Supplementary materials

Anonymous Author(s) Affiliation Address email

1 1 Proof of Eq. 8

$$2 \quad \phi(G,F) \le \|\delta_{\tau}(F)\|_{0} \ll \|\delta_{2\tau}(\mathbf{I}_{D})\|_{0} \ - \ \|\delta_{\tau}(\mathbf{k}_{p})\|_{0} \le \phi(\mathbf{k}_{p},\mathbf{I}_{D})$$

$$\phi(G,F) = \sum_{i,j} sign(\delta_{\tau}(G_{ij} - F_{ij}))$$
(1)

$$=\sum_{i,j} sign(\delta_{\tau}(F_{ij}S_{ij} - F_{ij}))$$
⁽²⁾

$$= \sum_{F_{ij} < \tau} sign(\delta_{\tau}(F_{ij}S_{ij} - F_{ij})) + \sum_{F_{ij} \ge \tau} sign(\delta_{\tau}(F_{ij}S_{ij} - F_{ij}))$$
(3)

$$\leq \sum_{F_{ij} < \tau} sign(\delta_{\tau}(F_{ij}(S_{ij} - 1))) + \sum_{F_{ij} \ge \tau} sign(\delta_{\tau}(F_{ij}))$$
(4)

$$= 0 + \sum_{F_{ij} \ge \tau} sign(\delta_{\tau}(F_{ij}))$$
(5)

$$= \|\sigma_{\tau}(F)\|_0 \tag{6}$$

$$\phi(k_p, I_D) = \sum_{i,j} sign(\delta_\tau([k_p]_{ij} - [I_D]_{ij}))$$

$$\tag{7}$$

$$= \sum_{[k_p]_{ij} > \tau} sign(\delta_{\tau}([k_p]_{ij} - [I_D]_{ij})) + \sum_{[k_p]_{ij} < \tau} sign(\delta_{\tau}([k_p]_{ij} - [I_D]_{ij}))$$
(8)

$$\geq \sum_{[k_p]_{ij} < \tau} sign(\delta_{\tau}([k_p]_{ij} - [I_D]_{ij}))$$
(9)

$$\geq \sum_{[k_p]_{ij} < \tau, [I_D]_{ij} > 2\tau} sign(\delta_{\tau}([k_p]_{ij} - [I_D]_{ij}))$$
(10)

$$\geq \|\sigma_{2\tau}(I_D)\|_0 - \|\delta_{\tau}(k_p)\|_0 \tag{11}$$

3

where both F and k_s are sparse such that $\|\sigma_{\tau}(F)\|_0$ and $\|\delta_{\tau}(k_p)\|_0$ are significantly smaller than $\|\sigma_{2\tau}(I_D)\|_0$ due to the non-sparsity of I_D . So we come to $\phi(k_p, I_D) \gg \phi(G, F)$. 4

Fourier transform of 2D-Gaussian function. 2 5

(1) For the two-dimensional Gaussian function f(x, y), 6

$$f(x,y) = \frac{e^{-(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2})}}{2\pi\sigma_x\sigma_y}$$
(12)

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

- ⁷ where σ_x and σ_x is the variance in two orthogonal directions respectively. After two-dimensional
- 8 Fourier transform:

$$F(u,v) = \sum_{x} \sum_{y} f(x,y) e^{-j2\pi(ux+vy)}$$
(13)

$$=e^{-2\pi^2(\sigma_x^2 u^2 + \sigma_y^2 v^2)}$$
(14)

$$=Ae^{-\left(\frac{u^2}{2\sigma_u^2} + \frac{v^2}{2\sigma_v^2}\right)}$$
(15)

$$\sigma_u \propto \frac{1}{\sigma_x}, \sigma_v \propto \frac{1}{\sigma_y} \tag{16}$$

⁹ Where σ_u and σ_v denote the new variance of the Gaussian function after transformation. Discrete

Fourier Transform (DFT) result $F_g(u, v)$ for *Gaussian kernel* is also in *Gaussian form*, and their variances are in *inverse proportion*¹.

12 **3** Limitations

(1) As described in Section 3.1 of this paper, same with most previous blind SR methods, our method
is also based on convolution and downsampling degradation model to describe the real degradation
process, which is the common setting. But this description may not cover all forms of degradation,
such as non-uniform degradation (kernel each local area may be different) and motion synthesis using
aliasing of adjacent frames. This needs further research and exploration in future work.
(2) Compared with the previous work, we provide a more accurate and efficient blind blur kernel

estimation scheme. Combined with the existing efficient non-blind SR methods, we achieve the best blind SR results. Since the proposed estimation scheme is task independent and we mainly focus on

²¹ blind-SR, it may also be suitable for some other blind task scenarios such as deblurring, which needs

22 more future exploration.

23 4 More quantitative and visual results

²⁴ In addition to the fidelity-oriented blind-SR experiment in the main text, we conducted additional

- ²⁵ perceptual-oriented experiments. Same as the previous experimental setup, we use ESRGAN and
- ²⁶ LPIPS perceptual metric to compare the results of $2 \times , 3 \times , 4 \times$ blind-SR results on LR images from DIV2K degraded by random Gaussian kernels, as shown in the Table 1.

Method	DIV2K			Flicker2K		
	2x	3x	4x	2x	3x	4x
ESRGAN	0.4969	0.5757	0.6315	0.4881	0.5719	0.6269
FCA	0.2799	0.3527	0.3818	0.2627	0.3488	0.3661
KernelGAN	0.2275	0.3159	0.5774	0.2371	0.3331	0.6141
Ours	0.1968	0.2569	0.3390	0.1987	0.2706	0.3400

Table 1: Quantitative [LPIPS \downarrow] comparison of perception-oriented SR results for 2×, 3×, 4× up-sampling respectively. The best performance is shown in red and the second best is blue.

27

²⁸ Here we also provide a comparison of blind SR performance on the additional synthetic dataset L20

²⁹ in Table 2. And more visual comparison with state-of-the-art methods as provided and shown in

³⁰ Figure 1, 2, 3 and Figure 5, we show the visual contrast of the *best* methods.

5 Code, data, and instructions needed to reproduction

32 We provide the code, instructions and dataset with download address for reproduction in the attached

33 zip file.

¹Reflect in the major and minor axis of the projection boundary on the position coordinate plane

Mathad	Kernel	L20			
Method		2x	3x	4x	
RCAN finetuned		27.05 / 0.7310	24.78 / 0.6569	23.68 / 0.6220	
ZSSR		27.00 / 0.7308	24.76 / 0.6569	23.66 / 0.6222	
DeblurGAN w. RCAN		27.63 / 0.7516	25.30/0.6710	24.03 / 0.6301	
KernelGAN		27.39 / 0.7349	25.02 / 0.6649	24.38 / 0.6389	
FCA w.RCAN	G	31.06 / 0.8607	28.07 / 0.7743	26.25 / 0.7107	
IKC		29.86 / 0.8670	28.80 / 0.7895	27.10/0.7348	
S2K w. SFTMD		32.26 / 0.8803	28.95 / 0.7909	27.51/0.7361	
S2K w.RCAN		32.73 / 0.8838	29.35 / 0.7939	27.83 / 0.7355	
RCAN finetuned		24.88 / 0.6775	23.04 / 0.6158	22.02 / 0.5906	
DeblurGAN w. RCAN		24.77 / 0.6830	23.03 / 0.6179	21.90 / 0.5897	
ZSSR		24.85 / 0.6756	23.02 / 0.6151	22.02 / 0.5903	
KernelGAN	M	24.16 / 0.6365	22.85 / 0.6057	21.10/0.5418	
IKC		27.57 / 0.7901	23.53 / 0.6575	22.60 / 0.6187	
Pan et al. w.SFTMD		22.63 / 0.6312	21.19 / 0.5647	19.84 / 0.5411	
S2K w. SFTMD		32.95 / 0.9070	30.92 / 0.8551	28.36/0.7842	

Table 2: Quantitative [PSNR \uparrow / SSIM \uparrow] comparison results of fidelity-oriented SR model for $2\times$, $3\times$, $4\times$ up-sampling. G, M denote Gaussian kernels and motion kernels respectively. The best performance is shown in red and the second best in blue.

Figure 1: $2 \times$ blind SR results for LR degraded with unknown kernel from DIV2K. For FCA is not able to handle motion kernel, so we use Pan *et al.*'s as a comparison instead. Due to more accurate kernel estimation, our method achieves the most pleasant results compared with other methods.

Figure 2: $2 \times$ blind SR results for LR degraded with unknown Gaussian kernel from DIV2K.

Figure 3: $2 \times$ Blind SR results for LR degraded with unknown Gaussian kernel from DIV2K.

Figure 4: $2 \times$ Blind SR results for LR degraded with unknown motion kernel from Flicker2K.

Figure 5: $2 \times$ Blind SR results for LR degraded with unknown motion kernel from Flicker2K.