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Abstract

Optimization algorithms such as projected Newton’s method, FISTA, mirror de-
scent and its variants enjoy near-optimal regret bounds and convergence rates, but
suffer from a computational bottleneck of computing “projections" in potentially
each iteration (e.g., O(T 1/2) regret of online mirror descent) [1, 2, 3, 4]. On the
other hand, conditional gradient variants solve a linear optimization in each iter-
ation, but result in suboptimal rates (e.g., O(T 2/3) regret of online Frank-Wolfe)
[5, 6, 7]. Motivated by this trade-off in runtime v/s convergence rates, we consider
iterative projections of close-by points over widely-prevalent submodular base
polytopes B(f). We develop a toolkit to speed up the computation of projections
using both discrete and continuous perspectives (e.g., [8, 9, 10]). We subsequently
adapt the away-step Frank-Wolfe algorithm to use this information and enable
early termination. For the special case of cardinality based submodular polytopes,
we improve the runtime of computing certain Bregman projections by a factor
of Ω(n/ log(n)). Our theoretical results show orders of magnitude reduction in
runtime in preliminary computational experiments.

1 Introduction
Though the theory of discrete and continuous optimization methods has evolved independently over
the last many years, machine learning applications have often brought the two regimes together to
solve structured problems such as combinatorial online learning over rankings and permutations
[11, 12, 13, 14], shortest-paths [15] and trees [16, 17], regularized structured regression [5], MAP
inference, document summarization [18] (and references therein). One of the most prevalent forms of
constrained optimization in machine learning is the use of iterative optimization methods such as
online stochastic gradient descent, mirror descent variants, projected Newton’s method, conditional
gradient descent variants, fast iterative shrinkage-thresholding algorithm (FISTA). These methods
repeatedly compute two main subproblems: either a projection (i.e., a convex minimization) or a
linear optimization in each iteration. The former class of algorithms is known as projection-based
optimization methods (e.g., projected Newton’s method, see Table 1), and they enjoy near-optimal
regret bounds in online optimization and near-optimal convergence rates in convex optimization
compared to projection-free methods. These projection-based methods however suffer form high
computational complexity per iteration due to the projection subproblem [1, 2, 19, 20, 4, 21]. E.g.,
online mirror descent is near-optimal in terms of regret (i.e., O(

√
T )) for most online learning

problems, however it is computationally restrictive for large scale problems [3]. On the other hand,
online Frank-Wolfe is computationally efficient, but has a suboptimal regret of O(T 2/3) [7].
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Algorithm Subproblem solved Steps for ε-error

Vanilla Frank-Wolfe [5] LO over polytope O
(
LD2

ε

)
Away-steps Frank-Wolfe [6] LO over polytope and active sets O

(
κ
(
D
δ

)2
log 1

ε

)
*Projected gradient descent [24] Euclidean projection over polytope O

(
κ log 1

ε

)
*Mirror descent (MD) [25] Bregman Projection O

(
κν2 log 1

ε

)
*Projected Newton’s method [24] Euclidean projection over polytope

scaled by (approximate) Hessian
O
(
(κβ)3 log 1

ε

)
*Accelerated Proximal Gradient [26] Euclidean projection over polytope O

(√
κ log 1

ε

)
*Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [27]

Euclidean projection over polytope O
(√
κ log 1

ε

)
Table 1: Some iterative optimization algorithms which solve a linear or convex optimization problem in each
iteration. Here, κ := L/µ is the condition number of the main optimization, ν is condition number of the mirror
map used in MD, D is the diameter of the domain, δ is the pyramidal width, β ≥ 1 measures on how well the
Hessian is approximated. Starred algorithms have dimension independent optimal convergence rates.

Discrete optimizers, in parallel, have developed beautiful characterizations of properties of convex
minimizers over combinatorial polytopes, which typically results in non-iterative exact algorithms
(upto solution of a univariate equation) for such polytopes. This theory however has not been properly
integrated within the iterative optimization framework. Each subproblem within the above-mentioned
iterative methods is typically solved from scratch, using a black-box subroutine, leaving a significant
opportunity to speed-up “perturbed” subproblems using combinatorial structure. Motivated by these
trade-offs in convergence guarantees and computational complexity, we ask if:

Is it possible to speed up iterative subproblems of computing projections over combinatorial
polytopes by reusing structural information from previous minimizers?

This question becomes important in settings where the rate of convergence is more impactful than
the time for computation, for e.g., regret impacts revenue for online retail platforms. However, the
computational cost of solving a non-trivial projection sub-problem from scratch every iteration is
the reason why these methods have remained of “theoretical” nature. We investigate if one can
speed up iterative projections by reusing combinatorial information from past projections. Our
techniques apply to iterative online and offline optimization methods such as Projected Newton’s
Method, Accelerated Proximal Gradient, FISTA, and mirror descent variants.

To give an example setup of our iterative framework, we consider the overarching optimization
problem of minimizing a convex function h : P → Rn over a constrained set P ⊆ Rn be (P1),
which we wish to solve using a regularized optimization method such as mirror descent and its
variants. Typically, in such methods, iterates xt are obtained by taking an unconstrained gradient step,
followed by a projection onto P . We will refer to a subproblem of computing a single projection as
(P2). Note that (P1) can be replaced by an online optimization problem as well, and similarly the
iterative method to solve (P1) can be any one of those in Table 1.

(P1)
minh(x)

subject to x ∈ P

}
(P1) can be solved iteratively
using, e.g., mirror descent:

1. yt = xt − γt∇h(xt−1)

2. xt = arg min
z∈P

Dφ(z, yt) (P2)

To solve (P2), we will typically aim for convex and discrete methods that can obtain arbitrary accuracy,
to be able to bound errors in (P1). We will refer to iterates in (P1) as x1, x2, . . . xt, and if (P2) is
solved using an iterative method like Away-step Frank-Wolfe [22, 23], we will refer to those iterates
as z(1), . . . , z(k) (depicted in Figure 1 (left, middle)). Our goal is to speed up the computation of xt
by using the combinatorial structure of x1, . . . , xt−1, z

(1), . . . , z(k), y1, . . . , yt. To the best of our
knowledge, we are the first to consider using the structure of previously projected points.

To capture a broad class of interesting combinatorial polytopes, we focus on submodular base
polytopes. Submodularity is a discrete analogue of convexity, and captures the notion of diminishing
returns. Submodular polytopes have been used in a wide variety of online and machine learning
applications (see Table 2 in appendix). A typical example is when B(f) is permutahedron, a
polytope whose vertices are the permutations of {1, . . . , n}, and is used for learning over rankings.
Other machine learning applications include learning over spanning trees to reduce communication
delays in networks, [12]), permutations to model scheduling delays [13], and k-sets for principal
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Figure 1: Left: (P1) represents an iterative optimization algorithm that computes projections xi for points yi
in every iteration (see Table 1). Middle: (P2) represents subproblem of computing a single projection of yt
using an iterative method with easier subproblems, e.g., away-step Frank-Wolfe where z(i) are iterates during a
single run of AFW and converge to projection xt (of yt). The goal is speed up the subproblems using both past
projections x1, . . . , xt−1, as well as iterates z(1), . . . , z(k). Right: We show how to detect tight sets S1 and S2

for close-by points by looking at the maximum error in∇h(xt) (tools INFER1, INFER2).

component analysis [28], background subtraction in video processing and topographic dictionary
learning [29], and structured sparse PCA [30]. Other example applications of convex minimization
over submodular polytopes include computation of densest subgraphs [31], bounds on the partition
function of log-submodular distributions [32] and distributed routing [33].

Though (Bregman) projections can be computed efficiently in closed form for certain simple polytopes
(such as the n-dimensional simplex), the submodular base polytopes pose a unique challenge since
they are defined using 2n linear inequalities [34], and there exist instances with exponential extension
complexity as well [35] (i.e., there exists no extended formulation with polynomial number of
constraints for some submodular polytopes). Existing combinatorial algorithms for minimizing
separable convex functions over base polytopes typically require iterative submodular function
minimizations (SFM) [9, 8, 14], which are quite expensive in practice [36, 37]. However, these
combinatorial methods highlight important structure in convex minimizers which can be exploited to
speed up the continuous optimization methods.

In this paper, we bridge discrete and continuous optimization insights to speed up projections over
submodular polytopes as follows:

(i) Bregman Projections over cardinality-based polytopes: We first show that the results of Lim
and Wright [38] extend to all cardinality-based submodular polytopes (where f(S) = g(|S|)
for some concave function g) to give an O(n log n)-time algorithm for computing a Bregman
projection, improving the current best-known O(n log n+n2) algorithm [14], in Section 3. These
are exact algorithms (up to the solution of a univariate equation), compared to iterative continuous
optimization methods.

(ii) Toolkit for Exploiting Combinatorial Structure: We next develop a toolkit (tools T1-T6) of
provable ways for detecting tight inequalities, reusing active sets, restrict to optimal inequalities
and rounding approximate projections to enable early termination:

(a) INFER: We first show that for “close” points y, ỹ where the projection x̃ of ỹ on B(f) is
known, we can infer some tight sets for x using the structure of x̃ without explicitly computing
x (T1). Further, suppose that we use a convergent iterative optimization method to solve the
projection subproblem (P2) for yt to compute xt, then given any iterate z(k) in such a method,
we know that ‖z(k)−xt‖ ≤ εk is bounded for strongly convex functions. Using this, we show
how to infer some tight sets (provably) for xt for small enough εk (T2), in Section 4.1.

(b) REUSE: Suppose we compute the projection x̃ of ỹ on B(f) using AFW, and obtain an active
set of vertices A for x̃. Our next tool (T3) gives conditions under which A is also an active set
for x. Thus, x can be computed by projecting y onto Conv(A) instead of B(f) in Section 4.2.

(c) RESTRICT: While solving the subproblem (P2), we show that discovered tight inequalities
for the optimum solution can be incorporated into the linear optimization (LO) oracle over
submodular polytopes, in Section 4.2. We modify Edmonds’ greedy algorithm to do LO over
any lower dimensional face of the submodular base polytope, while maintaining its efficient
O(n log n) running time. Note that in general, while there may exist efficient algorithms to do
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Figure 2: Toolkit to Speed Up Projections: INFER1 (T1) uses previously projected points to infer tight sets
defining the optimal face of xt and is formally described by Theorem 3 (see also Figure 1-Right). On the other
hand, INFER2 (T2) uses the closeness of iterates z(t) of an algorithm solving the projection subproblems (e.g.
AFW) to the optimal xt, to find more tight sets at xt (than those found by (T1) (Lemma 4). REUSE (T3) uses
active sets of previous projections computed using AFW (Lemma 1).

LO over the entire polytope (e.g. shortest-paths polytope), restricting to lower dimensional
faces may not be trivial.

(d) RELAX and ROUND: We give two approaches for rounding an approximate projection to an
exact one in Section 4.3, which helps terminate iterative algorithms early. The first method
uses INFER to iteratively finds tight sets at projection xt, and then checks if we have found all
such tight sets defining the optimal face by projecting onto the affine space of tight inequalities.
If the affine projection x0 is feasible in the base polytope, then this is optimal projection. The
second rounding tool is algebraic in nature, and applicable only to base polytopes of integral
submodular functions. It only requires a guarantee that the approximate projection be within a
(Euclidean) distance of 1/(2n2) to the optimal for Euclidean projections.

(iii) Adaptive Away-Step Frank-Wolfe (A2FW): We combine the above-mentioned tools to give a novel
adaptive away-step Frank-Wolfe variant in Section 5. We first use INFER (T1) to detect tight
inequalities using past projections of xt−1. Next, we start away-step FW to compute projection xt
in iteration t by REUSING the optimal active set from computation of xt−1. During the course of
A2FW, we INFER tight inequalities iteratively using distance of iterates z(t) from optimal (T2).
To adapt to discovered tight inequalities, we use the modified greedy oracle (T4). We check in
each iteration if RELAX allows us to terminate early (T5). In case of Euclidean projections, we
also detect if rounding to lattice of feasible points is possible (T6). We finally show an order of
magnitude reduction in running time of online mirror descent by using A2FW as a subroutine for
computing projections in Section 5.1 and conclude with limitations in Section 5.2.

Although we show that our toolkit can help speed up iterative continuous optimization algorithms
like mirror descent, the tools are more general and can be used to speed up other combinatorial
algorithms like Groenvelt’s Decomposition algorithm, Fujishige’s minimum norm point, and Gupta et.
al’s Inc-Fix [39, 9, 14]. A special case of our rounding approach is used within the Fujishige-Wolfe
minimum norm point algorithm to find approximate submodular function minimizers [40, 41].

Minimizing separable convex functions over submodular base polytopes was first studied by Fujishige
[10] in 1980, followed by a series of results by Groenevelt [9], Hochbaum [42], and recently by
Nagano and Aihara [8], and Gupta et. al. [43]. Each of these approaches considers different problem
classes, but uses O(n) calls to either parametric submodular function or submodular function
minimization, with each computation discovering a tight set and reducing the subproblem size for
future iterations. Both subroutines, however, can be expensive in practice. Frank-Wolfe variants on
the other hand have attempted at incorporating geometry of the problem in various ways: restricting
FW vertices to norm balls [44, 45, 46], or restricting away vertices to best possible active sets [47],
or prioritizing in-face steps [48], or theoretical results such as [23] and [49] show that FW variants
must use active sets that containing the optimal solution after crossing a polytope dependent radius of
convergence. These results, however, do not use combinatorial properties of previous minimizers
or detect tight sets with provable guarantees and round to those. To the best of our knowledge,
we are the first to adapt away-step Frank-Wolfe to consider combinatorial structure from previous
projections, and accordingly obtain improvements over the basic AFW algorithm. Although our
A2FW algorithm is most effective for computing projections (since we can invoke all our toolkit for
projections, i.e.(T1-T6)), it is a standalone algorithm for convex optimization over base polytopes
that enables early termination with the exact optimal solution (compared to the basic AFW) via
rounding (T5) and improved convergence rates visa restricting (T4). This might be of independent
interest given the various applications mentioned above.
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2 Preliminaries
Consider a compact and convex set X ⊆ Rn, and let D ⊆ Rn be a convex set such that X is included
in its closure. A mirror map φ : D → R is a strictly (or µ- strongly) convex* and continuously
differentiable function over D, and satisfies additional properties of divergence of the gradient on the
boundary of D, i.e., limx→∂D ‖∇φ(x)‖ =∞ (see [1, 20] for more details). We further assume that
the mirror map φ is uniformly separable: φ =

∑
e φe where φe : De → R is the same function for all

e ∈ E. We use ‖ · ‖ to denote the Euclidean norm unless otherwise stated. We say φ is L- smooth if
‖∇φ(x) −∇φ(z)‖ ≤ L‖x − z‖ for all x, z ∈ D. The Bregman divergence generated by a mirror
map φ is defined as Dφ(x, y) := φ(x)− φ(y)− 〈∇φ(y), x− y〉. For example, the Euclidean mirror
map is given by φ = 1

2‖x‖
2, for D = RE and is 1-strongly convex with respect to the `2 norm. In

this case Dφ(x, y) = 1
2‖x− y‖

2
2 reduces to the Euclidean squared distance (see Table 3). We denote

the Fenchel-conjugate of the divergence by D∗φ(z, y) = supx∈D{〈z, x〉 −Dφ(x, y)} for any z ∈ D∗,
where D∗ is the dual space to D (in our case since D ⊆ Rn, D∗ can also be identified with Rn).

Submodularity and Convex Minimizers over Base Polytopes

Let f : 2E → R be a submodular function defined on a ground set of elements E (|E| = n), i.e.
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ E. Assume without loss of generality
that f(∅) = 0, f(A) > 0 for A 6= ∅ and that f is monotone†. We denote by EO the time taken
to evaluate f on any set. For x ∈ RE , we use the shorthand x(S) for

∑
e∈S x(e), and by both

x(e) and xe we mean the value of x on element e. Given such a submodular function f , the
polymatroid is defined as P (f) = {x ∈ RE+ : x(S) ≤ f(S)∀S ⊆ E} and the base polytope as
B(f) = {x ∈ RE+ : x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)} [51]. A typical example is when f is
the rank function of a matroid, and the corresponding base polytope corresponds to the convex hull
of its bases (see Table 2).

Consider a submodular function f : 2E → R with f(∅) = 0, and let c ∈ Rn. Edmonds gave
the greedy algorithm to perform linear optimization max cTx over submodular base polytopes for
monotone submodular functions. Order elements in E = {e1, . . . , en} such that c(ei) ≥ c(ej) for all
i < j. Define Ui = {e1, . . . , ei}, and let x∗(ej) = f(Uj)− f(Uj−1). Then, x∗ = maxx∈B(f) c

>x.
Further, we will use the following characterization of convex minimizers over base polytopes:

Theorem 1 (Theorem 4 in [14]). Consider any continuously differentiable and strictly convex function
h : D → R and submodular function f : 2E → R with f(∅) = 0. Assume that B(f) ∩ D 6= ∅. For
any x∗ ∈ RE , let F1, F2, . . . , Fl be a partition of the ground set E such that (∇h(x∗))e = ci for all
e ∈ Fi and ci < cl for i < l. Then x∗ = arg minx∈B(f) h(x) if and only if x∗ lies on the face H∗ of
B(f) given by H∗ := {x ∈ B(f) | x(F1 ∪ F2 ∪ · · · ∪ Fi) = f(F1 ∪ F2 ∪ · · · ∪ Fi)∀ 1 ≤ i ≤ l}.

To see why this holds, note that the first-order optimal condition for convex optimization gives us
the following certificate x∗ = arg minx∈B(f) h(x) ⇔ ∇h(x∗)T (z − x∗ ≥ 0 ∀ z ∈ B(f) ⇔ x∗ ∈
arg minz∈B(f)∇h(x∗)T z. The theorem then follows by applying Edmond’s greedy algorithm to
arg minz∈B(f)∇h(x∗)T z to obtain the levels of the partial derivatives of x∗ as F1, F2, . . . Fk, which
form the optimal face H∗ of x∗. For separable convex functions like Bregman divergences (in Table
3), we can thus compute x∗ by solving univariate equations in a single variable if the tight sets
F1, . . . , Fk of x∗ are known. We equivalently refer to corresponding inequalities x(Fi) = f(Fi) as
the optimal tight inequalities.

3 Bregman Projections over Cardinality-based Submodular Polytopes
We first improve the runtime of exact combinatorial algorithms for computing uniform Bregman
projections over cardinality-based submodular polytopes. The key observation that allows us to
do that is the following generalization of Lim and Wright’s result [38], which, to the best of our
knowledge is the first result to explicitly state the relation between Bregman projections on general
cardinality-based submodular polytopes and isotonic optimization:

*A differentiable function h is said to be strictly convex over domain D if h(y) > h(x) + 〈∇h(x), y − x〉
for all x, y ∈ D. Moreover, a differentiable function h is said to be µ-strongly convex over domain D with
respect to a norm ‖ · ‖ if h(y) ≥ h(x) + 〈∇h(x), y − x〉+ µ

2
‖y − x‖2 for all x, y ∈ D.

†f is monotone if f(A) ≤ f(B) ∀A ⊆ B ⊆ E. For any non-negative submodular function f , we can
consider a corresponding monotone submodular function f̄ such that P (f) = P (f̄) (see Section 44.4 of [50]).
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Figure 3: Proposed Toolkit (contd): RESTRICT (T4) restricts the LO oracle in AFW to the lower dimensional
face defined by the tight sets found by (T1) and (T2) (Theorems 5, 6). Note that the restricted vertex w(t) gives
better progress than the orginal FW vertex v(t). RELAX (T5) enables early termination of algorithms solving
projection subproblems (e.g. AFW) as soon as all tight sets defining the optimal face are found (Theorem 2).
Finally, ROUND (T6) gives an integral rounding approach for special cases (Lemma 3).

Theorem 2 (Dual of projection is isotonic optimization). Let f : 2E → R be a cardinality-based
monotone submodular function, that is f(S) = g(|S|) function for some nondecreasing concave
function g. Let ci := g(i)−g(i−1) for all i ∈ [E]. Let φ : D → R be a strictly convex and uniformly
seperable mirror map. Let B(f)∩D 6= ∅ and consider any y ∈ Rn. Let {e1, . . . , en} be an ordering
of the ground set E such that y1 ≥ · · · ≥ yn. Then, the following problems are primal-dual pairs

(P )
min Dφ(x, y)

subject to x ∈ B(f)
(D)

max −D∗φ(z, y) + zT c

subject to z1 ≤ · · · ≤ zn
. (1)

Moreover, from a dual optimal solution z∗, we can recover the optimal primal solution x∗.

To prove this result, we derive the Fenchel dual problem (D) by using the structure of cardinality-
based polytopes, and restricting the minimizer to the optimal face (see Appendix C). Problem (D) in
(1) is in fact a separable isotonic optimization problem‡, which highlights an interesting connection
between projections on cardinality-based polytopes [52, 53, 18]. In particular, when φ(x) = 1

2‖x‖
2,

the dual problem (D) in (1) becomes the following minz{ 1
2‖z − (c − y)‖2 | z1 ≤ · · · ≤ zn}

isotonic regression problem. Learning over projections is therefore dual to performing isotonic
regression for perturbed data sets. Using the same algorithm as Lim and Wright’s, i.e., the Pool
Adjacent Violators (PAV) [54], we can solve the dual problem (D) with a faster running time of
O(n log n+nEO) compared toO(n2+nEO) of [43]. We include the details about the algorithm and
correctness in Appendix C. It is worth noting that linear optimization over B(f) also has a running
time of O(n log n+ nEO) using Edmonds’ greedy algorithm [34]. Therefore, for cardinality-based
polytopes, when solving the projection sub-problem (P2), it is better to use a combinatorial algorithm
(e.g. PAV) than any iterative optimization method (e.g. FW). Note that any FW iteration needs to
sort the gradient vector (i.e., linear optimization over the base polytope) which is also O(n log n)
in runtime. For cardinality-based polytopes, therefore, projection-based methods to solve (P1) are
computationally competitive with conditional gradient methods.

4 Toolkit to Adapt to Previous Combinatorial Structure
In the previous section, we gave an O(n log n) exact algorithm for computing Bregman projections
over cardinality-based polytopes. However, the pool-adjacent-violator algorithm is very specific to
the cardinality-based polytopes and does not extend to general submodular polyhedra. To compute
a projection over the challenging submodular base polytope, there are currently only two potential
ways of doing so: (i) using Frank-Wolfe variants (due to simple linear sub-problems), (ii) using
combinatorial algorithms such as those of [9, 8] (which typically rely on submodular function
minimization for detecting tight sets). In this section, we construct a toolkit to speed up these
approaches, and consequently speed up iterative projections over general submodular polytopes.

4.1 INFER tight inequalities
We first present our INFER tool T1 that recovers some tight inequalities of projection of ỹ by using
the tight inequalities of the projection of a close-by perturbed point y ∈ Rn. The motivation of this
result stems from the fact that projection-based optimization methods often move slowly, i.e., points

‡A separable isotonic optimization problem is of the form min
∑n
i=1 hi(xi) subject to x1 ≤ x2 ≤ · · · ≤ xn,

where hi are univariate strictly convex functions
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y, ỹ to be projected are often close to each other, and so are their corresponding projections x, x̃. Our
first result is specifically for Euclidean projections.
Theorem 3 (Recovering tight sets from previous projections (T1)). Let f : 2E → R be a monotone
submodular function with f(∅) = 0. Further, let y and ỹ ∈ RE be such that ‖y − ỹ‖ ≤ ε, and x, x̃
be the Euclidean projections of y, ỹ on B(f) respectively. Let F1, F2, . . . , Fk be a partition of the
ground set E such that xe − ye = ci for all e ∈ Fi and ci < cl for i < l. If cj+1 − cj > 4ε for some
j ∈ [k − 1], then the set S = F1 ∪ · · · ∪ Fj is also a tight set for x̃, i.e. x̃(S) = f(S).

Note that xe − ye is the partial derivative of the distance function from y at x. The proof shows that
for e ∈ E, x̃e − ỹe is close to xe − ye and relies on the smoothness and non-expansivity of Euclidean
projection. This helps us infer that the relative order of coordinates in x̃− ỹ (i.e., the coordinate-wise
partial derivatives) is close to the relative order of coordinates in x − y. This relative order then
determines tight sets for x, due to first-order optimality characterization of Theorem 1. See Appendix
D.2 for a complete proof, where we also generalize the theorem to any Bregman projection that is
L-smooth and non-expansive. In Section 5.1, we will show that this theorem infers most of the tight
inequalities computationally (see Figure 4-left).

Next, consider the subproblem (P2) of computing the projection xt of a point yt. Let z(k) be the
iterates in the subproblem that are convergent to xt. The points z(k) grow progressively closer to xt,
and our next tool INFER T2 helps us recover tight sets for xt using the gradients of points z(k).
Theorem 4 (Adaptively inferring the optimal face (T2)). Let f : 2E → R be monotone submodular
with f(∅) = 0, h : D → R be a strictly convex and L-smooth function, where B(f) ∩ D 6= ∅. Let
x := arg minz∈B(f) h(z). Consider any z ∈ B(f) such that ‖z − x‖ ≤ ε. Let F̃1, F̃2, . . . , F̃k be a
partition of the ground set E such that (∇h(z))e = c̃i for all e ∈ F̃i and c̃i < c̃l for i < l. Suppose
c̃j+1 − c̃j > 2Lε for some j ∈ [k − 1]. Then, S = F1 ∪ · · · ∪ Fj is tight for x, i.e. x(S) = f(S).

The proof of this theorem, similar to Theorem 3, relies on the L-smoothness of h to show that the
relative order of coordinates in ∇h(xt) is close to the relative order of coordinates in ∇h(z(k)),
which helps infer some tight sets for x. See Appendix D.2 for a complete proof and Figure 1-right for
an example. Note that while Theorem 3 is restricted to Euclidean projections, Theorem 4 applies to
any smooth strictly convex function.

4.2 ReUse and Restrict
We now consider computing a single projection (P2) using Frank-Wolfe variants, that have two main
advantages: (i) they maintain an active set for their iterates as a (sparse) convex combination of
vertices, (ii) they only solve LO every iteration. Our first REUSE tool gives conditions under which a
new projection has the same active set A as a point previously projected, which allows for a faster
projection onto the convex hull of A (proof is included in Appendix D.2).
Lemma 1 (Reusing active sets (T3)). Let P ⊆ Rn be a polytope with vertex set vert(P). Let x
be the Euclidean projection of some y ∈ Rn on P . Let A = {v1, . . . , vk} ⊆ vert(P) be an active
set for x, i.e., x =

∑
i∈[k] λivi for ‖λ‖1 = 1 and λ > 0. Let F be the minimal face of x and

∆ := minv∈∂Conv(A) ‖x− v‖ be the minimum distance between x and the boundary of Conv(A).
Then, A is also an active set for the Euclidean projection of any point ỹ ∈ B∆(y) ∩Cone(F ), where
B∆(y) = {ỹ ∈ Rn | ‖ỹ − y‖ ≤ min{∆, ‖x− y‖}} is a closed ball centered at y.

In the previous section, we presented combinatorial tools to detect tight sets at the optimal solution.
We now use our RESTRICT tool to strengthen the LO oracle in FW by restricting it to the lower
dimensional faces defined by the tight sets we found (instead of doing LO over the whole polytope).
Note that doing linear optimization over lower dimensional faces of polytopes, in general, is signifi-
cantly harder (e.g., for shortest paths polytope). For submodular polytopes however, we show that
we can do LO over any face of B(f) efficiently using a modified greedy algorithm (Algorithm 2 in
Appendix B). Given a set of tight inequalities, one can uncross these to form a chain of tight sets, i.e.,
any face of B(f) can be written using a chain of subsets that are tight (see e.g. Section 44.6 in [55]).
Given such a chain, our modified greedy algorithm then orders the cost vector in decreasing order
so that it respects a given tight chain family of subsets. Once it has that ordering, it proceeds in the
same way as in Edmonds’ greedy algorithm [34]. We include a proof of the following theorem in
Appendix D.2.
Theorem 5 (Linear optimization over faces of B(f) (T4)). Let f : 2E → R be a monotone
submodular function with f(∅) = 0. Further, let F = {x ∈ B(f) | x(Si) = f(Si) for Si ∈ S} be a

7



face of B(f), where S = {S1, . . . Sk|S1 ⊆ S2 . . . ⊆ Sk}. Then the modified greedy algorithm (Alg.
2) returns x∗ = arg maxx∈F 〈c, x〉 in O(n log n+ nEO) time.

4.3 Rounding
Approximation errors in projection subproblems often impact (adversely) the convergence rate of the
overarching iterative method unless the errors decrease at a sufficient rate [56, 57]. Our goal in this
section is to detect if all tight sets at the optimum have been inferred, and enable early termination by
computing the exact minimizer. In 2020, [58] gave primal gap bounds after which away-step FW
reaches the optimal face, assuming strict complementarity assumption which need not hold even for
computing a Euclidean projection. Further, [59], showed that there exists some convergence radius R
such that for any iterate z(t) of AFW, if ‖z(t) − x∗‖ ≤ R, then any active set for z(t) must contain
x∗, but the parameter R existential and is non-trivial to compute. We complement these results by
rounding our approximate projections to an exact one based on structure in partial derivatives.

Suppose that we have a candidate chain S = {S1, . . . Sk} of tight sets (e.g., using INFER). We
observe that if the affine minimizer over S, i.e., x̃ := arg min{h(x) | x(S) = f(S)∀S ∈ S} is
feasible in B(f), then this is indeed the optimum solution x̃ = x∗.
Lemma 2 (Rounding to optimal face (T5)). Let f : 2E → R be a monotone submodular function with
f(∅) = 0. Let h : D → R be a strictly convex, where B(f)∩D 6= ∅. Let x∗ := arg minx∈B(f) h(x),
and let S = {S1, . . . Sk} contain some of the tight sets at x∗, i.e. x∗(Si) = f(Si) for all i ∈ [k].
Further, let x̃ := arg min{h(x) | x(S) = f(S)∀S ∈ S} be the optimal solution restricted to the
face defined by the tight set inequalities corresponding to S. Then, x∗ = x̃ iff x̃ is feasible in B(f).
In particular, if S contains all the tight sets at x∗, then x∗ = x̃.

The proof of this lemma can be found in Appendix D.3, and as a subroutine in Appendix B. We note
that this holds for any polytope: if we know that tight inequalities at the minimizer we can restrict the
optimization problem to the face defined by those tight inequalities and ignore the other constraints
defining the polytope (see Lemma 4 in Appendix C). To check whether x̃ ∈ B(f) in general requires
an expensive submodular function minimization, but instead we just check whether x̃ is in the convex
hull of {v(1), . . . , v(t)}, where v(i) are the FW vertices of B(f) that we have computed in Line 3
of Algorithm A2FW up to iteration t. Using [59], we know that there will be a point at which the
optimal solution is contained in the current active set.

We now present our second rounding tool ROUND for base polytopes of integral submodular functions.
It only requires a guarantee that the approximate projection be within a (Euclidean) distance of
1/(2|E|2) to the optimal projection. This generalizes the robust version of Fujishige’s theorem given
in [41], connecting the MNP over B(f) and the set minimizing the submodular function value.
Lemma 3 (Combinatorial Integer Rounding Euclidean Projections (T6)). Let f : 2E → Z (|E| = n)
be a monotone submodular function with f(∅) = 0. Consider y ∈ ZE and let h(x) = 1

2‖x− y‖
2.

Let x∗ := arg minx∈B(f) h(x). Consider any x ∈ B(f) such that ‖x − x∗‖ < 1
2n2 . Define

Q := Z ∪ 1
2Z ∪ . . . ∪

1
nZ, and for any r ∈ R, let q(r) := arg mins∈Q |r − s|. Then, q(xe) is unique

for all e ∈ E, and the optimal solution is given by x∗e = q(xe) for all e ∈ E.

This rounding algorithm runs in time O(n2 log n) and is given in Algorithm 5 in Appendix B. The
proof proceeds by showing that x∗e ∈ S for all e ∈ E, and that the distance between two points in S
is at least 1

|E|2 , so that one can always round to x∗ correctly (complete proof is in Appendix D.3).

5 Adaptive Away-steps Frank-Wolfe (A2FW)
We are now ready to present our Adaptive AFW (Alg. 1) by combining tools presented in the
previous section. First using the INFER1, we detect some of the tight sets S at the optimal solution
before even running A2FW, and accordingly warm-start A2FW with z(0) in the tight face of S.
A2FW operates similar to the away-step Frank-Wolfe, but during the course of the algorithm it
restricts to tight faces as it discovers them (using INFER2), adapts the linear optimization oracle
(using RESTRICT), and attempts to round to optimum (using ROUND, RELAX). To apply INFER2
(subroutine included as Algorithm 3), consider an iteration t of A2FW, where we have computed
the FW gap gFW

t := maxv∈B(f)

〈
−∇h(z(t)), v − z(t)

〉
(see line 11 in Algorithm 1). For µ-strongly

convex h, we have:
µ

2
‖z(t) − x∗‖2 ≤ h(z(t))− h(x∗) ≤ max

〈
−∇h(z(t)), v − z(t)

〉
= gFW

t , (2)
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Algorithm 1 Adaptive Away-steps Frank-Wolfe (A2FW)
Input: Submodular f : 2E → R, (µ,L)-strongly convex and smooth h : B(f) → R, chain of tight cuts S

(e.g., using INFER1), z(0) ∈ B(f) ∩ {x(S) = f(S), S ∈ S} with active set A0, tolerance ε.
1: Initialize t = 0, gFW

0 = +∞, v(0) = z(0)

2: while gFW
t ≥ ε do

3: Snew = S ∪ INFER2(h, z(t), 2L
√

2gFW
t /µ) . use toolkit to find new tight sets

4: x̃, F lag = RELAX(Snew, {v(0) . . . v(t)})
5: if Flag = True, return x̃
6: if |Snew| > |S| then
7: Set z(t+1) ∈ arg minv∈F (Snew)

〈
∇h(z(t)), v

〉
and At+1 = z(t+1) . round and restart

8: else . do iteration of AFW restricted to F (S)

9: Compute v(t) ∈ arg minv∈F (S)

〈
∇h(z(t)), v

〉
. use toolkit

10: Compute away-vertex a(t) ∈ arg maxv∈At

〈
∇h(z(t)), v

〉
11: z(t+1),At+1, gFW

t+1 = AFW -update(z(t), v(t), a(t),At)
12: end if
13: Update t := t+ 1 and S = Snew
14: end while
Return: z(t)

and so ‖z(t) − x∗‖ ≤
√

2gFW
t /µ. Let F̃1, F̃2, . . . , F̃k be a partition of the ground set E such that

(∇h(z(t)))e = c̃i for all e ∈ Fi and c̃i < c̃l for all i < l. If c̃j+1 − c̃j > 2L
√

2gFW
t /µ for some

j ∈ [k − 1], then Theorem 4 implies that S = F1 ∪ · · · ∪ Fj is tight for x∗, i.e. x∗(S) = f(S).

Overall in A2FW, we maintain a set S containing all such tight sets S at the optimal solution that
we have found so far. We use those tight sets as follows: (i) we restrict our LO oracle to the lower
dimensional face we identified using the modified greedy algorithm (RESTRICT- (T4)). (ii) We use
our RELAX ((T5)) tool to check weather we have identified all the tight-sets defining the optimal
face (Lemma 2). If yes, then we round the current iterate to the optimal face and terminate the
algorithm early. For (Euclidean) projections over an integral submodular polytope, we can also use
our ROUND (T6) tool to round an iterate close to optimal without knowing the tight sets. Whenever
the algorithm detects a new chain of tight sets Snew, it is restarted from a vertex in F (Snew), which
possibly has a higher function value than the current iterate. However, this increase in the primal gap
is bounded as h is finite over B(f) and can happen at most n times; thus, these restarts do not impact
the convergence rate. The pseudocode of A2FW is included in Algorithm 1.

Convergence Rate: As depicted in (T4) in Figure 3, restricting FW vertices to the optimal face
results in better progress per iteration during the latter runs of the algorithm. The convergence rate of
A2FW depends on a geometric constant δ called the pyramidal width [6]. This constant is computed
over the worst case face of the polytope. By iterative restricting the linear optimization oracle to
optimal faces, we improve this worst case dependence in the convergence rate (proof in Appendix F):
Theorem 6 (Convergence rate of A2FW). Let f : 2E → R be a monotone submodular function with
f(∅) = 0 and f monotone. Consider any smooth strongly convex function h(·) with unique optimal
x∗ ∈ B(f). Let S be the tight sets found up to iteration t and F (S) be the face defined by these tight
sets. Then, the primal gap w(z(t+1)) := h(z(t+1)) − h(x∗) of A2FW decreases geometrically at
each step that is not a drop step§ nor a restart step:

w(z(t+1)) ≤

(
1−

µρ2
F (S)

4LD2

)
w(z(t)),where D is the diameter of B(f) and (3)

ρF (S) is the pyramidal width of B(f) restricted to F (S) (as defined by (24)). Moreover, in the worst
case, the number of iterations to get an ε-accurate solution is O

(
(nLD2/(µρB(f))

2) log(1/ε)
)
.

Note that ρF (S) can be strictly larger than the worst-case pyramidal width over the entire polytope.
For example, for the probability simplex (a submodular polytope; see Table 2), the pyramidal width
restricted to a face F is 2/

√
dim(F ) (assuming dim(F ) is even for simplicity) [60]. To the best of

our knowledge, we are the first to adapt AFW to tight faces as they are detected. This might be of
independent interest to the SFM community.

§A drop step is when we take an away step with a maximal step size so that we drop a vertex from the current
active set.
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Figure 4: (left) 15-85% percentile plot of fraction of tight sets inferred by using INFER1 (blue) v/s highest
number of tight sets common for ith iterate compared to previous i − 1 iterates (in green) for close points
generated randomly using Gaussian noise, over 500 runs. (middle) 25-75 percentile plots of normalized run
times for OMD-AFW variants for first loss setting averaged over 20 runs. (right) 25-75 percentile plots of
normalized run times for OMD-AFW variants with second loss setting averaged over 20 runs.

5.1 Computations
The code for our computations can be found on GitHub¶. In our first experiment, we iteratively
compute the Euclidean projections of 500 randomly generated points on the permutahedron. The
cloud of these 500 points is generated by fixing a random mean point and perturbing it using
multivariate Gaussian noise with mean zero and standard deviation ε = 1/50. We compute the
projections of each point in the cloud exactly, and plot percentile plots of fraction of discovered tight
sets from previous projections in Figure 4-left. The fraction of tight inequalities for each point yi that
were already tight for some other previous point y0, . . . , yi−1 is in green, the fraction of tight sets for
yi inferred by using Theorem 3 is in blue. The plots average over 20 runs of this experiment. Note
that our theoretical results give almost tight computational results, that is, we can recover most of the
tight sets common between close points using Theorem 3.

In our second experiment (detailed in appendix G), motivated by the trade-off in regret versus time
for online mirror descent and online Frank-Wolfe (OFW) variants, we conduct an experiment on the
permutahedron P with n = 50 elements. We consider a time horizon of T = 1000, and construct
two noisy (linear) loss settings. For each of the two loss settings, we run Online Frank-Wolfe (OFW)
and five variants of Online Mirror Descent (OMD) using the toolkit proposed: (1) OMD-UAFW:
OMD with projection using vanilla away-step Frank-Wolfe (baseline), (2) OMD-ASAFW: OMD
with AFW with reused active sets, (3) OMD-TSAFW: OMD with AFW with INFER, RESTRICT, and
ROUNDING, (4) OMD-A2FW OMD with A2FW, and (5) OMD-PAV: OMD with PAV. We call the
first four “OMD-AFW variants". Recall that OMD performs projections in potentially each iteration.

We normalized each OMD-UAFW run time to be 1000, and run times for all other variants in this
run are correspondingly scaled in Figures 4-middle and 4-right. Each iteration of OMD involves
projecting a point on the permutahedron, and the cumulative run times for these projections are
plotted. The plots are averaged over 20 runs of this experiment for both the settings.

We see more than three orders of magnitude improvement in run time for OMD-ASAFW and OMD-
A2FW compared to the unoptimized OMD-AFW. Both OMD-PAV and OFW run 4 to 6 orders of
magnitudes faster on average than OMD-UAFW; however, OMD-PAV suffers from the limitation
that it only applies to cardinality-based submodular polytopes, while OFW has significantly higher
regret in computations. We summarize these results in Table 4 in Appendix G.

OMD has a regret 1 to 2 orders of magnitude lower than OFW on average, thus bolstering the claim
that we need to invest research to speed-up this optimal learning method and its variants. This drop in
regret is significant in terms of revenue for an online retail platform. The regret for all OMD variants
was observed to be nearly the same. Overall, speeding up OMD is an example of the impact of our
toolkit, which can be applied in the broader setting of iterative optimization methods.

5.2 Limitations and Open questions
There is still is a long way from closing the computational gap with Online Frank Wolfe. Our
work inspires many future research questions, e.g., procedures to infer tight sets on non-submodular
polytopes such as matchings and procedures to round iterates to the nearest tight face for combinatorial
polytopes. We hope that our results can inspire future work that goes beyond looking at projection
subroutines as black boxes. We believe that our work does not have any foreseeable negative ethical
or societal impact.

¶https://github.com/jaimoondra/submodular-polytope-projections
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A Examples of Submodular Functions and Bregman Divergences

Submodularity is a discrete analogue of convexity and base polytopes arising from submodular
functions have been used to model combinatorial constraints in a wide variety of machine learning
applications, such as MAP inference, document summarization, sensor placement, clustering, image
segmentation [18]. In the table below we present some popular submodular functions and the
problems arising from the corresponding submodular base polytopes:

Problem Submodular function, S ⊆ E (unless
specified)

Cardinality-
based

k out of n experts (k-simplex), E = [n] f(S) = min{|S|, k} 3
k-truncated permutations over E = [n] f(S) = (n − k)|S| for |S| ≤ k, f(S) =

k(n− k) +
∑|S|
j=k+1(n+ 1− s) if |S| > k

3

k-forests on G = (V,E) f(S) = min{|V (S)| − κ(S), k}, κ(S) is
the number of connected components of S

7

Matroids over ground set E: M = (E, I) f(S) = rM (S), the rank function of M 7
Coverage of T : given T1, . . . , Tn ⊆ T f(S) = |∪i∈STi|, E = {1, . . . , n} 7

Cut functions on a directed graph D =
(V,E), c : E → R+

f(S) = c(δout(S)), S ⊆ V 7

Table 2: Problems and the submodular functions (on ground set of elements E) that give rise to them.

Mirror descent variants compute a Bregman projection by minimizing Bregman divergence over
B(f). Bregman divergences are generated by a distance function or mirror map φ and the choice
of the mirror map typically depends on the polytope given in the problem. In the table below, we
present some popular uniform separable mirror maps and their corresponding divergences:

Mirror Map φ(x) =
∑
φe(xe) Dφ(x, y) Divergence

‖x‖2/2
∑
e(xe − ye)

2 Squared Euclidean Distance∑
e xe log xe − xe

∑
e(xe log(xe/ye)− xe + ye) Generalized KL-divergence

−
∑
e log xe

∑
e(xe log(xe/ye)− xe + ye) Itakura-Saito Distance∑

e(xe log xe + (1 − xe) log(1 −
xe))

∑
e(xe log(xe/ye) + (1 −

xe) log((1− xe)/(1− ye))
Logistic Loss

Table 3: Examples of some popular uniform separable mirror maps and their corresponding divergences.

B Algorithms

We first give our modified greedy algorithm for doing linear optimization over low dimensional faces
of the base polytope. This tool is used as to compute FW vertices in lower dimensional faces within
our A2FW algorithm.

Algorithm 2 Greedy algorithm for faces of B(f)

Input: Monotone submodular f : 2E → R, objective c ∈ Rn, face F = {x ∈ B(f) | x(Si) = f(Si), where
S1 ⊂ · · · ⊂ Sk = E where Si form a chain}.

1: Consider an ordering on the ground set of elements E = {e1, . . . , en} such that (i) it respects the given
chain, i.e., Si = {e1, . . . , esi} for all i, and (ii) each set Si \ Si−1 = {esi−1+1, . . . , esi} is in decreasing
order of cost, i.e., c(esi−1+1) ≥ . . . ≥ c(esi).

2: Let x∗(e) := f({e1, . . . , ej})− f({e1, . . . , ej−1}), for i ∈ [n].
Return: x∗ = arg maxx∈F 〈c, x〉

We next convert Theorem 4 and Lemmas 2, 3 to algorithm environments and include them in this
section. First we present our INFER2 tool, which could be used to to detect tight sets at the optimal
solution for any iterative algorithm used to compute a projection in problem (P2). For example, this
tool is used as sub-routine in our A2FW to find tight sets in AFW and make it adaptive.
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Algorithm 3 Detect Tight Sets (T2): INFER2(h, z, ε)

Input: Submodular function f : 2E → R, a function h =
∑
e∈E he, Z ∈ B(f) such that ‖z − x∗‖ ≤ ε.

1: Initialize S = ∅
2: Let F̃1, F̃2, . . . , F̃k be a partition of E such that (∇h(z))e = c̃i ∀e ∈ Fi and c̃i < c̃l for i < l.
3: for j ∈ [k − 1] do
4: If c̃j+1 − c̃j > 2ε, then S = S ∪ {F1 ∪ · · · ∪ Fj} . we discovered a tight set at x∗

5: end for
Return: S

Next we present our INFER2 our Combinatorial relaxed rounding RELAX (T5). This tool allows
for early termination of iterative algorithms used to compute the projections by checking if we have
found all the tight sets at the optimal. Recall that if we find all the tight sets at the optimal solution
we can compute the exact projection (using Theorem 1 for example).

Algorithm 4 Combinatorial relaxed rounding (T5): RELAX(S,V)

Input: Submodular function f : 2E → R, a function h =
∑
e∈E he, a chain of tight sets S = {S1, . . . , Sk}

where S1 ⊂ · · · ⊂ Sk = E, and a set of vertices V = {v1, . . . , vl} where vi is a vertex of B(f).
1: Initialize Flag = False
2: Let x̃ := arg min{h(x) | x(S) = f(S)∀S ∈ S} . could be solved using Theorem 1
3: If x̃ ∈ Conv(V), then Flag = True . we guessed optimal solution: x̃ = x∗

Return: x̃, Flag

We now present our second rounding tool ROUND for base polytopes of integral submodular functions,
which is algebraic in nature. It only requires a guarantee that the approximate projection be within
a (Euclidean) distance of 1/(2|E|2) to the optimal for Euclidean projections and more importantly
doesn’t depend on knowing the tight sets at the optimal solution. This rounding algorithm runs in
time O(n2 log n) and is given below.

Algorithm 5 Integer-function rounding (T6): ROUND(S,V)

Input: Submodular function f : 2E → Z, a point y ∈ ZE , x ∈ B(f) such that |xe − x∗e | < 1
2|E|2 for all

e ∈ E, where x∗ = ΠP(y) is the Euclidean projection of y on P .
1: for each e ∈ E do
2: z(i) := arg mins∈ 1

i
Z |s− xe|, for each i ∈ {1, . . . , |E|}.

3: ze := mini z
(i)

4: end for
5: Return z

Finally, we present the pseudocode for AFW -update used within our A2FW algorithm, which
performs an AFW descent step and returns the new iterate along with its active set.

Algorithm 6 Away-steps Frank-Wolfe update (AFW -update(z, v, a,A))
Input: Submodular f : 2E → R, convex function h : B(f) → R, z ∈ B(f) with active set A, FW vertex

v ∈ B(f), and away vertex a ∈ B(f).
1: Define the FW gap gFW := 〈−∇h(z), v − z〉.
2: if gA := 〈−∇h(z), z − a〉 ≤ gFW then . FW gap v/s away gap
3: d := v − z and γmax := 1. . choose FW direction
4: else
5: d := z − a and γmax

t := λa/(1− λa). . choose away direction
6: end if
7: Let z+ := z + γd for γ = arg minγ∈[0,γmax]

h(z + γd)

8: Update λv for all v ∈ A and A+ = {v ∈ B(f) | λv > 0} . update active set
Return: z+, A+, gFW
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C Missing proofs in Section 3 and the PAV Algortihm

We extend the proof of Lim and Wright [38] and prove Theorem 2. To do that we need some
more preliminaries. Consider any strictly convex and continuously differentiable separable function
h : D → R, defined over a convex set D such that B(f) ∩ D 6= ∅ and ∇h(D) = RE (this condition
is not restrictive). Recall that the Fenchel-conjugate of h, that is h∗(y) = supx∈D{〈y, x〉 − h(x)}
for any y ∈ D∗. The subdifferential of h, i.e. the set of all subgradients of h, is defined by
∂h = {g ∈ D∗ : h(y) ≥ h(x) + 〈g, y − x〉 ∀ y ∈ D}. Since h is strictly convex and differentiable,
the subdifferential is unique and given by ∂h(x) = ∇h(x) for all x ∈ D. The conjugate subgradient
theorem states that for any x ∈ D, y ∈ D∗, we have ∂h(x) = arg maxỹ∈D∗{〈x, ỹ〉 − h∗(ỹ)} =

∇h(x) and ∂h∗(y) = arg maxx̃∈D{〈y, x̃〉 − h(x̃)} = ∇h∗(y)|| (see e.g. Corollary 4.21 in [20]). We
will need the Fenchel duality theorem, which states that (see e.g. Theorem 4.15 in [20]):

min
x∈X

h(x) = max
y∈D∗

−h∗(y) + min
x∈X

yTx. (4)

When X = B(f), the above result coincides with Proposition 8.1 in [18].

C.1 Proof of Theorem 2

We first show the following result about minimizing strictly convex functions over polytopes, which
states that if we know the optimal (minimal) face, then we can restrict the optimization to that optimal
face.
Lemma 4 (Reduction of optimization problem to optimal face). Consider any strictly convex function
h : D → R. Let P = {x ∈ Rn : 〈ai, x〉 ≤ bi ∀ i ∈ [m]} be a polytope and assume that
D ∩ P 6= ∅. Let x∗ = arg minx∈P h(x), where uniqueness of the optimal solution follows from
the strict convexity of f . Further, let I(x∗) denote the index-set of active constraints at x∗ and
x̃ = arg minx∈Rn{h(x) | AI(x∗)x ≤ bI(x∗)}. Then, we have that x∗ = x̃**.

Proof. Let J(x∗) denote the index set of inactive constraints at x∗. We assume that J(x∗) 6= ∅,
since otherwise the result follows trivially. Now, suppose for a contradiction that x∗ 6= x̃. Due to
uniqueness of the minimizer of the strictly convex function over P , we have that x̃ /∈ P (otherwise
it contradicts optimality of x∗ over P). We now construct a point y ∈ P that is a strict convex
combination of x̃ and x∗ and satisfies f(y) < f(x∗), which contradicts the optimality of x∗. To that
end, define

γ := min
j∈J(x∗):
〈aj ,x̃−x∗〉>0

bj − 〈aj , x∗〉
〈aj , x̃− x∗〉

> 0, (5)

with the convention that γ = ∞ if the feasible set of (5) is empty, i.e. 〈aj , x̃− x∗〉 ≤ 0 for all
j ∈ J(x∗). Select θ̃ ∈ (0,min{γ, 1}). Further, define y := x∗+ θ̃(x̃−x∗) 6= x∗ to be a strict convex
combination of x∗ and x̃. We claim that that (i) y ∈ P and (ii) f(y) < f(x∗), which completes our
contradiction argument:

(i) We show that y ∈ P . Since all the tight constraints I(x∗) are satisfied at y by construction,
to show the feasibility of y we just have to verify that any constraint j ∈ J(x∗) such that
〈aj , x̃〉 > bj > 〈aj , x∗〉 is feasible at y. Indeed, we have

〈aj , y〉 = 〈aj , x∗〉+ θ̃ 〈aj , x̃− x∗〉 ≤ 〈aj , x∗〉+ γ 〈aj , x̃− x∗〉
≤ 〈aj , x∗〉+ bj − 〈aj , x∗〉 = bj ,

where we used the fact that θ̃ ≤ γ in the first inequality, and the definition of γ (5) in the
second inequality. This establishes the feasibility of y ∈ P .

(ii) We show that f(y) < f(x∗). Observe that f(x̃) ≤ f(x∗) by construction. Since, x∗ 6= x̃,
We can now complete the proof of this claim as follows:

f(y) = f((1− θ̃)x∗ + θ̃x̃) < (1− θ̃)f(x∗) + θ̃f(x̃) ≤ f(x∗),

||h∗ is differentiable since h is strictly convex (see Theorem 26.3 in [61]).
**The exact same proof can be used to show that when x̃ is instead defined by x̃ := arg minx∈Rn{h(x) |

AI(x∗)x = bI(x∗)} (so that we relax the equalities to inequalities in the definition of x̃), we also have x∗ = x̃.
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where we used the fact θ̃ ∈ (0, 1) and the fact that f is strictly convex in the first inequality,
and the fact that f(x̃) ≤ f(x∗) in second.

This completes the proof.

We also need the following, which lemma shows that the ordering of the optimal solution is the same
as the ordering of elements in y.

Lemma 5 (Lemma 1 in [62]). Let f : 2E → R be any cardinality-based submodular function, that
is f(S) = g(|S|) function for some nondecreasing concave function g. Let φ : D → R be a strictly
convex and uniformly separable mirror map whereB(f)∩D 6= ∅. Let x∗ := arg minx∈B(f)Dφ(x, y)
be the Bregman projection of y. Assume that y1 ≥ · · · ≥ yn. Then, it holds that x∗1 ≥ · · · ≥ x∗n.

Proof. Suppose on the contrary that x∗i < x∗j for i < j. Let x̃ be the point obtained by exchanging
x∗i and x∗j . Then, by definition, we have x̃ is feasible in B(f). Moreover,

Dφ(x∗, y)−Dφ(x̃, y) = φ(x∗i )− φ(yi)− (∇φ(y))i(x
∗
i − yi)− φ(x∗j ) + φ(yi) + (∇φ(y))i(x

∗
j − yi)

+ φ(x∗j )− φ(yj)− (∇φ(y))j(x
∗
j − yj)− φ(x∗i ) + φ(yj) + (∇φ(y))j(x

∗
i − yj)

= −(∇φ(y))i(x
∗
i − x∗j )− (∇φ(y))j(x

∗
j − x∗i )

= (x∗j − x∗i )((∇φ(y))i − (∇φ(y))j)

> 0,

which is a contradiction.

We are now ready to prove Theorem 2:

Theorem 2 (Dual of projection is isotonic optimization). Let f : 2E → R be a cardinality-based
monotone submodular function, that is f(S) = g(|S|) function for some nondecreasing concave
function g. Let ci := g(i)−g(i−1) for all i ∈ [E]. Let φ : D → R be a strictly convex and uniformly
seperable mirror map. Let B(f)∩D 6= ∅ and consider any y ∈ Rn. Let {e1, . . . , en} be an ordering
of the ground set E such that y1 ≥ · · · ≥ yn. Then, the following problems are primal-dual pairs

(P )
min Dφ(x, y)

subject to x ∈ B(f)
(D)

max −D∗φ(z, y) + zT c

subject to z1 ≤ · · · ≤ zn
. (1)

Moreover, from a dual optimal solution z∗, we can recover the optimal primal solution x∗.

Proof. Consider the problem of computing a Bregman projection of a point y over a cardinality-based
submodular polytope

min Dφ(x, y) subject to x(S) ≤ g(|S|) ∀S ⊂ E, x(E) = g(|E|). (6)

Note that since, y1 ≥ · · · ≥ yn, the previous two lemmas imply that we can reduce to problem to
the optimal face, which only includes the constraints that can be active under that ordering. That is,
problem (6) can be simplified to only have n constraints as opposed to the original problem which
had 2n constraints:

min Dφ(x, y) subject to
j∑
i=1

xi ≤ g(j) ∀j ∈ [n− 1],

n∑
i=1

xi = g(n). (7)

Let C denote the feasible region of the simplified optimization problem in (7). Then, using the
Fenchel duality theorem (4), we have that the following problems are primal-dual pairs:

(P )
min Dφ(x, y)

subject to x ∈ B(f)
(D) max

z∈Rn
−D∗φ(z, y) + min

x∈C
〈z, x〉 (8)
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Let us now focus on the minx∈C 〈z, x〉 term in the dual problem (D) above. If we let Zi = zi− zi+1

for i ∈ [n−1] and Zn = zn, we have zi =
∑n
k=i Zk. Recall that ci = g(i)−g(i−1) for i = 1 . . . , n

and note that ci ≤ ci−1 since g is concave. This gives us

〈z, x〉 = 〈z, c〉+

n∑
i=1

zi(xi − ci) = 〈z, c〉+

n∑
i=1

(
n∑
k=i

Zk

)
(xi − ci)

= 〈z, c〉+

n∑
k=1

(
k∑
i=1

(xi − ci)

)
Zk (9)

If any Zk is larger than 0 for any k ∈ [n − 1], then we claim that minx∈C 〈z, x〉 = −∞. Indeed,
we can set xi = ci for all i /∈ {k, k + 1}, xk → −∞ and xk+1 = ck + ck+1 − xk, where it is clear
that such a solution is feasible in C. This means that we require Zk ≤ 0 for all k (i.e. zi+1 ≥ zi

for all i). Thus, since
∑n
k=1

(∑k
i=1(xi − ci)

)
Zk ≥ 0 for all k ∈ [n] (as x ∈ C), it follows that

minx∈C 〈z, x〉 = 〈z, c〉 is obtained by setting xi = ci for all i in (9). In other words, minx∈C 〈z, x〉
is attained by the vertex of B(f) that corresponds to the ordering induced by the chain constraints.

Thus, we accordingly simplify our dual problem to obtain

(P )
min Dφ(x, y)

subject to x ∈ B(f)
(D)

max −D∗φ(z, y) + zT c

subject to z1 ≤ · · · ≤ zn
.

Furthermore, since z∗ is the optimal solution z∗ to the Fenchel dual (D), we can use the conjugate
subgradient theorem (given in the introduction of this section) to recover a primal solution using
∇xDφ(x∗, y) = ∇φ(x∗)−∇φ(y) = z∗.

C.2 PAV Algorithm Implementation and Example

We now propose our algorithm, which solves the dual problem and then maps the dual optimal
solution to a primal one using Theorem 2. Best. al [54] show that such problems could be solved
exactly in n iterations, using a well known algorithm called the Pool Adjacent Violators (PAV)
Algorithm in O(n) time (see Theorem 2.5 in [54]). We adapt the algorithm here in Algorithm 7 to
solve (D).

The algorithm begins with the finest partition of the ground set E whose blocks are single integers in
[E] and an initial solution (that is possibly infeasible and violates the chain constraints). Then, the
algorithm successively merges blocks to reduce infeasibility through pooling steps, obtaining a new,
coarser partition of the ground set E and an infeasible solution z, until z becomes dual feasible. The
pooling step is composed of solving an unconstrained version of the dual objective function restricted
to a set S. We denote this operation by Poolφ,y,c(S) := arg minγ∈R

∑
i∈S D

∗
φi

(γ, yi) + γci, where
the solution is unique by the strict convexity of φi. We solve for γ by setting the derivative to zero to
obtain (see [38] for more details):∑

i∈S
(∇φ−1)(γ +∇φ(yi)) =

∑
i∈S

ci. (10)

Consider the case when φ(x) = 1
2‖x‖

2 so that our Bregman projection becomes a Euclidean
projection. In this case, we have ∇φ(x) = x = (∇φ)−1(x) and (10) reduces to computing an
average: Poolφ,y,c(S) =

∑
i∈S(ci − yi)/|S|††. On the other hand, when φ(x) = x lnx− x so that

our Bregman projection becomes the generalized KL-divergence, we have Poolφ,y,c(S) = ln
∑

i∈S ci∑
i∈S zi

.
Henceforth, we assume that the Poolφ,y,c operation can be done in O(1) time using oracle access
(which is a valid assumption for most widely-used mirror maps). We have thus arrived at the following
result which gives the correctness and running time of the PAV algorithm:
Theorem 7. Let f : 2E → R be a cardinality-based submodular function, that is f(S) = g(|S|)
function for some concave function g. Let φ : D → R be a strictly convex and uniformly seperable
mirror map, where B(f) ∩ D 6= ∅. Then the output of the PAV algorithm (given in Algorithm 7) is
x∗ = arg minx∈B(f)Dφ(x, y). Moreover, the running-time of the algorithm is O(n log n+ nEO).

††When φ(x) = 1
2
‖x‖2, problem (D) in (1) is equivalent to minz{ 12‖z − (c − y)‖2 | z1 ≤ · · · ≤ zn},

which is an isotonic regression problem.
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Algorithm 7 Pool Adjacent Violators (PAV) Algorithm
Input: Cardinality-based submodular function f(S) = g(|S|) : 2E → R, strictly convex and uniformly

separable mirror map φ : D → R such that B(f) ∩ φ 6= ∅, and point to be projected y ∈ Rn where
y1 ≥ y2 ≥ · · · ≥ yn.

1: Initialize P ← {i|i ∈ [E]} and zi ← Poolφ,y,c(i) for all i ∈ [E].
2: while ∃ indices i, i+ 1 ∈ P where zi > zi+1 do
3: Let K(i) and K(i+ 1) be the intervals in P containing indices i and i+ 1 respectively.
4: Remove K(i),K(i+ 1) from P and add K(i) ∪K(i+ 1).
5: set zK(i)∪K(i+1) ← Poolφ,y,c(K(i) ∪K(i+ 1)). . see equation (10)
6: end while
7: Set x∗ ← ∇φ−1(z +∇φ(y)) . recover primal solution

Return: x∗ = arg minx∈B(f)Dφ(x, y).

Proof. The proof of this result follows from the fact that we need to sort y in Theorem 2 (which could
be done in O(n log n) time) and the fact that the PAV algorithm solves the dual problem exactly in
n iterations using Theorem 2.5 by Best. al [54], where each iteration takes O(1) time. This gives a
total running time of O(n log n+ nEO).

To explain the algorithm further and see it at work, consider the following example. Suppose
we want to compute the Euclidean projection of y = (4.8, 4.6, 2.7) onto the 1-simplex defined
over the ground set E = {1, 2, 3} with the cardinality-based set function f(S) = min{|S|, 1}.
In this case we have c1 := 1 and ci = 0 for all i ∈ {2, . . . , n}. The PAV algorithm initializes
z(0) = c− y = (−3.8,−4.6,−2.7) using (10). Since z1 > z2, in the first iteration the algorithm will
pool the first two coordinates by averaging them to obtain z(1) = c− y = (−4.2,−4.2,−2.7). Now
we have z(1)

1 ≤ z(1)
2 ≤ z(1)

3 and the algorithm terminates. Moreover, we recover the primal optimal
solution using x∗ = z(1) + y = (0.6, 0.4, 0).

D Missing proofs in Section 4

D.1 Missing proofs in Section 4.1

D.1.1 Proof of Theorem 3

Theorem 3 (Recovering tight sets from previous projections (T1)). Let f : 2E → R be a monotone
submodular function with f(∅) = 0. Further, let y and ỹ ∈ RE be such that ‖y − ỹ‖ ≤ ε, and x, x̃
be the Euclidean projections of y, ỹ on B(f) respectively. Let F1, F2, . . . , Fk be a partition of the
ground set E such that xe − ye = ci for all e ∈ Fi and ci < cl for i < l. If cj+1 − cj > 4ε for some
j ∈ [k − 1], then the set S = F1 ∪ · · · ∪ Fj is also a tight set for x̃, i.e. x̃(S) = f(S).

Proof. We show a more general result for uniformly separable divergences based on an L-smooth
and strictly convex mirror map φ, so that the corresponding Bregman projection is nonexpansive, i.e.,
if ‖y − ỹ‖ ≤ ε then ‖x− x̃‖ ≤ ε. Let F1, F2, ..., Fk be a partition of E such that ∇Dφ(x, y)e = ci
for all e ∈ Fi and ci < cl for i < l. We now show that if cj+1 − cj > 4εL for some j ∈ [k − 1],
then the set S = F1 ∪ . . . ∪ Fj is also a tight set for x̃. Let∇Dφ(x, y) = g and∇Dφ(x̃, ỹ) = g̃ for
brevity.

Let ej , ej+1 ∈ E be such that g(ej) = cj and g(ej+1) = cj+1. Consider the set of elements
S = {e1, . . . , ek} that have a partial derivative at x of value at most cj , i.e., Sj = {ei|g(ei) ≤ cj}.
Let C̃j := {g̃(ei) : ei ∈ Sj} and let C̃ := {g̃(e) : e ∈ E}. Then, we will show every element of the
set C̃j is smaller than every element of the set C̃ \ C̃j , by showing that max C̃j ≤ min C̃ \ C̃j .
For any e ∈ E, consider i such that g(e) = ci. Then,

|g̃(e)− ci| = |g̃(e)− g(e)|
≤ ‖g̃ − g‖∞
≤ ‖g̃ − g‖2
= ‖(∇φ(x̃)−∇φ(ỹ))− (∇φ(x)−∇φ(y))‖2
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≤ ‖∇φ(x̃)−∇φ(x)‖2 + ‖∇φ(y)−∇φ(ỹ)‖2
≤ L‖x̃− x‖2 + L‖ỹ − y‖2
< 2Lε.

We use the result on gradient of Bregman projections for the first equality. The third inequality uses
the triangle inequality, the fourth inequality uses L-smoothness, and the fifth inequality uses the
non-expansiveness of the Euclidean (or Bregman) projection.

Therefore, if e is such that g(e) = ci ≤ cj ,

g̃(e) < ci + 2Lε ≤ cj + 2Lε < cj+1 − 2Lε < g̃(ej+1).

The first and last inequalities follow from the inequality we established above, and the second and
third inequalities follow by assumption. Similarly, if i is such that ci > cj , then g̃(e) ≥ g̃(ej+1).

This implies the following: every element of the set C̃j = {g̃(e) : e ∈ S} is smaller than every
element of C̃ \ C̃j as claimed. Since φ is L-smooth (and thus continuously differentiable) and strictly
convex, the result then follows using Theorem 1.

D.1.2 Proof of Theorem 4

Theorem 4 (Adaptively inferring the optimal face (T2)). Let f : 2E → R be monotone submodular
with f(∅) = 0, h : D → R be a strictly convex and L-smooth function, where B(f) ∩ D 6= ∅. Let
x := arg minz∈B(f) h(z). Consider any z ∈ B(f) such that ‖z − x‖ ≤ ε. Let F̃1, F̃2, . . . , F̃k be a
partition of the ground set E such that (∇h(z))e = c̃i for all e ∈ F̃i and c̃i < c̃l for i < l. Suppose
c̃j+1 − c̃j > 2Lε for some j ∈ [k − 1]. Then, S = F1 ∪ · · · ∪ Fj is tight for x, i.e. x(S) = f(S).

Proof. The proof of this theorem utilizes the same ideas as those in the proof of Theorem 3. Consider
elements ej , ej+1 ∈ E be such that ∇h(z)(ej) = c̃j and ∇h(z)(ej+1) = c̃j+1.

Let Sj be the set of elements at which z has a partial derivative at most cj . Let Cj be the partial
derivative values at x at Sj , i.e., Cj := {∇h(x)e : e ∈ Sj} and let C := {∇h(x)e : e ∈ E}. Then,
we’ll show that maxCj ≤ minC \ Cj .
For each e ∈ E, there is an i such that∇h(z)e = c̃i. Then, using the L-smoothness of h we have

|∇h(x)(e)− c̃i| = |∇h(x)(e)−∇h(z)(e)| ≤ L‖x− z‖2 < Lε. (11)

Therefore, for any e such that c̃i ≤ c̃j ,

∇h(x)(e) < c̃i + Lε ≤ c̃j + Lε < c̃j+1 − Lε < ∇h(x)(ej+1).

The first and last inequalities follow from the inequality established above, and the second and third
inequalities follow by definition.

Similarly, if e is such that c̃i > c̃j , then ∇h(x)(e) ≥ ∇h(x)(ej+1). Together, these imply the
following: every element of the set Cj = {∇h(x)(e) : e ∈ Cj} is smaller than every element of
C \ Cj . Since h is L-smooth (and thus continuously differentiable) and strictly convex, the result
then follows using Theorem 1.

D.2 Missing proofs in Section 4.2

D.2.1 Proof of Lemma 1

To prove this lemma we first need the following result, which states for any x in a polytope P , a
vertex in an active set for x must like on the minimal face containing x:

Lemma 6. Let P = {x ∈ Rn : 〈ai, x〉 ≤ bi ∀ i ∈ [m]} be a polytope with a vertex set vert(P).
Consider any x ∈ P and let F = {z ∈ P : 〈ai, x〉 = bi ∀ i ∈ I(x)} be the minimal face
containing x, where I(x) is the index set of active constraints at x. Let A(x) := {S : S ⊆ vert(P ) |
x is a proper convex combination of all the elements in S} be the set of all possible active sets for x,
and define A(x) := ∪A∈A(x)A to be the union of all vertices appearing in any active set for x. Then,
we claim that A(x) = vert(F ).
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Proof. We first show that A(x) ⊆ vert(F ). To do that, we claim that any A ∈ A(x) must be
contained in vert(F ). Indeed, let A ∈ A(x) be any active set for x and fix a vertex y ∈ A arbitrarily.
Define z := 1

1−λy

∑
v∈A\{y} λvv ∈ Conv(A) to be the point obtained by shifting the weight from y

to other vertices in A \ {y}. Then, we can write x = λyy+ (1− λy)z. Now, if 〈ai, x〉 = bi, then the
fact that 〈ai, z〉 ≤ bi implies that 〈ai, y〉 = bi, so that y ∈ vert(F ).

To show the reverse inclusion, we claim that any v ∈ vert(F ) lies in an active set containing x. Let x
be in the relative interior of its minimal face F (otherwise x is a vertex, and the case is trivial). Let
v ∈ vert(F ) be arbitrary and we will now construct an active set A ∈ A(x) containing v. Define
λ∗ := max{λ | x + λ(x − v) ∈ F} to be the maximum movement from x in the direction x − v.
Note λ∗ > 0 since x is in the relative interior of F . Let z := x + λ∗(x − v) ∈ F to be the point
obtained by moving maximally from x along the direction x− v. Now observe that (i) we can write
x as a proper convex combination of z and v: x = 1

1+λ∗ z + λ∗

1+λ∗ v; (ii) the point z lies in a lower
dimensional face F̃ ⊂ F since it is obtained by line-search for feasibility in F . Letting Ã be any
active set for z (where Ã ⊆ vert(F̃ ) by the first part of the proof), we have that Ã ∪ {v} is an active
set for x.

We are now ready to prove our lemma:

Lemma 1 (Reusing active sets (T3)). Let P ⊆ Rn be a polytope with vertex set vert(P). Let x
be the Euclidean projection of some y ∈ Rn on P . Let A = {v1, . . . , vk} ⊆ vert(P) be an active
set for x, i.e., x =

∑
i∈[k] λivi for ‖λ‖1 = 1 and λ > 0. Let F be the minimal face of x and

∆ := minv∈∂Conv(A) ‖x− v‖ be the minimum distance between x and the boundary of Conv(A).
Then, A is also an active set for the Euclidean projection of any point ỹ ∈ B∆(y) ∩Cone(F ), where
B∆(y) = {ỹ ∈ Rn | ‖ỹ − y‖ ≤ min{∆, ‖x− y‖}} is a closed ball centered at y.

Proof. Let ỹ ∈ B∆(y) be arbitrary and let x̃ be its Euclidean projection. Further, let N be the
normal cone defined by the face F , i.e. the cone of all tight constraints at x. By the previous
lemma we have that Conv(A) ⊆ F . Using non-expansiveness of projection operator we have that
‖x− x̃‖ ≤ min{∆, ‖x− y‖}. Moreover, since ỹ ∈ Cone(F ), it follows that ỹ − x̃ ∈ N so that x̃
lies in F . Thus, since ‖x− x̃‖ ≤ ∆, we have that x̃ ∈ Conv(A).

D.2.2 Proof of Theorem 5

Theorem 5 (Linear optimization over faces of B(f) (T4)). Let f : 2E → R be a monotone
submodular function with f(∅) = 0. Further, let F = {x ∈ B(f) | x(Si) = f(Si) for Si ∈ S} be a
face of B(f), where S = {S1, . . . Sk|S1 ⊆ S2 . . . ⊆ Sk}. Then the modified greedy algorithm (Alg.
2) returns x∗ = arg maxx∈F 〈c, x〉 in O(n log n+ nEO) time.

Proof. Our proof is an extension of the proof of the greedy algorithm by Edmonds [34]. We follow
the notation given in Algorithm 2. The linear programming formulation for our problem is:

max 〈c, x〉
s.t. x(T ) ≤ h(T ) ∀ T ⊂ E,
x(Si) = h(Si) ∀ Si ∈ S,
x(E) = h(E).

(12)

Consider the dual problem to (12):

min
y

∑
T⊆E

yTh(T )

s.t.
∑
T3ej

y(T ) = c(ej) ∀ j ∈ [1, n],

yT ≥ 0 ∀ T 6∈ S ∪ {E}.

(13)
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Define Uj := {e1, . . . , ej} (that is, the first j elements of the order we have induced in the algorithm).
Define y∗ as:

y∗Uj
= c(ej)− c(ej+1) ∀ j ∈ [1, n− 1],

y∗Un
= c(en),

y∗T = 0 ∀ T ⊆ E : T 6∈ {U0, . . . , Un}.
We will now show that y∗ is such that

∑
T⊆E y

∗
Th(T ) = 〈c, x∗〉 (and that y∗ and x∗ are feasible), so

optimality is implied by strong duality.

Note that
∑
T3ej y

∗
T =

∑
`∈[j,n] y

∗
U`

= c(ej). When T 6∈ {U1, . . . , Un}, y∗T ≥ 0 trivially. For each
j, when Uj 6∈ S, y∗Uj

≥ 0 by definition of the order we have induced on E. Therefore y∗ is feasible.

The feasibility of x∗ is essentially the same as in the proof of the greedy algorithm for B(f). We
show that x∗(T ) ≤ f(T ) for all T ⊆ E. We use induction on T . When |T | = 0, T = ∅ and
x(T ) = f(T ) = 0. Assume now that |T | > 0, and let ej be the element of T with the largest index.
Then,

x(T ) = x(T \ {ej}) + x(ej)

≤ f(T \ {ej}) + x(ej)

= f(T \ {ej}) + f(Uj)− f(Uj−1)

≤ f(T ).

The first inequality follows from the induction hypothesis, and the last follows by submodularity. The
equalities follow by definition. Finally, a straightforward calculation verifies that∑

T⊆E

y∗Th(T ) =

n∑
i=1

yUi
h(Ui) =

n−1∑
i=1

(c(ej) + c(ej+1))h(Ui) + c(ej)h(Un)

=

n∑
i=1

c(ei)(h(Ui)− h(Ui−1)) = 〈c, x∗〉 ,

which proves our claim.

D.3 Missing proofs in Section 4.3

D.3.1 Proof of Lemma 2

Lemma 2 (Rounding to optimal face (T5)). Let f : 2E → R be a monotone submodular function with
f(∅) = 0. Let h : D → R be a strictly convex, where B(f)∩D 6= ∅. Let x∗ := arg minx∈B(f) h(x),
and let S = {S1, . . . Sk} contain some of the tight sets at x∗, i.e. x∗(Si) = f(Si) for all i ∈ [k].
Further, let x̃ := arg min{h(x) | x(S) = f(S)∀S ∈ S} be the optimal solution restricted to the
face defined by the tight set inequalities corresponding to S. Then, x∗ = x̃ iff x̃ is feasible in B(f).
In particular, if S contains all the tight sets at x∗, then x∗ = x̃.

Proof. Let S∗ be the set of all tight sets at x∗. If the optimal face is known, then we can restrict
our original optimization problem to that optimal face by Lemma 4, that is x∗ = arg min{h(x) |
x(S) = h(S) ∀S ∈ S∗}, which proves the last statement of the lemma. Since the feasible region
{x | x(S) = h(S) ∀S ∈ S} used to obtain x̃ contains the optimal face, i.e. {x | x(S) = h(S) ∀S ∈
S∗} ⊆ {x | x(S) = h(S) ∀S ∈ S}, it follows that h(x̃) ≤ h(x∗). Thus, if x̃ ∈ B(f), we must have
x̃ = x∗, otherwise we contradict the optimality of x∗ by the strict convexity of h. Conversely, if
x̃ = x∗, then we trivially have x̃ ∈ B(f).

D.3.2 Proof of Lemma 3

Lemma 3 (Combinatorial Integer Rounding Euclidean Projections (T6)). Let f : 2E → Z (|E| = n)
be a monotone submodular function with f(∅) = 0. Consider y ∈ ZE and let h(x) = 1

2‖x− y‖
2.

Let x∗ := arg minx∈B(f) h(x). Consider any x ∈ B(f) such that ‖x − x∗‖ < 1
2n2 . Define

Q := Z ∪ 1
2Z ∪ . . . ∪

1
nZ, and for any r ∈ R, let q(r) := arg mins∈Q |r − s|. Then, q(xe) is unique

for all e ∈ E, and the optimal solution is given by x∗e = q(xe) for all e ∈ E.
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Proof. For brevity, denote |E| = n. First, if we are given all the tight sets at the optimal solution
as defined in Theorem 1, then we can recover the Bregman projection arg minx∈B(f)

∑
e he(xe) by

solving the following univariate equation:∑
e∈Fi

(∇he)−1(ci) = f(F1 ∪ · · · ∪ Fi)− f(F1 ∪ · · · ∪ Fi−1) ∀ i ∈ [k]. (14)

Using equation (14) and noting that (∇he)−1(ci) = ci + ye for all e ∈ Fi, we have for each e ∈ Fi,

xe =
f(∪j∈[i]Fi)− f(∪j∈[i−1])− y(Fi)

|Fi|
+ ye.

Since f, y are integral, we have xe ∈ Q for all e ∈ E. Further, note that

min
x,y∈Q,x 6=y

|x− y| = min
`1,`2∈[n],k1`2 6=k2`1

∣∣∣k1

`1
− k2

`2

∣∣∣ = min
`1,`2∈[n],k1`2 6=k2`1

|k1`2 − k2`1|
`1`2

≥ 1

n2
.

Therefore, there is a unique element of Q that is within a distance of less than 1
2n2 from x∗e . But by

assumption, we have |xe−x∗e| ≤ ‖x−x∗‖2 < 1
2n2 for all e ∈ E, which implies that arg mins∈Q |xe−

s| is singleton, so that the rounding can be done uniquely. Further, note that for all r ∈ R,

min
s∈Q
|r − s| = min

k∈[n]
min
s∈ 1

kZ
|r − s| = min

k∈[n]
min
t∈Z
|k · r − t|,

which implies the correctness of the algorithm.

E Preliminaries Needed for the Convergence Proofs

Let P ⊆ Rn be a polytope and consider the following optimization problem minx∈P h(x), where
h : P → Rn is µ-strongly convex and L- smooth. Let x∗ = arg minx∈P h(x) denote the constrained
optimal solution. Consider an iterative descent scheme of the form

z(t+1) = z(t) + γtdt (15)

to solve our optimization problem.

Measuring progress using smoothness. Since h is L-smooth, it satisfies the following inequality
for all x, y ∈ P (see e.g. [63])

h(y) ≤ h(x) + 〈∇h(x), y − x〉+
L

2
‖y − x‖2. (16)

To obtain a measure of progress, consider the smoothness inequality (16) applied with y ← z(t+1)

and x← z(t):

h(z(t+1)) ≤ h(z(t)) +
〈
∇h(z(t)), z(t+1) − z(t)

〉
+
L

2
‖z(t+1) − z(t)‖2 (17)

= h(z(t)) + γt

〈
∇h(z(t)), dt

〉
+
Lγ2

t

2
‖dt‖2 (18)

Let γmax
t = max{δ | x+ δdt ∈ P}. Now consider the step-size γdt :=

〈−∇h(z(t)),dt〉
L‖d

z(t)
‖2 minimizing

the RHS of the inequality above and suppose for now that γdt ≤ γmax
t . Then, plugging in γdt in (18)

and rearranging we have

h(z(t))− h(z(t+1)) ≥
〈
−∇h(z(t)), dt

〉2
2L‖dt‖2

. (19)

It is important to note that γdt is not the step-size we obtain from line-search. It is just used as means
to lower bound the progress obtained from the line-search step.
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Measuring primal gaps using (strong) convexity. To prove convergence results for our algo-
rithms, we also need a dual gap bound on w(z(t)) := w(z(t)) − w(x∗). To do this, use the strong
convexity of h. Since h is µ-strongly convex, it satisfies the following inequality for all x, y ∈ P

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
µ

2
‖y − x‖2. (20)

Applying the above inequality with y← z(t) + γ(x∗ − z(t)) and x← z(t):

h(z(t) + γ(x∗ − z(t)))− h(z(t)) ≥ γ
〈
∇h(z(t)), x∗ − z(t)

〉
+
µγ2‖x∗ − z(t)‖2

2
.

The RHS is convex in γ and is minimized when γ∗ =
〈−∇h(z(t)),x∗−z(t)〉

µ‖x∗−z(t)‖2 . Plugging γ∗ in the above
expression and re-arranging we obtain

h(z(t) + γ(x∗ − z(t)))− h(x∗) ≤
〈
−∇h(z(t)), x∗ − z(t)

〉2
2µ‖x∗ − z(t)‖2

.

As the LHS is independent of γ, we can set γ = 1, which gives

w(z(t)) := h(z(t))− h(x∗) ≤
〈
−∇h(z(t)), x∗ − z(t)

〉2
2µ‖x∗ − z(t)‖2

. (21)

Further, using Cauchy-Schwartz to bound the right hand side of (21), we can also obtain the following
optimality measure, which is known as the PL-inequality:

w(z(t)) := h(z(t))− h(x∗) ≤ ‖∇h(z(t))‖2

2µ
. (22)

Another final measure of optimality that we will use is the Wolfe Gap:

h(z(t)) := h(z(t))− h(x∗) ≤
〈
−∇h(z(t)), x∗ − z(t)

〉
≤ max

v∈P

〈
−∇h(z(t)), v − z(t)

〉
. (23)

where the first inequality uses the convexity of h.

F Proof of Theorem 6

F.1 Proof of Theorem 6

The proof of convergence for A2FW follows simply from the iteration-wise convergence rate of
Lacoste-Julien and Jaggi [6], and properties of convex minimizers over submodular polytopes. Once
we detect a tight inequality, we can restrict the feasible region to a smaller face of the polytope. Since
this happens only a linear number of times, we get linear convergence with A2FW as well.

We first recall the definition of the restricted pyramidal width constant:
Definition 1 (Restricted pyramidal width). Let P ⊆ Rn be a polytope with vertex set vert(P). Let
F ⊆ P be any face of P . Then, the pyramidal width restricted to to F is defined as

ρF := min
F ′∈faces(F )

x∈F ′
r∈cone(F ′−x)\{0}:

min
A∈A(x)

max
v∈F ′,a∈A

〈
r

‖r‖
, v − a

〉
, (24)

whereA(x) := {A | A ⊆ vert(P) such that x is a proper convex combination of all the elements in A}.

To prove Theorem 6, we need the following result:
Theorem 8. Let P ⊆ Rn be a polytope. Consider any strongly convex and smooth function h : P →
R. Further, Consider any suboptimal iterate z(t) of the A2FW algorithm, and let At be its active
set and K be its minimal face. Let x∗ := arg minx∈P h(x) and F be a face containing x∗ such that
F ⊇ K. Further, denote r := −∇h(z(t)) and ê := z(t) − x∗/‖z(t) − x∗‖. Define the pairwise FW
direction at iteration t to be dPFW

t := v(t) − a(t), where recall that v(t) = arg maxv∈F
〈
r, v − z(t)

〉
and a(t) = arg maxa∈At

〈
r, z(t) − a

〉
. Then, we have〈

r, dPFW
t

〉
〈r, ê〉

≥ ρF , (25)

where ρF is the pyramidal width of P restricted to F as defined in (24).
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The proof of this result follows by applying Theorem 3 in [6] to the face F instead of the whole
polytope (since both x∗ and z(t) lie in F and we are doing LO over F ). We reproduce the proof here
for completeness. We need the following lemma from Lacoste-Julien and Jaggi [6] for the proof:
Lemma 7 (Lemma 5 in [6]). Let z be at the origin, inside a polytope P and suppose that r ∈ Aff(P)
is not a feasible direction for P from z (i.e. r /∈ Cone(P)). Then a feasible direction in P minimizing
the angle with r lies on a facet F ′ of P that includes the origin z. That is:

max
e∈P

〈
r,

e

‖e‖

〉
= max

e∈F ′

〈
r,

e

‖e‖

〉
= max

e∈F ′

〈
r′,

e

‖e‖

〉
(26)

where F ′ contains z, and r′ is defined as the orthogonal projection of of r on Aff(F ′).

Proof of Theorem 8. As z(t) is not optimal, we require that 〈r, ê〉 > 0. Let A(z(t)) denote all the
possible active sets for z(t). Then, we have〈

r

‖r‖
, dPFW
t

〉
= max
v∈F,a∈At

〈
r

‖r‖
, v − a

〉
≥ min
A∈A(z(t))

max
v∈F,a∈A

〈
r

‖r‖
, v − a

〉
. (27)

By Cauchy-Schwartz, we have ‖ 〈r, ê〉 ‖ ≤ ‖r‖. First consider the case when r is a feasible direction
at z(t), i.e. r ∈ Cone(K−z(t)) ⊆ Cone(F −z(t)). Then r appears in the set of directions considered
in the definition of the restricted pyramidal width (24) for F and so from (27), we have that the
inequality (25) holds.

Now, suppose that r is not feasible for z(t). As z(t) is fixed, we work on the centered face at z(t) to
simplify the statements, i.e. let F̃ := F − z(t). Then, we have the following worst-case bound for
(25) as x∗ ∈ F 〈

r, dPFW
t

〉
〈r, ê〉

≥ max
v∈F,a∈At

〈r, v − a〉
(

max
v∈F̃

〈
r,

v

‖v‖

〉)−1

. (28)

The first term on the RHS of (28) just comes from the definition of dPFW
t (with equality), whereas the

second term is considering the worst case possibility for x∗. Note also that the second term has to be
strictly greater to zero since z(t) is not optimal.

Without loss of generality, we can assume that r ∈ Aff(F̃ ). Otherwise we can just project it onto
Aff(F̃ ) as any orthogonal component would not change the inner products appearing in (28). If (this
projected) r is feasible from z(t), then we again have the lower bound (27) arising in the definition of
the restricted pyramidal width. We thus assume that r is not feasible.

By Lemma 7, we have we have the existence of a facet F ′ of F̃ that includes the origin z(t) such that:

max
e∈F̃

〈
r,

e

‖e‖

〉
= max

e∈F ′

〈
r,

e

‖e‖

〉
= max

e∈F ′

〈
r′,

e

‖e‖

〉
. (29)

Let us now look at how the numerator of (28) transforms when considering r′ and F ′:

max
v∈F,a∈At

〈r, v − a〉 = max
v∈F

〈
r, v − z(t)

〉
+ max
a∈At

〈
−r, a− z(t)

〉
(30)

≥ max
v∈F∩(F ′+z(t))

〈
r, v − z(t)

〉
+ max
a∈At∩(F ′+z(t))

〈
−r, a− z(t)

〉
(31)

= max
v∈(F ′+z(t))

〈
r′, v − z(t)

〉
+ max
a∈At

〈
−r′, a− z(t)

〉
(32)

= max
v∈(F ′+z(t)),a∈At

〈r′, v − a〉 (33)

where in (31) we used the fact that (F ′ + z(t)) ⊆ F and (At − z(t)) ⊆ K for any face K of F̃
containing the origin z(t). Thus At = At ∩ (F ′ + z(t)), and the second term on the first line actually
yields an equality for the second line. In (32) we used the fact that The r − r′ is orthogonal to
members F ′, as r′ is obtained by orthogonal projection.

Now plugging (28) into (33) we have:〈
r, dPFW

t

〉
〈r, ê〉

≥ max
v∈(F ′+z(t)),a∈At

〈r′, v − a〉
(

max
v∈F ′

〈
r′,

v

‖v‖

〉)−1

, (34)
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and we are back to a similar situation to (28), with the lower dimensional F ′ playing the role of the
polytope F̃ , and r′ ∈ Aff(F ′) playing the role of r. If r′ is feasible from z(t) in F ′, then r′ and the
lower dimensional face (F ′ + z(t)) appear in the set of directions considered in the definition of the
restricted pyramidal width (24) (note that we have (F ′ + z(t)) as F ′ is a face of the centered face F̃ )

Otherwise (if r′ /∈ Cone(F ′))), then we can repeat the above process to obtain a new direction r′′ and
lower dimensional face F ′′ such that we can repeat the steps in (29) - (34). We again check if r′′ is
feasible from z(t) in F ′′. If not, we keep repeating the above process as long as we do not get a feasible
direction. This process must stop at some point; ultimately, we will reach the lowest dimensional
face K that contains z(t). As z(t) lies in the relative interior of K, then all directions in Aff(K) are
feasible, and so the projected r will have to be feasible. Moreover, by stringing together the equalities
of the type (29) for all the projected directions, we know that maxe∈K

〈
rfinal,

e
‖e‖

〉
> 0 (as we

originally had 〈r, ê〉 > 0), and thus K is at least one-dimensional and we also have rfinal 6= 0 (this
last condition is crucial to avoid having a lower bound of zero!).

We are now ready to prove our convergence theorem:

Theorem 6 (Convergence rate of A2FW). Let f : 2E → R be a monotone submodular function with
f(∅) = 0 and f monotone. Consider any smooth strongly convex function h(·) with unique optimal
x∗ ∈ B(f). Let S be the tight sets found up to iteration t and F (S) be the face defined by these tight
sets. Then, the primal gap w(z(t+1)) := h(z(t+1)) − h(x∗) of A2FW decreases geometrically at
each step that is not a drop step‡‡ nor a restart step:

w(z(t+1)) ≤

(
1−

µρ2
F (S)

4LD2

)
w(z(t)),where D is the diameter of B(f) and (3)

ρF (S) is the pyramidal width of B(f) restricted to F (S) (as defined by (24)). Moreover, in the worst
case, the number of iterations to get an ε-accurate solution is O

(
(nLD2/(µρB(f))

2) log(1/ε)
)
.

Proof. Recall that in the A2FWwe either take the FW direction dt = v(t)− z(t) or the away direction
dt = z(t) − a(t) depending on which direction has a higher inner product with −∇h(z(t)). Defining
dPFW
t := v(t) − a(t) to be the pairwise FW direction, this implies the following key inequality

2
〈
−∇h(z(t)), dt

〉
≥
〈
−∇h(z(t)), v(t) − z(t)

〉
+
〈
−∇h(z(t)), z(t) − a(t)

〉
=
〈
−∇h(z(t)), dPFW

t

〉
.

(35)

We proceed by cases depending on whether the step size chosen by line search is maximal or not, i.e.
whether γt = γmax

t or not:

Case 1: The step size evaluated from line-search is not maximal, i.e.γt < γmax
t so that we

have ‘good’ step. Recall from Section E that γdt = 〈−∇h(xt),dt〉
L‖dxt‖2

is the step size obtained
from optimizing the smoothness inequality to obtain (19). We claim that we can use the step
size from γdt to lower bound the progress even if γdt is not a feasible step size (i.e. when
γdt > 1). To see this, note that the optimal solution of the line-search step is in the interior of
the interval [0, γmax

t ]. Define xγ := z(t) + γdt. Then, because h(xγ) is convex in γ, we know
that minγ∈[0,γmax

t ] h(xγ) = minγ≥0 h(xγ) and thus minγ∈[0,γmax
t ] h(xγ) = h(z(t+1)) ≤ h(xγ)

for all γ ≥ 0. In particular, h(z(t+1)) ≤ h(xγdt ). Hence, we can use (19) to bound the progress

‡‡A drop step is when we take an away step with a maximal step size so that we drop a vertex from the current
active set.
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per iteration as follows:

w(z(t))− w(z(t+1)) = f(z(t))− f(z(t+1))

≥
〈
−∇h(z(t)), dt

〉2
2L‖dt‖2

(36)

≥
〈
−∇h(z(t)), dt

〉2
2LD2

(37)

≥
〈
−∇h(z(t)), dPW

t

〉2
8LD2

(38)

≥
ρF (S)

8LD2

〈
−∇h(z(t)), x∗ − z(t)

〉2
‖x∗ − z(t)‖2

(39)

≥
(ρF (S)

D

)2 µ

4L
w(z(t)) . (40)

We used the optimized smoothness inequality (19) in (36). The inequality in (38) uses our key
pairwise inequality (35). In (39), we used the fact that x∗, z(t) ∈ F (S) by construction since t is
not a rounding iteration and (drop) away steps can only take us to lower dimensional faces of F (S)
by Lemma 6, and thus we can apply Theorem 8 to go from (38) to (39). Finally, (40) follows from
the primal gap bound we get via strong convexity (21). This shows the rate stated in the theorem.

Case 2: We have a boundary case: γt = γmax
t . We further divide this case into two sub-cases:

(a) First assume that γt = γmax
t and we take a FW step, i.e. dt = v(t) − z(t) so that γmax

t = 1.
We can assume that the step size from smoothness γdt is not feasible, i.e. γdt > γmax

t
since otherwise we can use using same argument as above in Case 1 to again obtain a

(1 −
(ρF (S)

D

)2 µ
4L )-geometric rate of decrease. Now, observe that γdt =

〈−∇h(z(t)),dt〉
L‖dt‖2 >

γmax
t = 1 implies that

〈
−∇h(z(t)), dt

〉
≥ L‖dt‖22. Hence, using the fact that γdt > γmax

t =
1 in the smoothness inequality in (18), we have

h(z(t))− h(z(t+1)) ≥
〈
−∇h(z(t)), dt

〉
− L

2
‖dt‖22

≥
〈
−∇h(z(t)), dt

〉
2

(using γt > γmax
dt = 1)

≥ h(z(t))

2
(using Wolfe gap (23))

Hence, we get a geometric rate of decrease of 1/2.

(b) Finally, assume that γt = γmax
t and we take an away step, i.e. dt = z(t) − a(t). In this case

(for which we cannot show progress) we will show that these drop steps can happen at most
t/2 times up to iteration t, and hence the bound on the good-steps in the theorem statement.
Let Addt be the number of steps that added a vertex in the active set (only standard FW steps
can do this) and let Dropt be the number of drop steps upto iteration t. Then, we have that
|At| = |A0| + Addt −Dropt. Moreover, we have that Addt + Dropt ≤ t. We thus have
1 ≤ |At| ≤ |A0|+ t− 2Dropt, implying that Dropt ≤ t

2 .

Note that (i) ρB(f) ≤ ρF (S) for any chain S since F (S) ⊆ B(f); (ii) anytime we restart the
algorithm, we do so at a vertex of B(f) and thus the increase in the primal gap resulting from the
restart is bounded as h is finite over B(f). Thus, since Dropt ≤ t

2 , and the number of rounding steps
is at most n (as the length of any chain of tight sets at x∗ is at most n), we have that the number of

iterations to get an ε-accurate solution is O
(
nLµ

(
D

ρB(f)

)2

log 1
ε

)
in the worst case. This concludes

the proof.
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G Computations

We implemented all algorithms in Python 3.5+, utilizing numpy and scipy for some of our functions.
We used these packages from the Anaconda 4.7.12 distribution as well as Gurobi 9 [64] as a black
box solver for some of the oracles assumed in the paper. The first experiment was performed on a
16-core machine with Intel Core i7-6600U 2.6-GHz CPU and 256GB of main memory. The second
experiment was performed by reserving 5 GB of memory for each run of the experiment on a 24-core
Linux x86-64 machines§§.

First experiment: Tight cuts. We consider m = 500 random points y1, . . . , ym obtained by
perturbing a random y0 ∈ R100 (where y0 is itself sampled from a multivariate Gaussian distribution
with mean 100, standard deviation 100) using multivariate Gaussian noise with mean zero and
standard deviation ε = 1/50. We compute the Euclidean projections of y0, y1, . . . , ym (exactly) over
the permutahedron. The results are plotted in Figure 4-left. Let Si ⊆ 2E represent the chain of tight
sets for the projection of point yi, where E = {e1, . . . , e100} is the ground set. The fraction of tight
inequalities for each point yi that were already tight for some other previous point y0, . . . , yi−1. The
tight sets for the projection of yi that were also tight for a previous point in y1, . . . , yi−1 is then∣∣Si ∩ (⋃j∈[i−1] Sj

)∣∣. The green plot is a cumulative plot of the fraction of tight sets previously seen,
that is, it plots ∑

i∈[k]

∣∣Si ∩ (⋃j∈[i−1] Sj
)∣∣∑

i∈[k] |Si|
against k, the number of points projected so far.

Let ti be the number of tight sets in Si inferred by using Theorem 3 using the projections of
y1, . . . , yi−1; note that ti ≤ |Si ∩ (∪j∈[i−1]Sj)|. The blue line plots∑

i∈[k] ti∑
i∈[k] |Si|

against k. The plot lines themselves average over 500 independent runs of this experiment, while
the shaded region is a 15-85 percentile plot across these runs. Note that our theoretical results give
almost tight computational results, that is, we can recover most of the tight sets common between
close points using Theorem 3.

Second experiment: Online learning. Next, motivated by the trade-off in regret versus time for
online mirror descent (OMD) and online Frank-Wolfe (OFW) variants, we conduct an online convex
optimization experiment on the permutahedron (denoted by B(f)) with n = 50 elements. The loss
functions in each iteration are (noisy) linear, and we use (i) Online Frank-Wolfe (OFW) and (ii)
Online Mirror Descent (OMD) with the projection subproblem solved using Away-step Frank-Wolfe
(AFW) and its variants enhanced by our toolkit.

We consider a time horizon of T = 1000, and consider two parameters a, b. We consider a random
permutations σi (i ∈ [a]) close within a swap distance of b from each other. We then define loss
functions `(t)(x) =

〈
c(t), x

〉
for any x ∈ B(f), where c(t) is the click-through-rate observed when

x is played in the learning framework. We construct c(t) randomly as follows: (i) sample a vector
v ∼ [0, 1]n uniformly at random, (ii) select a random σi for i ∈ [a], and sort v for it to be consistent
with σi, that is, vσ−1

i (n) ≥ vσ−1
i (n−1) ≥ . . . ≥ vσ−1

i (1), and (iii) let c(t) = v/‖v‖1. This c(t) mimics
a random click-through-rate close to the random preferences (permutations) in [a]. We run our
experiment for two settings: (i) a = 1, and (ii) a = 6, b = 6. For our learning problem, we then run
Online Frank Wolfe (OFW) and Online Mirror Descent (OMD) variants with the projection solved
by using AFW and the toolkit proposed: (1) OMD-UAFW: OMD with projection using unoptimized
away-step Frank-Wolfe, (2) OMD-ASAFW: OMD with projection using AFW with reused active
sets, (3) OMD-TSAFW: OMD with projection using AFW with INFER, RESTRICT, and ROUNDING,
(4) OMD-A2FW OMD with adaptive AFW, (5) OMD-PAV: OMD with projection using pool adjacent
violators, and (6) OFW. We call the first four variants as OMD-AFW variants. In all the AFW variants,
we stop and output the solution when the FW gap gFW is at most ε = 10−3. The OFW variant we

§§Performed on the high-performance computing cluster of the Industrial and Systems Engineering department
at the Georgia Institute of Technology.
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Figure 5: 25-75% percentile plots of number of AFW iterations (cumulative) for OMD-AFW variants
over 20 runs for first loss setting (left) and second loss setting (right) for computations in section G

implemented is that of Hazan and Minasyan [7] developed in 2020, which is state-of-the-art and has
a regret rate of O(T 2/3) for smooth and convex loss functions.

As stated previously, we run the experiment 20 times each for (i) a = 1 and (ii) a = 6, b = 6. Since
the run time varied across all runs, we normalized the run time for OMD-UAFW as 1000 (other
variants being normalized) in each run to take an equally-weighted average of run times.

Figures 4-middle and 4-right show improvements in run time for OMD-AFW variants, and show
significant speed ups of the optimized OMD-AFW variants over OMD-UAFW. Each iteration of
OMD involves projecting a point on the permutahedron, and the cumulative run times for these
projections are plotted. We remark that OMD-PAV and OFW are much faster than the OMD-AFW
variants; however, OMD-PAV suffers from the limitation that it only applies to cardinality-based
submodular polytopes, while OFW has significantly higher regret.

The regret for all OMD variants (including OMD-PAV) was observed to be quite similar. Figure 5
shows the total number of iterations of the inner AFW loop for the four OMD-AFW variants plotted
cumulatively across the T = 1000 projections in the outer OMD loop. AFW for optimized variants
that reuse active sets finishes in much fewer AFW iterations over the unoptimized variant, which
contributes to a better running time and indicates that we are efficiently reusing information from
AFW iterates. These results are summarized in Table 4.

OMD-AFW Variants
UAFW ASAFW TSAFW A2FW OFW OMD-PAV

a = 1
Regret 1000 1000 1016 1012 520900 1000

Runtime 1000 962.3 7.372 1.306 0.03271 0.04222
AFW Iterates 1000 386.1 695.3 110.8 - -

a = 6, b = 6
Regret 1000 1000 1001 1002 10170 1000

Runtime 1000 1014 0.9600 0.7194 0.001852 0.002618
AFW Iterates 1000 990.5 82.23 69.54 - -

Table 4: A comparison of total runtime, regret, and numbers of AFW iterates for computations in
Section G averaged over 20 runs of the experiment. The corresponding values for OMD-UAFW are
normalized to 1000 and all numbers are reported to 4 significant digits.

H Additional computations

We detail some computations on submodular polytopes that are not cardinality-based. We conduct
an experiment similar to the online learning experiment in the main body of paper by replacing the
underlying submodular base polytope, as described below. We also change the stopping condition for
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OMD-AFW Variants
UAFW ASAFW TSAFW A2FW OFW

a = 1
Regret 1000 1000 724 723 19880

Runtime 1000 728.2 400.0 84.45 10.95
AFW Iterates 1000 204.5 935.6 147.5 -

a = 6, b = 6
Regret 1000 1000 921.1 921.2 6584

Runtime 1000 945.2 405.7 356.7 0.4924
AFW Iterates 1000 882.0 481.4 390.9 -

Table 5: A comparison of total runtime, regret, and numbers of AFW iterates for computations in
Section H averaged over 20 runs of the experiment. The corresponding values for OMD-UAFW are
normalized to 1000 and all numbers are reported to 4 significant digits.

Figure 6: 25-75% percentile plots of runtime for OMD-AFW variants over 20 runs for first loss
setting (left) and second loss setting (right) for computations in section H.

the AFW variants, we stop and output the solution when the FW gap gFW is lower than ε = 10−4, or
if the algorithm rounds the point to the exact solution.

We consider n = 50 elements in the ground set and build a submodular function f : 2n → R. For a
parameter p ∈ [0, 1], create a random bipartite graph G with bipartition (U, V ), where U = V = [n]
and each edge uv, u ∈ U, v ∈ V is present independently with probability p. For each T ⊆ U , f(T )
is the number of neighbors of T in V , that is, f(T ) = |{v ∈ V : (u, v) ∈ E(G) for some u ∈ T}|.
It can be shown that f is submodular and is not cardinality-based in general. We fix p = 0.2 in our
case.

The loss functions are generated in the same way as for the online learning setup, and likewise we
consider two setups: (i) a = 1 and (ii) a = 6, b = 6. We do not consider OMD-PAV variant in this
experiment because the PAV algorithm is restricted to cardinality-based submodular polytopes.

Figure 6 shows significant speed ups of the optimized OMD-AFW variants over OMD-UAFW for
a = 1 and for a = 6, b = 6. We remark that OFW is much faster than the OMD-AFW variants;
however, it has significantly higher regret (on average, 20 to 30 times as much as OMD-AFW variants
for a = 1 and 6 to 7 times as much as OMD-AFW variants for a = 6, b = 6). Figure 7 shows mild
improvements in regret for OMD-A2FW over OMD-UAFW. This improvement in regret arises from
our rounding procedure: AFW outputs only an approximate solution to the problem (depending on
the FW gap stopping threshold ε) but A2FWcan potentially round to the exact solution, resulting in
lower regret. These results are summarized in Table 5.
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Figure 7: 25-75% percentile plots of regret for OMD-AFW variants over 20 runs for first loss setting
(left) and second loss setting (right) for computations in section H.
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