publication', 'count':
300}]}

What is the acceptance rate of manuscripts that have been revised?

60%

Without data extraction QA in the inference

What is the acceptance rate of manuscripts that have been revised?

50%

J.2 EXAMPLE 2

Retrieve the raw data from the image and organize it into a JSON dictionary.

With data extraction QA in the inference

{'chart_title': 'Impact of Social Entrepreneurship Sectors on Investment Returns',
'x_axis_label': 'Sectors', 'y_axis_label_pie': 'Distribution of Sectors', 'y_axis_label_bar':
'Average Investment Return (%)', 'data': [{'category': 'Healthcare Innovation', 'value_pie':
35, 'value_bar': 12}, {'category': 'Sustainable Energy', 'value_pie': 25, 'value_bar': 15},
{'category': 'Education Technology', 'value_pie': 20, 'value_bar': 10}, {'category':
'Agricultural Development', 'value_pie': 15, 'value_bar': 8}, {'category': 'Financial Inclusion',
'value_pie': 5, 'value_bar': 20}]}

What proportion of the total distribution is made up by 'Sustainable
Energy' and 'Healthcare Innovations' combined?

60%

Without data extraction QA in the inference

45%

What proportion of the total distribution is made up by 'Sustainable
Energy' and 'Healthcare Innovations' combined?

14

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

K EXAMPLES FROM OUR BENCHMARK

K.1 EXAMPLE 1

JSON Data

{'chart': {'type': 'donut', 'title': 'AI & Robotics Investment Distribution 2023'}, 'data': {'labels': ['Machine
Learning', 'Natural Language Processing', 'Robotics', 'Computer Vision', 'Speech Recognition'], 'datasets':
[{'label': 'Investment Proportions', 'data': [35, 25, 15, 15, 10], 'backgroundColor': ['#6495ED', '#FFD700',
'#DC143C', '#32CD32', '#FF8C00']}]}}
Literal Question

Question: How much less investment did Speech Recognition receive compared to Natural
Language Processing?

Long Answer: Speech Recognition received 15% less investment than Natural Language
Processing, with Speech Recognition at 10% and Natural Language Processing
at 25%.

Short Answer: 15%
Inferential Question

Question: What two sectors together make up half of the total investment?
Long Answer: Machine Learning and Natural Language Processing together make up half of

the total investment, with percentages of 35% and 25% respectively.
Short Answer: Machine Learning and Natural Language Processing
Reasoning Question

Question: What fraction of the total investment is allocated to fields other than Machine
Learning?

Long Answer: Fields other than Machine Learning receive a combined total of 65% of the
investment, which is equivalent to the fraction 65/100 or 13/20 of the total
investment.

Short Answer: 13/20

Example 1

15

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

K.2 EXAMPLE 2

JSON Data

{'chart': {'title': 'Quarterly Revenue and Profit Comparison', 'xAxisLabel': 'Quarter', 'yAxisLabel': 'Amount (in
million USD)'}, 'data': [{'category': 'Revenue', 'values': [{'x': 'Q1 2021', 'y': 120}, {'x': 'Q2 2021', 'y': 150}, {'x':
'Q3 2021', 'y': 130}, {'x': 'Q4 2021', 'y': 170}]}, {'category': 'Profit', 'values': [{'x': 'Q1 2021', 'y': 30}, {'x': 'Q2
2021', 'y': 50}, {'x': 'Q3 2021', 'y': 40}, {'x': 'Q4 2021', 'y': 60}]}]}
Literal Question

Question: What was the Revenue in Q3 2021?
Long Answer: In Q3 2021, the Revenue was 130 million USD as shown on the chart.
Short Answer: 130 million USD
Inferential Question

Question: Which quarter had the highest ratio of Profit to Revenue?
Long Answer: To determine the highest ratio of Profit to Revenue, we compare the ratios for

each quarter. The highest ratio is in Q2 2021, with Profit at 50 million USD and
Revenue at 150 million USD, giving a ratio of 1:3.

Short Answer: Q2 2021
Reasoning Question

Question: If Profit in Q1 2022 is expected to be 20% higher than Q4 2021, what would be
the expected Profit?

Long Answer: If Profit in Q1 2022 is expected to be 20% higher than Q4 2021's 60 million
USD, the expected Profit would be 60 * 1.20, which is 72 million USD.

Short Answer: 72 million USD

Example 2

16

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

K.3 EXAMPLE 3

JSON Data

{'chart': {'title': 'Trends in Poverty and Homelessness Rates in Metropolis Over a Decade', 'xAxisLabel': 'Year',
'yAxisLabel': 'Percentage (%)'}, 'data': [{'category': 'Poverty Rate', 'values': [{'x': '2010', 'y': 15.0}, {'x': '2011',
'y': 15.5}, {'x': '2012', 'y': 16.0}, {'x': '2013', 'y': 15.8}, {'x': '2014', 'y': 15.6}, {'x': '2015', 'y': 14.7}, {'x': '2016',
'y': 14.0}, {'x': '2017', 'y': 13.5}, {'x': '2018', 'y': 13.0}, {'x': '2019', 'y': 12.5}, {'x': '2020', 'y': 14.0}]},
{'category': 'Homelessness Rate', 'values': [{'x': '2010', 'y': 0.9}, {'x': '2011', 'y': 1.0}, {'x': '2012', 'y': 1.1}, {'x':
'2013', 'y': 1.2}, {'x': '2014', 'y': 1.3}, {'x': '2015', 'y': 1.2}, {'x': '2016', 'y': 1.1}, {'x': '2017', 'y': 1.0}, {'x': '2018',
'y': 0.8}, {'x': '2019', 'y': 0.7}, {'x': '2020', 'y': 0.9}]}, {'category': 'Extreme Poverty Rate', 'values': [{'x': '2010',
'y': 2.0}, {'x': '2011', 'y': 2.2}, {'x': '2012', 'y': 2.4}, {'x': '2013', 'y': 2.5}, {'x': '2014', 'y': 2.3}, {'x': '2015', 'y':
2.1}, {'x': '2016', 'y': 2.0}, {'x': '2017', 'y': 1.9}, {'x': '2018', 'y': 1.7}, {'x': '2019', 'y': 1.5}, {'x': '2020', 'y':
1.8}]}]}
Literal Question

Question: In which year did the Poverty Rate reach its lowest value?
Long Answer: According to the chart data, the Poverty Rate reached its lowest value in 2019 at

12.5%.
Short Answer: 2019
Inferential Question

Question: Did any category show a consistent decline over the entire decade?
Long Answer: No category showed a consistent decline over the entire decade. While Poverty

Rate and Extreme Poverty Rate generally declined until 2019, they both
increased in 2020, and the Homelessness Rate fluctuated throughout the decade.

Short Answer: No
Reasoning Question

Question: What is the average annual decrease in the Poverty Rate from 2010 to 2019?
Long Answer: From 2010 to 2019, the Poverty Rate decreased from 15.0% to 12.5%. This is a

total decrease of 2.5 percentage points over 9 years, which gives an average
annual decrease of about 0.278 percentage points per year.

Short Answer: Approximately 0.278 percentage points per year

Example 32

17

