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1 Proof of Eq. 81

φ(G,F ) ≤ ‖δτ (F )‖0 � ‖δ2τ (ID)‖0 − ‖δτ (kp)‖0 ≤ φ(kp, ID)2

φ(G,F ) =
∑
i,j

sign(δτ (Gij − Fij)) (1)

=
∑
i,j

sign(δτ (FijSij − Fij)) (2)

=
∑
Fij<τ

sign(δτ (FijSij − Fij)) +
∑
Fij≥τ

sign(δτ (FijSij − Fij)) (3)

≤
∑
Fij<τ

sign(δτ (Fij(Sij − 1))) +
∑
Fij≥τ

sign(δτ (Fij)) (4)

= 0 +
∑
Fij≥τ

sign(δτ (Fij)) (5)

= ‖στ (F )‖0 (6)

φ(kp, ID) =
∑
i,j

sign(δτ ([kp]ij − [ID]ij)) (7)

=
∑

[kp]ij>τ

sign(δτ ([kp]ij − [ID]ij)) +
∑

[kp]ij<τ

sign(δτ ([kp]ij − [ID]ij)) (8)

≥
∑

[kp]ij<τ

sign(δτ ([kp]ij − [ID]ij)) (9)

≥
∑

[kp]ij<τ,[ID]ij>2τ

sign(δτ ([kp]ij − [ID]ij)) (10)

≥ ‖σ2τ (ID)‖0 − ‖δτ (kp)‖0 (11)

where both F and ks are sparse such that ‖στ (F )‖0 and ‖δτ (kp)‖0 are significantly smaller than3

‖σ2τ (ID)‖0 due to the non-sparsity of ID. So we come to φ(kp, ID)� φ(G,F ).4

2 Fourier transform of 2D-Gaussian function.5

(1) For the two-dimensional Gaussian function f(x, y),6

f(x, y) =
e
−( x

2

σx2 + y2

σy2 )

2πσxσy
(12)
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where σx and σx is the variance in two orthogonal directions respectively. After two-dimensional7

Fourier transform:8

F (u, v) =
∑
x

∑
y

f(x, y)e−j2π(ux+vy) (13)

= e−2π2(σ2
xu

2+σ2
yv

2) (14)

= Ae
−( u

2

2σ2u
+ v2

2σ2v
)

(15)

σu ∝
1

σx
, σv ∝

1

σy
(16)

Where σu and σv denote the new variance of the Gaussian function after transformation. Discrete9

Fourier Transform (DFT) result Fg(u, v) for Gaussian kernel is also in Gaussian form, and their10

variances are in inverse proportion 1.11

3 Limitations12

(1) As described in Section 3.1 of this paper, same with most previous blind SR methods, our method13

is also based on convolution and downsampling degradation model to describe the real degradation14

process, which is the commom setting. But this description may not cover all forms of degradation,15

such as non-uniform degradation (kernel each local area may be different) and motion synthesis using16

aliasing of adjacent frames. This needs further research and exploration in future work.17

(2) Compared with the previous work, we provide a more accurate and efficient blind blur kernel18

estimation scheme. Combined with the existing efficient non-blind SR methods, we achieve the best19

blind SR results. Since the proposed estimation scheme is task independent and we mainly focus on20

blind-SR, it may also be suitable for some other blind task scenarios such as deblurring, which needs21

more future exploration.22

4 More quantitative and visual results23

In addition to the fidelity-oriented blind-SR experiment in the main text, we conducted additional24

perceptual-oriented experiments. Same as the previous experimental setup, we use ESRGAN and25

LPIPS perceptual metric to compare the results of 2×, 3×, 4× blind-SR results on LR images from26

DIV2K degraded by random Gaussian kernels, as shown in the Table 1.

Method DIV2K Flicker2K
2x 3x 4x 2x 3x 4x

ESRGAN 0.4969 0.5757 0.6315 0.4881 0.5719 0.6269
FCA 0.2799 0.3527 0.3818 0.2627 0.3488 0.3661

KernelGAN 0.2275 0.3159 0.5774 0.2371 0.3331 0.6141
Ours 0.1968 0.2569 0.3390 0.1987 0.2706 0.3400

Table 1: Quantitative [LPIPS↓] comparison of perception-oriented SR results for 2×, 3×, 4×
up-sampling respectively. The best performance is shown in red and the second best is blue.

27
Here we also provide a comparison of blind SR performance on the additional synthetic dataset L2028

in Table 2. And more visual comparison with state-of-the-art methods as provided and shown in29

Figure 1, 2, 3 and Figure 5, we show the visual contrast of the best methods.30

5 Code, data, and instructions needed to reproduction31

We provide the code, instructions and dataset with download address for reproduction in the attached32

zip file.33

1Reflect in the major and minor axis of the projection boundary on the position coordinate plane
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Method Kernel L20
2x 3x 4x

RCAN finetuned 27.05 / 0.7310 24.78 / 0.6569 23.68 / 0.6220
ZSSR 27.00 / 0.7308 24.76 / 0.6569 23.66 / 0.6222

DeblurGAN w. RCAN 27.63 / 0.7516 25.30 / 0.6710 24.03 / 0.6301
KernelGAN 27.39 / 0.7349 25.02 / 0.6649 24.38 / 0.6389

FCA w.RCAN G 31.06 / 0.8607 28.07 / 0.7743 26.25 / 0.7107
IKC 29.86 / 0.8670 28.80 / 0.7895 27.10 / 0.7348

S2K w. SFTMD 32.26 / 0.8803 28.95 / 0.7909 27.51 / 0.7361
S2K w.RCAN 32.73 / 0.8838 29.35 / 0.7939 27.83 / 0.7355

RCAN finetuned 24.88 / 0.6775 23.04 / 0.6158 22.02 / 0.5906
DeblurGAN w. RCAN 24.77 / 0.6830 23.03 / 0.6179 21.90 / 0.5897

ZSSR 24.85 / 0.6756 23.02 / 0.6151 22.02 / 0.5903
KernelGAN M 24.16 / 0.6365 22.85 / 0.6057 21.10 / 0.5418

IKC 27.57 / 0.7901 23.53 / 0.6575 22.60 / 0.6187
Pan et al. w.SFTMD 22.63 / 0.6312 21.19 / 0.5647 19.84 / 0.5411

S2K w. SFTMD 32.95 / 0.9070 30.92 / 0.8551 28.36 / 0.7842

Table 2: Quantitative [PSNR↑ / SSIM↑] comparison results of fidelity-oriented SR model for
2×, 3×, 4× up-sampling. G, M denote Gaussian kernels and motion kernels respectively. The best
performance is shown in red and the second best in blue.
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Figure 1: 2× blind SR results for LR degraded with unknown kernel from DIV2K. For FCA is not
able to handle motion kernel, so we use Pan et al.’s as a comparison instead. Due to more accurate
kernel estimation, our method achieves the most pleasant results compared with other methods.

FCAKernelGANZSSRGT IKC Ours

Figure 2: 2× blind SR results for LR degraded with unknown Gaussian kernel from DIV2K.
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KernelGANZSSRGT IKC OursFCA 

Figure 3: 2× Blind SR results for LR degraded with unknown Gaussian kernel from DIV2K.

GT ZSSR KernelGAN Pan et al. IKC Ours

Figure 4: 2× Blind SR results for LR degraded with unknown motion kernel from Flicker2K.

Pan et al.KernelGANZSSRGT IKC Ours

Figure 5: 2× Blind SR results for LR degraded with unknown motion kernel from Flicker2K.
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