Supplementary of
Generalizable One-shot 3D Neural Head Avatar

In this document, we first discuss the broader impacts of this work in Sec. 1. We then show additional
experiments including the comparison with another concurrent baseline (i.e. Next3D [20]), and more
ablation studies in Sec. 2. We further demonstrate more qualitative results in Sec. 3. Additional
details of the proposed framework and the evaluation process are described in Sec. 4 and Sec. 5.
Finally, we discuss preliminaries of the 3DMMs in Sec. 6 and the limitations of the proposed method
in Sec. 7, respectively. We strongly encourage reviewers to watch the supplementary video which
includes the head avatar reconstruction and animation results.

1 Broader Impact

The proposed framework has the potential to make significant contributions to various fields such as
video conferencing, entertainment industries, and virtual reality. It offers a wide range of applications,
including but not limited to animating portraits for film/game production, or reducing transmission
costs in video conferences through self-reenactment that only requires transmitting a portrait image
with compact motion vectors. However, the proposed method may present important ethical con-
siderations. One concerning aspect is the possibility of generating "deepfakes", where manipulated
video footage portrays individuals saying things they have never actually said. This misuse could
lead to serious privacy infringements and the spread of misinformation. We do not advocate for
such activities and instead underscore the need to build guardrails to ensure safe use of talking-head
technology, such as [19; 33; 6; 2; 5].

2 Additional Experiments

2.1 Comparison to Next3D

Evaluation details. As discussed in Sec.2.3 in the main submission, controllable 3D-aware avatar
generation models [22; 26; 21; 17; 27; 14; 34; 20] can be combined with GAN inversion methods [18;

; 28; 25] to achieve head avatar animation. In this section, we substantiate this idea and compare
our method against it. Specifically, we combine pivotal tuning [ 18] for GAN inversion with a SOTA
avatar generation and animation model — Next3D [20]. Next3D is a pure generative model based
on EG3D [4]. It takes a FLAME [15] avatar mesh with desired expression as input and synthesizes
a photo with the target expression and random appearance. To animate a given portrait, Next3D
first uses pivotal tuning [ 8] to map the portrait image to the latent space of its generator and then
animates the portrait using expressions extracted from the target video. We use the publicly available
implementation' of Next3D and the pivotal tuning code kindly provided by Next3D’s authors. We
refer to this baseline as “Next3D-PTI” in the following. Since pivotal tuning of each image takes about
5 minutes, it is infeasible for us to carry out cross-identity reenactment on the CelebA dataset [13],
which includes more than ten thousand image pairs. Thus, we compare with “Next3D-PTI” for
same-identity and cross-identity reenactment on the HDTF [32] dataset, as well as cross-identity
reenactment from the videos in HDTF to images in CelebA, as described in Sec.4.4 in the main
submission.

"https://github.com/MrTornado24/Next3D
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Qualitative evaluations. The qualitative comparison of Next3D-PTI with our method, as well as
other baselines can be found in Sec. 3.3, Sec. 3.4, Sec. 3.5 and the supplementary video.

Quantitative evaluations. We first show the quantitative comparisons between our method and
Next3D-PTI on the HDTF dataset [32] for same-identity and cross-identity reenactment in Table 1.
Our method consistently outperforms Next3D-PTI for both tasks. We further carry out motion transfer
from the videos in HDTF to 60 randomly selected images in the CelebA dataset [13] and demonstrate
the quantitative evaluation results in Table 2. Our method performs favorably in preserving identity
and matching target pose (i.e. better CSIM and APD score) compared to the Next3D-PTI, while
being comparable in modeling expression and capturing photo-realistic details (i.e. comparable AED
and FID). It is also worth noting that our method takes 0.6 second to reconstruct and animate a 3D
head avatar from an unseen single-view image, while the pivotal tuning process alone takes about 5
minutes to encode a portrait image to the latent space of the generator in Next3D.

Table 1: Comparison with Next3D-PTI on the HDTF dataset [32].

Same-Identity Reenactment Cross-Identity Reenactment
Methods PSNRT SSIMt CSIMt AED| APD| AKDJ| LPIPS| L1| FID]|CSIMt AED| APD| FID|

Next3D-PTI [ ]‘ 19.890 0813 0.645 0.137 0.035 1.449 0.180 0.053 41.66‘ 0.581 0.291 0.045 101.8

Ours 22.15  0.868 0.789 0.129 0.010 2.596 0.117 0.037 21.60 | 0.643 0.263 0.018 47.39

Table 2: Cross-identity reenactment between the HDTF dataset [32] and the CelebA dataset [13].

Methods CSIMT AED] APD] FIDJ
NextG3D-PTI[20] | 0483  0.266 0.042  56.01
Ours 0.551 0274 0.017 59.48

2.2 More Ablation Studies

The synthetic training dataset. Due to the long-tail distribution in the training data, our model
fails to synthesize some rare expressions such as jaw opening realistically. This issue could be
partially resolved by training our model using more balanced data. To this end, we replace EG3D [4]
with Next3D [20] to produce paired data for training as discussed in Sec.4.1 in the main paper. As
shown in Fig. 1, the model learned using data synthesized from Next3D has more natural jaw opening
expression.

target image source image source expression using Next3D's synthetic data

-

Sty

using EG3D’s synthetic data no synthetic data

Figure 1: Comparison of models learned with different synthetic dataset. We demonstrate the
geometry of the jaw opening expression by extracting meshes from the animated tri-plane using the
Marching Cubes algorithm.

Details of the linear expression branch. We show the architecture of an alternative expression
branch design in Fig. 2 (a). As described in Sec.4.5 of the main submission, this design draws
inspirations from 3DMMs and learns 64 tri-plane-based expression bases denoted as { F1, ..., Fg4}.
To produce the target expression tri-plane, it linearly combines the learnable bases by T = 0} E +
... + 051 Eg4, where 0, are the target expression coefficients extracted from the target image by the
3DMM [7]. As shown in Fig.5 and Table.4 in the main submission, this design produces unrealistic
mouth regions during the animation.

Expression branch using coefficients. An intuitive design for the expression branch is to utilize
an encoder that directly maps the target 3DMM expression coefficients to an expression tri-plane. We
investigate this design by using two kinds of encoders: i) We simply use linear layers followed by
transpose convolutional layers to map the expression coefficient vector to an expression tri-plane. We
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Figure 2: Ablation variants. See Sec. 2.2 for details.

Table 3: Ablation studies.Blue text highlights the inferior performance of the variants.

3D Portrait Reconstruction Cross-Identity Reeanct
Methods L1} LPIPS| PSNRt SSIM?T FID| | CSIMt AED) APD| FID|

modulation 0.030 0.130 25.01 0.841 11.80| 0.558 0.280 0.018 22.84
encoder 0.028 0.121 25.69 0.850 9.840| 0.538 0.264 0.017 18.88
fine-tune high-res | 0.028 0.114  25.87 0.870 9.177| 0.597 0278 0.017 21.51
ours 0.030 0.116 2477 0.861 10.47| 0.599 0276 0.017 17.36

dub this design as the “encoder” design and show its architecture in Fig. 2(b). ii) We use the generator
from StyleGAN?2 [11] as our encoder. Specifically, we first map the target expression coefficients
to a set of style vectors, the encoder takes a constant tensor as input and modulates the features at
each layer using the style vectors produced from the expression coefficients. We denote this design
as “modulation” and show its structure in Fig. 2(c).

As shown in Table 3, for the cross-identity reenactment evaluation on CelebA [13], both alternative
expression branch designs discussed above have lower CSIM score. This is because the expression
coefficients are orthogonal to the identity in the source image. By taking the expression coefficients
alone as input, the model has less information of the source identity and suffers from identity
preservation while animating.

Fine-tuning end-to-end in stage II.  As discussed in Sec.3.5 in the submission, in order to preserve
multi-view consistency, we only fine-tune the super-resolution module while freezing other parts in
Stage II. We verify the effectiveness of this choice by conducting an ablation study where we instead
fine-tune end-to-end in Stage II.

Table 3 demonstrates the quantitative evaluation of this variant model. Though it has better reconstruc-
tion results from the observed view, it has worse FID score for the task of cross-identity reenactment.
This indicates this variant synthesizes less realistic animation results at the target pose.

3 More Qualitative Results

In this section, we show more qualitative results on the CelebA [13] and HDTF [32] datasets.

3.1 Cross-identity Reenactment on CelebA

In Fig. 4, Fig. 5, Fig. 6 and Fig. 7, we present more visualizations of cross-identity reenactment on
the CelebA dataset.

3.2 3D Portrait Reconstruction on CelebA.

In Fig. 8, Fig. 9, Fig. 10 and Fig. 11, we show portrait reconstruction results by the proposed method
visualized in different views .
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(a) Detailed framework architecture. (b) Tri-plane visualization

Figure 3: Framework architecture. (a) We present an extended version of Fig.1(a) in the submission
with more framework details. The volumetric rendering and super-resolution block are left out. (b)
Visualization of tri-plane combinations.

3.3 Cross-identity Reenactment from HDTF to CelebA

We visualize more cross- identity reenacment results from the videos in HDTF to the images in
CelebA, including comparison with the baselines [12; 30; 20] in Fig. 12, Fig. 13, Fig. 14, Fig. 15 and
the supplementary video.

3.4 Same-identity Reenactment on HDTF

Fig. 16 shows the qualitative results of same-identity reenactment on the HDTF dataset, as well as
comparison with OTAvatar [16], ROME [12], StyleHeat [30] and Next3D-PTI [20].

3.5 Cross-identity Reenactment on HDTF

We present more qualitative results of cross-identity reenactment on the HDTF dataset, as well as
comparison with OTAvatar [16], ROME [12], StyleHeat [30] and Next3D-PTI [20] in Fig. 17.

4 More Implementation Details

Detailed network architecture. In Fig. 3, we present the detailed architecture of the proposed
method. As discussed in Sec.3 of the main submission, our model includes three branches that capture
the coarse geometry, detailed appearance and expression, respectively. Specifically, the encoder F,
in the canonical branch takes a source image of size 3 x 512 x 512 as input and outputs a feature
map of size 256 x 128 x 128. By passing the feature map through four convolution layers and one
transpose convolution layer, we obtain a canonical tri-plane of size 3 x 32 x 256 x 256. The encoder
E, in the appearance branch takes the source image as input and outputs a feature map of size
256 x 128 x 128. Through the “Lifting” and “Raterization” process introduced in Sec.3.2 of the main
submission, we produce an appearance tri-plane of size 3 x 32 x 256 x 256. Furthermore, to prevent
the expression in the source image from leaking into the final animation, we use an off-the-shelf
face parsing network [31]% to mask out the eye and mouth regions before providing the source image
to the encoder E,,. Finally, the encoder E, in the expression branch is similarly designed as E.,
except that it takes the frontal-view 3DMM rendering with the target expression as input. All three
encoders (i.e. I, E,, E.) use a pre-trained SegFormer [24] model, up to the classifier layer. We
adopt the tri-plane decoder proposed by [4] to map the interpolated tri-plane feature to color and
density for each 3D point. For the super-resolution block, we fine-tune a pre-trained GFPGAN [23]
model without modifying its architecture.

*https://github.com/z1llrunning/face-parsing.PyTorch
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S More Evaluation Details
We explain details of how we evaluated the baseline methods and the proposed method in this section.

3D portrait reconstruction. For the ROME method [12], we use the publicly available code
and model®, which renders 256° images. For fair comparison, we resize our prediction and the
ground truth images from 512% to 256%. Since the synthesis from ROME is not pixel-to-pixel
aligned to the input image, we rigidly transform the ground truth image and our image such that
they align with ROME’s predictions. To this end, we apply the Procrustes process [9; 29] to align
our prediction/ground truth image to ROME’s prediction using facial landmarks detected by [3]. We
also replace the white background in ROME’s implementation to a black one to match the ground
truth images and our predictions. We compare with ROME on all 29,954 high-fidelity images in
CelebA [13] for 3D portrait reconstruction.

Since the synthesis results by HeadNeRF [10]* and our method are pixel-to-pixel aligned to the
input image, we do not carry out further alignment when comparing to HeadNeRF. However, as
discussed in Sec.4.2 of the main submission, applying HeadNeRF on all 29,954 images in CelebA
is computationally infeasible. Thus we apply our method and HeadNeRF on a randomly sampled
subset that includes 3000 images from the CelebA dataset.

Reenactment. We compare with ROME [12], StyleHeat [ 1’ and OTAvatar [16] for same-identity
and cross-identity reenactment. We leave HeadNeRF out on the HDTF dataset since it is impossible to
test it on tens of thousands frames due to the time-consuming optimization for each frame. Moreover,
OTAuvatar [16] is a concurrent work and up to the date of this submission, only its partial code® that
allows for comparison on the HDTF dataset alone has been released publicly. So we do not compare
with it on motion transfer from the HDTF dataset to the CelebA dataset. For fair comparison, we
align predictions from all methods to the target image using the Procrustes process discussed above.
Note that synthesis from all methods have a black background and are readily comparable after the
alignment.

6 Preliminaries of 3DMMs

We exploit the geometry prior from a 3DMM [ 1] that represents the shape and texture of a portrait by:

S=8 + Biga + BeJ;pB

- ey

T =T+ Biezd
where S, T" are the mean shape and texture of human faces, B;q, Bezp, Bier are the shape, expression
and texture bases, and «, 3, § are coefficients that linearly combine the shape, expression and texture
bases, respectively. Since we mainly utilize the shape and expression components in the 3DMM in
this work, we ignore its texture and illumination modules and simply denote the rendering operation
from a camera view C as I, M = Ry («, 8, C), where [ is the rendered image, and M is the
rendered mask that only includes the facial region.

7 Limitations

Teeth and pupil reconstruction. 3D head avatar reconstruction and animation is a highly chal-
lenging task. The proposed method takes the first step to produce high-fidelity results. However, to
generalize to any portrait image, one dilemma is that the expression of the source portrait and target
image could be arbitrary, which introduces various challenging scenarios. For instance, the source
portrait image could have a closed mouth while the target expression has an open mouth (e.g. the
second row of Fig. 4). In this case, the model should hallucinate correct inner mouth regions. Yet, in
other cases, the inner mouth is visible in the source portrait (e.g. the sixth row in Fig. 4). To resolve

*https://github.com/Samsunglabs/rome
*nttps://github.com/CrisHY1995/headnerf
Shttps://github.com/FeiiYin/StyleHEAT
*https://github.com/theEricMa/0TAvatar
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this dilemma, in this work, our model simply always hallucinates the inner mouth of the individual
through our expression branch. As a result, the hallucinated mouth could deviate from the one in
the source image. In other words, our model cannot accurately reconstruct teeth and lips, as shown
in Fig. 18. The same analysis applies to pupils. Since we have no prior knowledge of whether the
eyes in the portrait image are open or closed, our model always hallucinates the pupils through the
expression branch instead of reconstructing the ones in the source image. We leave this limitation to
future works.
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Figure 5: Cross-identity reenactment on CelebA.



M ‘ :\,. ;

-

\
N -
. wens g |
| ‘i ‘
R & . (G

source target target view other views

Figure 6: Cross-identity reenactment on CelebA.
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Figure 7: Cross-identity reenactment on CelebA.
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Figure 8: 3D reconstruction on CelebA.
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Figure 9: 3D reconstruction on CelebA.
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Figure 10: 3D reconstruction on CelebA.
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Figure 11: 3D reconstruction on CelebA.
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Figure 12: Cross-identity reenactment from HDTF to CelebA.
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Figure 13: Cross-identity reenactment from HDTF to CelebA.
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Figure 14: Cross-identity reenactment from HDTF to CelebA.
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Figure 15: Cross-identity reenactment from HDTF to CelebA.
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Figure 16: Same-identity reenactment on HDTF.

19



(a) source (b) target (c)ours  (d) OTAvatar (e) ROME (f) StyleHeat (g) Next3D-PTI

Figure 17: Cross-identity reenactment on HDTF.
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