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A EXTENDED RELATED WORK

A.1 ANALYZING DIFFUSION MODEL BEHAVIORS IN EACH TIMESTEP

In this section, we review works related to analyzing diffusion model behaviors in each timestep
but not covered in detail in Section 2.1. Deja et al. (Deja et al., 2022) explore denoising during
the backward diffusion process and observe that transition from denoising to generation exists in
the backward process. Go et al. (Go et al., 2023) investigate the affinity between denoising tasks,
showing that temporal proximal denoising tasks exhibit higher task affinity. Then, they also observe
that simultaneously learning all denoising tasks by one model suffers from negative transfer. They
can achieve better performance than standard diffusion training by alleviating negative transfer.
Lee et al. (Lee et al., 2023) analyze frequency characteristics according to timesteps and observe
that high-frequency components are lost as timesteps increase. From this observation, they propose a
multi-architecture multi-experts diffusion model, which utilizes multiple denoiser models specialized
in each timestep interval but utilizes a transformer-like model as the timestep increases. From
observations that smaller and larger models produce similar latent noise, Pan et al. (Pan et al., 2023)
propose T-Stitch, which leverages a pre-trained smaller model at the beginning of the backward
process to accelerate the sampling speed. Xu et al. (Xu et al., 2023) investigate the average trace-
of-covariance of training targets according to timesteps, showing that it peaks in the intermediate
timesteps, causing unstable training targets. For more stable training targets, they utilize weighted
conditional scores with a reference batch.

A.2 EASY-TO-HARD TRAINING STRATEGY

Progressive distillation (Salimans & Ho, 2022) focuses on reducing the number of sampling steps
by training the model to progressively skip more steps, while cascaded diffusion (Ho et al., 2022)
aims to improve sample quality by progressively increasing the image resolution during training.
Both methods concentrate on altering the model’s behavior or structure to tackle specific challenges,
such as efficiency or resolution enhancement. In contrast, our work identifies trends in task difficulty
across timestep-wise denoising tasks and leverages these findings to propose an easy-to-hard training
scheme. This training strategy directly addresses the order and structure of the learning process,
optimizing task sequencing to enhance performance. This distinction emphasizes that our approach
is fundamentally different from these methods, as it addresses a unique aspect of diffusion model
training.

B DETAILED EXPERIMENTAL SETUPS FOR OBSERVATION

In Section 4, we examined the difficulty of denoising tasks in terms of convergence with various
models {M}20i=1, which are trained within specific timesteps [ i−1

20 T, i
20T ] for DiT and SiT, and

[Φ−1( i−1
N ),Φ−1( i

N )] for EDM where Φ−1 is the inverse cumulative distribution function of the
Gaussian distribution. For the DiT architecture, we employed the DiT-B/2, whereas for EDM, we used
the DDPM++ architecture. Both DiT and EDM models were trained on the FFHQ dataset, with a batch
size of 256, for approximately 20,000 iterations and 4,000 kimg iterations (equivalent to processing 1
million images), respectively. This training was conducted until both loss and performance converged.
As illustrated in Fig. A, we additionally plotted the iterations of each timestep interval when their loss
values start to oscillate. We measured this by counting the number of times the loss value increased

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

after the step reached 100. As shown in the results, losses of all timestep intervals are stabilized
within 20K iterations, while the lower timesteps reach this point more slowly. This also suggests that
the convergence speed of lower timesteps tends to exhibit a slower regime. To examine specifically at
the observation of convergence, we also analyzed the convergence speed on the ImageNet dataset.
As shown in Fig. B, we obtained similar results as on the FFHQ dataset. Configuration of training
optimizers and learning rates are the same as setups in Section 6.
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Figure A: Converged points are plotted during training for each diffusion model Mi in SiT.
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Figure B: Loss convergence plotted during training for each diffusion model Mi in DiT on ImageNet
dataset.

To evaluate the performance of diffusion models through the FID score of the generated images,
performing a recursive denoising task from T to zero is necessary, complicating the assessment using
only Mi. Following (Go et al., 2023), we generated samples where Mi was specifically utilized for
denoising within its trained intervals. At the same time, the diffusion model is responsible for the
denoising tasks across the entire range of timesteps. For this evaluation, we sampled 10K images
using a DDPM sampler over 250 steps for DiT and SiT, and an Euler solver over 40 steps for the
other models.

C APPROXIMATION OF KL DIVERGENCE OF pt−1 AND pt.

Here, we supplement the approximation of KL Divergence of pt−1 and pt omitted in Section 4.2.To
explore the difficulties of denoising tasks from the distributional viewpoint, we analyze the KL
divergence of pt−1 and pt, DKL(pt−1||pt). However, due to the unknown explicit density form of
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p0, it is approximated through unbiased estimators as follows:

D̂KL (pt−1||pt) =
1

M

∑
i∈{1,2,··· ,M}

xi∼pt−1

log

(
pt−1(xi)

pt(xi)

)
, (1)

p̂t(xt) =
1

L

∑
j∈{1,2,··· ,L}

yj∼p0

p0t(xt|x0 = yj), (2)

where D̂KL and p̂t are unbiased estimators of DKL and pt, respectively, and we choose Monte-Carlo
estimators for them (Glasserman, 2004; McLeish, 2011).

We sampled 5,000 images to approximate the KL divergence, which is enough for Monte-Carlo
sampling and might be no changes for larger samples. Despite the large amount of samples, the
exploding appearance observed in Fig. 2 when t is close to zero is due to the characteristics of the data
distribution. The image data distribution has narrow support (roughly speaking, it is non-zero only
within a narrow range) (Ruderman & Bialek, 1993; Karras et al., 2024). As t increases, information
about the original data distribution gradually diminishes with the modes in the distribution of xt

vanishing towards zero.

Given this, when t is close to zero (i.e. when the distribution of xt is still analogous to the original data
distribution), the narrow support and the tendency to move towards zero give rise to a region where
pt−1 does not overlap with pt. Consequently, when calculating the KL divergence DKL(pt−1||pt) =
Ex∼pt−1 [log(

pt−1(x)
pt(x)

)], xt−1 potentially falls outside the support of pt, which leads to pt(xt−1) = 0

and numerical unstability. On the other hand, as t increases, the accumulated noise broadens the
support of x’s distribution, reducing the occurrence of zero values and stabilizing the numerical
estimation.

D ALGORITHM

Due to the limited space of the main manuscript, we hereby present the step-by-step process of
our method to supplement the details of our approach. The pacing function, which determines the
moments to transit between curriculum stages is described in Algorithm 1. By incorporating this
pacing function, the detailed procedure of our proposed curriculum learning method for training
diffusion is illustrated in Algorithm 2.

Algorithm 1 Pacing Function
Input: Current loss Lcur, Best loss Lbest, Current patience τcur, Maximum
patience τmax, Current curriculum index Icur

Output: Updated patience, Updated curriculum index

# Reset patience
if Lcur < Lbest then

return 0, Icur

else
# Proceed to next curriculum
if τcur + 1 > τmax then

return 0, Icur − 1
# Increase patience
else

return pcur + 1, Icur
end if

end if

Algorithm 2 Curriculum Learning
Input: Curriculum {Ci}N

i=1, Pacing function g, Maximum patience τmax,
Loss function f , Curriculum index Icur = N , Best loss Lbest = ∞, Model
Mθ

while Icur > 0 do
# Mini-batch sampling
X ∼ CIcur
# Calculate Loss
Lcur = f(Mθ(X))
# Update model
θ = θ - ∇θLcur
# Pacing function
τcur, Inext = g(Lcur, Lbest, τcur, τmax, Icur)

# Update curriculum
if Icur ̸= Inext then

Icur = Inext
Lbest = ∞

# Update best loss
else if Lcur < Lbest then

Lbest = Lcur
end if

end while

E DETAILS ON EXPERIMENTAL SETUPS

Evaluation metrics. To evaluate the performance of models, we utilized three metrics: FID (Heusel
et al., 2017), IS (Salimans et al., 2016), and Precision/Recall (Kynkäänniemi et al., 2019). Specifically,
we applied FID and IS to measure sample quality, while Precision is used to assess quality further

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and Recall was utilized to evaluate the diversity of the generated samples in ImageNet setup. In other
datasets, we employed FID to evaluate sample quality. Unless otherwise mentioned, we sampled 50K
samples for evaluation. In tasks involving conditional generation, including class-conditional image
generation (e.g. CIFAR-10, ImageNet) and text-to-image conversion (e.g. MS-COCO), we adapted
the classifier-free guidance (Ho & Salimans, 2022) with a guidance scale of 1.5.

Training details. For training diffusion models, we utilized the AdamW optimizer (Loshchilov
& Hutter, 2017) with a constant learning rate of 0.0001, and weight decay was not applied. The
exponential moving average (EMA) to the model’s weights was used to stabilize the training and
the decay ratio was set to 0.9999. The batch size was set to 256, and we augmented the training data
by a horizontal flip. While the diffusion timestep T was configured as 1,000 for all experiments,
we trained for 100K iterations for the FFHQ dataset (Karras et al., 2019), and 400K iterations for
the ImageNet dataset (Deng et al., 2009) and MS-COCO dataset (Lin et al., 2014). The number of
clusters N was 20 unless otherwise specified. The maximum patience τ was varied across model
sizes: it was set at 200 for DiT-S/2, DiT-B/2, and EDM, and 400 for DiT-L/2. EDM was trained using
fp16, while the other models were trained using fp32. We used 8 A100 GPUs for all experiments.
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Figure C: Qualitative comparison between vanilla, naive curriculum, and ours on the FFHQ dataset.
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Ostrich Clumber Arctic wolf Puffer American eagle Hummingbird Ridgeback

Figure D: Qualitative comparison between vanilla, naive curriculum, and ours on ImageNet dataset.

F QUALITATIVE RESULTS

In this section, we present qualitative comparisons between three methods: 1) Vanilla, 2) NaiveCL,
and 3) Ours, across the FFHQ, ImageNet, and MS-COCO datasets. All methods are evaluated using
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“A man is on a path
riding a horse.”

“Tower of a brick
building with a clock
on the front.”

“A dog leaps through
the air as it catches a
frisbee.”

“A person in white and
red snow suit skiing
on a slope.”

“A group of young
people playing a
game of soccer.”

“A young boy is smil-
ing and he has food
around him on a ta-
ble.”

“a small boy with a hat
is standing on a surf
board.”

Figure E: Qualitative comparison between vanilla, naive curriculum, and ours on MS-COCO dataset.

DiT-B models, and the final trained models generate all samples shown in the results. As shown in the
results in the following subsections, our approach can synthesize more accurate and realistic images
compared to Vanilla and NaiveCL.

F.1 QUALITATIVE EVALUATION ON THE FFHQ DATASET.

Figure C presents a qualitative analysis of the performance in unconditional facial image synthesis
among the vanilla, the naive curriculum approach, and our method. Our approach demonstrates
superior ability in generating realistic images.

F.2 QUALITATIVE ANALYSIS ON THE IMAGENET DATASET.

In the conditional image synthesis, we exhibit the outcomes generated by the vanilla, the naive
curriculum strategy, and our proposed method. Figure D clearly shows that our methodology surpasses
the competing approaches in terms of quality.

F.3 QUALITATIVE ASSESSMENT ON THE MS-COCO DATASET.

To further substantiate the effectiveness of our proposed technique, we conduct a qualitative com-
parison of the results in the text-to-image generation task among the vanilla, the naive curriculum
method, and our own approach, as depicted in Fig. E.

G FURTHER EXPERIMENTAL RESULTS

G.1 CONVERGENCE SPEED ACROSS MODEL SIZE

By leveraging the advantages of curriculum learning in diffusion training, our method offers faster
convergence than vanilla training. To further investigate this aspect, we measured FID-10K through
training iterations for DiT-S and DiT-L. Figure F describes the results, showing that our curriculum
approach achieves faster convergence in both models. These results also support the effectiveness of
our method.

G.2 ROBUSTNESS ON NOISE SCHEDULE

For a more comprehensive ablation study, we also trained the diffusion model with different
noise schedules. In contrast to cosine scheduling, the βt is set by uniformly dividing the inter-
val [0.0001, 0.02], and the Ci are obtained corresponding to SNR on a linear schedule. As shown in
Table. A, our approach improves the performance with cosine and linear noise schedulers.

5
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Figure F: We observed an increase in convergence speed across various model sizes when the
proposed curriculum learning approach was applied.

Table A: Ablation study on noise scheduler. Note that our approach improves performance consis-
tently across each scheduler.

Class-Conditional ImageNet 256×256.
Schedule Method FID↓ IS↑ Prec↑ Rec↑

cosine Vanilla 30.27 60.06 0.55 0.52
Ours 22.22 75.98 0.62 0.52

linear Vanilla 16.99 83.62 0.68 0.53
Ours 16.03 87.66 0.69 0.53

G.3 QUALITATIVE RESULTS FROM DIT-L/2 WITH 2M ITERATIONS

In Figures G-K, we present images generated by DiT-L using our curriculum training method for 2M
iterations. The results demonstrate that our method produces highly realistic images.
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Figure G: Uncurated 256×256 DiT-L/2 samples.
Classifier-free guidanzce scale = 2.0.
Class label = “golden retriever" (207)
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Figure H: Uncurated 256×256 DiT-L/2 samples.
Classifier-free guidance scale = 2.0.
Class label = “panda" (388)
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Figure I: Uncurated 256×256 DiT-L/2 samples.
Classifier-free guidance scale = 2.0.
Class label = “cliff drop-off" (972)
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Figure J: Uncurated 256×256 DiT-L/2 samples.
Classifier-free guidance scale = 2.0.
Class label = “lake shore" (975)
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Figure K: Uncurated 256×256 DiT-L/2 samples.
Classifier-free guidance scale = 2.0.
Class label = “lion" (291)
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H DISCUSSION ON SIMILARITY WITH THE PREVIOUS WORK

While both our work and (Go et al., 2023) explore the characteristics of denoising tasks in diffusion
models, the aspects of exploration in each work are substantially different. The notion of task affinity
introduced in (Fifty et al., 2021; Go et al., 2023) refers to how harmoniously the model can learn
multiple tasks together. Specifically, their work focuses on identifying and mitigating conflicts be-
tween tasks, emphasizing task interactions and transferability by analyzing task similarities (e.g.,
gradient similarity or alignment). In contrast, our work explicitly quantifies the relative difficulty of
individual denoising tasks across timesteps as a standalone property, independent of task interdepen-
dencies. The analysis of task difficulty in our work involves evaluating metrics such as loss behavior
or convergence rates, directly reflecting the complexity of solving each task at different timesteps.
Therefore, while (Go et al., 2023) addresses how tasks relate and interact during multi-task learning,
our focus lies in systematically characterizing the intrinsic difficulty of tasks across timesteps in
diffusion models.

I BROADER IMPACTS

Generative models, such as diffusion models, have the potential to significantly impact society,
particularly through DeepFake applications and the use of biased datasets. One primary concern is
the possibility for these models to amplify misinformation, which can erode trust in visual media.
Additionally, if these models are trained on biased or deliberately altered content, they may uninten-
tionally perpetuate and intensify existing social biases. This situation may result in the dissemination
of incorrect information and the manipulation of public opinion.

J LIMITATIONS

In this work, we demonstrated the varying difficulties of denoising tasks through empirical results on
various diffusion frameworks and proposed a curriculum learning approach that effectively enhances
diffusion model training. While we have shown the robustness of our method’s hyperparameters
in improving vanilla diffusion training, there is potential for further improvement. Specifically,
curriculum learning methods that utilize smaller hyperparameters and adjust dynamically based on
the model itself could yield better results. We acknowledge the validity of this direction and consider
it a promising avenue for future work.
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