
Societal Impact451

We do not anticipate immediate negative consequences from conducting this work because our452

experiments are based on simulation environments designed to conceptually evaluate the capabilities453

of reinforcement learning (RL) algorithms. Recent studies, however, demonstrate that large-scale454

RL when integrated with robotics can effectively work on real-world environments (Kalashnikov455

et al., 2021; Herzog et al., 2023). This makes it crucial to be aware of potential societal harms that456

RL agents could inadvertently cause. While this work does not aim to address these safety issues, our457

method might mitigate unintentional harm during the training process. For instance, it might prevent458

the agent from exhibiting potentially dangerous novelty-seeking behaviors, such as moving robot459

arms towards low-value, empty regions where a human researcher is likely to be situated.460

A Experimental Details461

Source code We provide the source code for reproducing our results in the supplementary material.462

Compute For MiniGrid experiments, we use a single NVIDIA TITAN Xp GPU and 8 CPU cores463

for each training run. It takes 15 minutes for training the agent for 1M environment steps. For464

DeepMind Control Suite and Meta-World experiments, we use a single NVIDIA 2080Ti GPU and 8465

CPU cores for each training run. It takes 36 minutes and 90 minutes for training the agent for 100K466

environment steps on DeepMind Control Suite and Meta-World benchmarks, respectively.467

A.1 Implementation Details468

Value normalization For normalizing value estimates to stabilize value-conditional state entropy469

estimation, we compute the mean and standard deviation using the samples within the mini-batch.470

We empirically find no significant difference to using the running estimate.471

Extrinsic critic function For training the extrinsic critic function described in Section 4.2, we472

introduce another set of critic and target critic functions based on the same hyperparameters used473

for the main critic the policy aims to maximize. Then we use the target critic for obtaining value474

estimates. We apply the stop gradient operation to inputs to disable the gradients from updating the475

extrinsic critic to update other components. For the policy, we use the same policy for training both476

main and extrinsic critic functions. We empirically find no need for training another policy solely for477

the extrinsic critic.478

A2C implementation details We use the official implementation5 of RE3 (Seo et al., 2021) and479

use the same set of hyperparameters unless otherwise specified. Following the setup of RE3, we use480

a fixed, randomly initialized encoder to extract state representations and use them for computing481

the intrinsic reward. We use the same hyperparameter of fixed intrinsic scale β = 0.005 and k = 5482

for both SE and VCSE following the original implementation. For RE3, we normalize the intrinsic483

reward with its standard deviation computed using the samples within the mini-batch, following the484

original implementation. But we do not normalize our VCSE intrinsic reward.485

DrQv2 implementation details We use the official implementation6 of DrQv2 (Yarats et al.,486

2021a) and use the same set of hyperparameters unless otherwise specified. For both SE and VCSE487

exploration, we find that using β = 0.1 achieves the overall best performance. We also use k = 12488

for both SE and VCSE. For computing the intrinsic reward, we follow the scheme of Laskin et al.489

(2021) that trains Intrinsic Curiosity Module (ICM; Pathak et al. 2017) upon the representations from490

a visual encoder and uses ICM features for measuring the distance between states. We note that we491

detach visual representations used for training ICM to isolate the effect of training additional modules492

on the evaluation. For both SE and VCSE exploration, we disable the noise scheduling scheme of493

DrQv2 that decays σ from 1 by following a pre-defined schedule provided by the authors. This is494

because we find that such a noise scheduling conflicts with the approaches that introduce additional495

intrinsic rewards. Thus we use the fixed noise of 0.2 for SE and VCSE exploration. For Meta-World496

5https://github.com/younggyoseo/RE3
6https://github.com/facebookresearch/drqv2
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Figure 9: Examples of tasks in our MiniGrid experiments: (a) LavaGapS7, (b) Empty-16×16, (c)
DoorKey-6×6, (d) DoorKey-8×8, (e) Unlock, and (f) SimpleCrossingS9N1.

Figure 10: Examples of tasks we used in our Meta-World experiments: (a) Door Open, (b) Drawer
Open, (c) Faucet Open, (d) Window Open, (e) Button Press, and (f) Faucet Close.

Figure 11: Examples of tasks we used in our DeepMind Control Suite experiments: (a) Hopper, (b)
Walker, (c) Cheetah, (d) Cartpole, (e) Pendulum

experiments, we also disable the scheduling for the DrQv2 baseline as we find it performs better. But497

we use the original scheduling for the DrQv2 baseline following the official implementation.498

Heatmap analysis details For experiments in Figure 8, we use the easy version of SimpleCross-499

ingS9N1 task from MiniGrid benchmark (Chevalier-Boisvert et al., 2018). Specifically, we disable500

the randomization of map configurations to make it possible to investigate the heatmap over a fixed501

map. For visualizing the heatmaps, we record x, y position of agents during the initial 100K steps. We502

train A2C agent with both SE and VCSE exploration as we specified in Section 5.1 and Appendix A.1503

without any specific modification for this experiment.504

A.2 Environment Details505

MiniGrid We conduct our experiments on six navigation tasks from MiniGrid benchmark506

(Chevalier-Boisvert et al., 2018): LavaGapS7, Empty-16×16, DoorKey-6×6, DoorKey-8×8, Unlock,507

and SimpleCrossingS9N1. We provide the visualization of the tasks in Figure 9. We use the original508

tasks without any modification for our experiments in Section 5.1.509

Meta-World We conduct our experiments on six manipulation tasks from Meta-World benchmark510

(Yu et al., 2020): Door Open, Drawer Open, Faucet Open, Window Open, Button Press, and Faucet511

Close. We provide the visualization of the tasks in Figure 10. We follow the setup of Seo et al.512

(2022a) that uses a fixed camera location for all tasks.513

DeepMind Control Suite We conduct our experiments on six locomotion tasks from DeepMind514

Control Suite benchmark (Tassa et al., 2020): Hopper Stand, Walker Walk Sparse, Walker Walk,515

Cheetah Run Sparse, Cartpole Swingup Sparse, and Pendulum Swingup. We use the sparse reward516

tasks introduced in Seyde et al. (2021), by following RE3. We provide the visualization of the tasks517

in Figure 10.518
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B Additional Experiments519

B.1 Experiments with Model-Based RL520

Setup As a model-based underlying RL algorithm, we consider Masked World Models (MWM;521

Seo et al. 2022a) that has shown to be able to solve more challenging, long-horizon tasks compared522

to DrQv2. We consider four tasks of various difficulties: Box Close, Handle Pull Side, Lever Pull,523

and Drawer Open. We use the official implementation7 of MWM (Seo et al., 2022a) and use the524

same set of hyperparameters unless otherwise specified. For both SE and VCSE exploration, we525

find that using β = 1 performs best. Following the idea of Seo et al. (2022b) that introduces an526

additional reward predictor for intrinsic reward in the world model of DreamerV2 (Hafner et al.,527

2021), we introduce the reward network that predicts our intrinsic reward rVCSEt . For computing the528

intrinsic reward, we also follow the idea of Seo et al. (2022b) that uses a random projection (Bingham529

& Mannila, 2001) to reduce the compute cost of measuring distances between states. Specifically,530

we project 2048-dimensional model states into 256-dimensional vectors with random projection.531

Because the original MWM implementation normalizes the extrinsic reward by its running estimate532

of mean to make its scale 1 throughout training, we find that also normalizing intrinsic rewards with533

their running estimates of mean stabilizes training. We use k = 12 for both SE and VCSE.534

Results Figure 12 shows that VCSE consistently accelerates and stabilizes the training of MWM535

agents on four visual manipulation tasks of different horizons and difficulties, which shows that the536

effectiveness of our method is consistent across diverse types of RL algorithms. On the other hand,537

we observe that SE could degrade the performance, similar to our observation from experiments538

with DrQv2 on Meta-World tasks (see Figure 6). This supports our claim that SE often encourages539

exploration to be biased towards low-value states especially when high-value states are narrowly-540

distributed, considering that manipulation tasks have a very narrow task-relevant state space.541
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Figure 12: Learning curves on six visual manipulation tasks from Meta-World (Yu et al., 2020) as
measured on the success rate. The solid line and shaded regions represent the interquartile mean and
standard deviation, respectively, across 16 runs.

B.2 Ablation Study542

In Figure 13, we provide the results on individual task used for reporting the aggregate performance543

that investigate the effect of value conditioning and batch size (see Figure 7b and Figure 7c).544
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(a) Effect of value conditioning
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(b) Effect of batch size

Figure 13: Learning curves on two visual locomotion control tasks from DeepMind Control Suite that
investigate the effect of (a) value conditioning and (b) batch size. The solid line and shaded regions
represent the interquartile mean and standard deviation, respectively, across eight runs.

7https://github.com/younggyoseo/MWM
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B.3 Experiments with Varying Intrinsic Reward Scale545

DrQv2+SE on walker walk with varying β We provide additional experimental results with546

varying β ∈ {0.1, 0.01, 0.001} on Walker Walk task where DrQv2+SE significantly struggles to547

improve the sample-efficiency of DrQv2. In Figure 14, we find that the performance of DrQv2+SE548

is consistently worse than the vanilla DrQv2 with different β values. This implies that adding SE549

intrinsic reward can be sometimes harmful for performance by making it difficult for the agent to550

exploit the task reward.551
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Figure 14: Learning curves as measured on the episode return. The solid line and shaded regions
represent the interquartile mean and standard deviation, respectively, across eight runs.

DrQv2+SE with decaying β We conduct additional experiments that compare DrQv2+VCSE with552

the state entropy baseline that uses decaying schedule for β, similarly to Seo et al. (2021) that uses553

β schedule for the intrinsic reward. In Figure 15, we find that such a schedule cannot significantly554

improve the performance of SE, except Hopper Stand where the performance is stabilized. Moreover,555

we find that the decaying schedule sometimes could degrade the performance, i.e., Walker Walk556

Sparse. We also note that designing such a decaying schedule is a tedious process that requires557

researchers to tune the performance, making it less desirable even if it works reasonably well. We558

indeed find that the performance becomes very sensitive to the magnitude of decaying schedule.8 On559

the other hand, DrQv2+VCSE exhibits consistent performance without the decaying schedule, which560

highlights the benefit of our approach that maximizes the value-conditional state entropy.561
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Figure 15: Learning curves on six visual locomotion control tasks from DeepMind Control Suite
(Tassa et al., 2020) as measured on the episode return. The solid line and shaded regions represent
the interquartile mean and standard deviation, respectively, across eight runs.

8Due to the unstable performance from introducing the decay schedule, we run experiments with multiple
decaying schedules and report the best performance for each task.
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C Experiments with Ground-Truth States562

C.1 MiniGrid Experiments563

To demonstrate that our method also works in fully-observable MiniGrid where we do not use564

state encoder for computing the intrinsic bonus, we provide additional experiments that use fully565

observable states instead of partially observable grid encoding (see Section 5.1). Specifically, we use566

a set of one-hot vectors that represents a current map as inputs to the agent, and use the location of567

agent as inputs for computing the intrinsic bonus. Figure 16 shows that VCSE consistently accelerates568

the training, which highlights the applicability of VCSE to diverse domains with different input types.569
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Figure 16: Learning curves on four navigation tasks from fully-observable MiniGrid (Chevalier-
Boisvert et al., 2018) as measured on the success rate. The solid line and shaded regions represent the
interquartile mean and standard deviation, respectively, across 16 runs.

C.2 DeepMind Control Suite Experiments570

We further report experimental results in state-based DeepMind Control Suite experiments where571

we do not use state encoder for computing the intrinsic bonus. To make the scale of state norms572

be consistent across diverse tasks with different state dimensions, we divide the state input with its573

state dimension before computing the intrinsic bonus. As our underlying RL algorithm, we used574

Soft Actor-Critic (SAC; Haarnoja et al. 2018). For SE and VCSE, we disabled automatic tuning575

hyperparameter α and used lower value of α = 0.001 in SAC, because we find that such an automatic576

tuning conflicts with introducing the intrinsic reward, similar to noise scheduling in DrQv2. Figure 17577

shows that VCSE consistently accelerates the training, which highlights the applicability of VCSE to578

diverse domains with different input types.579
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Figure 17: Learning curves on four locomotion tasks from state-based DeepMind Control Suite
(Tassa et al., 2020) as measured on the success rate. The solid line and shaded regions represent the
interquartile mean and standard deviation, respectively, across 16 runs.
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D Additional Illustrations580

We provide the additional illustration that helps understanding the procedure of estimating the581

conditional entropy with KSG estimator, which is explained in Section 3.2.582

Figure 18: Illustration of a procedure for computing ϵx(i) and nx(i) when using the KSG estimator
with k = 2. Given a centered point zi, we first find k-nearest neighbor state zkNN

i . Then ϵx(i) is
twice the distance from xi to xkNN

i and nx can be computed as 5 by counting all the points located
within (xi − ϵx(i)/2, xi + ϵx(i)/2). We note that ϵy(i) and ny(i) can be also similarly computed.
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