
A Algorithms432

Algorithm 1 demonstrates the D-ATACOM, and Algorithm 2 shows the adapted SAC update used433

in line 9.434

Algorithm 1 D-ATACOM with constraint learning

Initialize: FVF network parameters ϕ, number of steps N , threshold δ, cost budget C̄.
1: for 1 ¨ ¨ ¨N do
2: Construct CVaRFα pstq using µFθ pstq, ΣFθ pstq from Equation (7).
3: Draw action in safe action space ut and obtain the actual action at from Equation (3).
4: Observe st`1, rt, kt from the environment.
5: Save replay buffer pst, at, rt, kt, st`1q Ñ D and pst, kt, st`1q Ñ Df if kt ą 0.
6: If the episode terminates, update δ using Equation (8).
7: Sample a batch of transitions ps, a, r, k, s1

q from D Y Df .
8: Update ϕ using Equation (5), ϕ Ð ϕ´ αϕ∇ϕLF
9: Update value function and policy π with RL, the update with SAC is shown in Algorithm 2.

10: end for

Algorithm 2 SAC implementation for D-ATACOM

Initialize: Batch of transitions B “ ps, a, r, k, s1
q, policy parameters θ and Q-function parameters ψ1, ψ2.

1: Draw next action in safe action space u1 and obtain the actual next action a1 and B1
u from Equation (3).

2: Compute FVF adjusted log probability log p1
“ log πθpa1

|s1
q ´ log |B1

u|

3: Update Q-functions with the TD loss Lψ “ 1
|B|

pQψps, aq ´ r ´ γpQψps1, a1
q ` α log p1

qq
2.

4: Draw actions uθ and obtain aθ that are differentiable w.r.t. θ, obtain Bu from Equation (3).
5: Compute FVF adjusted log probability, log pθ “ log πθpa|sq ´ log |Bu|

6: Update policy with the gradient ´∇θ
1

|B|
pQψps, aθq ` α log pθq
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B Experiment Environments435

In this Section, we provide the full description of the environments used for the experiments. In all436

environments, the cost value is a continuous variable. A value greater than zero indicates how much437

the constraints are violated.438

B.1 Cartpole439

The cartpole environment, depicted in Figure 7a is a classic control problem with the goal of moving440

the pole tip to a desired position (green point) by controlling a cart. The pole is one unit in length441

and is initialized in an upright position on the cart. The cart can move on a rail 10 units long. The442

cart is initialized on the left side of the rail, and the goal is to move the cart towards the goal position443

of the pole tip on the right rail’s side while keeping the pole upright.444

The state space of the environment is s “ rx, sin θ, cos θ, 9x, 9θsT where x is the position of the cart,445

9x is the velocity of the cart, θ is the angle of the pole with the vertical axis, and 9θ is the angular446

velocity of the pole. The action space is a P r´1, 1s where the action is the force applied to the cart.447

The reward function given a goal position xG and pole tip position xT is defined as rpsq “ clipp1´448
}xG´xT }

4 , 0, 1q. The constraint function prevents the pole from deviating more than π from the449

vertical axis. Thus we define the cost function as cpsq “ max
`

θ
0.5π ´ 1, 0

˘

450

B.2 Navigation451

The Navigation task consists of two robots, one differential-driven TIAGo++ (white) that moves in452

a room while avoiding the Fetch robot (blue), as shown in Figure 7b. The Fetch robot constantly453

moves its robotic arm in a periodic motion, such that the end-effector draws a lemniscate into the air454

in front of the robot. Additionally, the Fetch robot constantly moves to a randomly assigned target455

position using a hand-crafted policy that ignores the TIAGo. The agent controls the TIAGo robot to456

reach the target position while avoiding the Fetch robot, which serves as a dynamic obstacle.457

The state space consists of the cartesian position and velocity of the two robots, the target position458

of the TIAGo, the previous action, and the cartesian position and velocity of Fetch’s end-effector.459

The action space is the linear velocity in the x-direction and angular velocity around the z-axis of460

the TIAGo robot. These are converted into the left and right wheel velocities.461

Given the distance to the goal dG, the current orientation θ and the goal orientation θG the reward is462

defined as:463

rpsq “ ´}dG} ´ sigmoid p30p}dG} ´ 0.2qq
θG ´ θ

π
´ 0.1}a}

The constraint is the smallest 2d cartesian distance between the TIAGo base and every joint of the464

Fetch Robot. Additionally, the constraint also prevents the TIAGo from hitting the surrounding465

walls. Given the TIAGos’ position pT and cartesian position of the ith Fetch joint piF the Fetch cost466

is cF psq “ maxip´p}pT ´piF }´ωqq where ω is a constant that accounts for the width of the robots.467

The wall cost is defined as cW psq “ maxip´pdiwall ´ ωqq where diwall is the distance to the ith wall.468

The step cost is cpsq “ maxpcF psq, cW psqq.469

(a) Cartpole Environment (b) Navigation Environment (c) Air Hockey Environment

Figure 7: The three Environments used for evaluation of all algorithms
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B.3 Planar Air Hockey470

In the Planar Air Hockey environment, the agent controls a 3-DoF robot arm with a mallet attached471

to the end-effector. The goal is to hit a puck into the opponent’s goal, located on the opposite side of472

the table, as shown in Figure 7c. The episode terminates when the puck enters the goal or hits one473

of the table’s walls.474

The state space consists of the robots’ joint positions, velocities, puck position, and velocity. The475

action space is the acceleration setpoint for each robot joint.476

The reward for non-absorbing states is the change of distance between the puck and the goal. In477

absorbing states the reward depends on the distance of the puck to the goal. Given the puck position478

rxt, ytsT at timestep t and the distance between puck and goal as dt, we define the reward as:479

rpstq “

$

’

’

’

’

’

&

’

’

’

’

’

%

50pdt´1 ´ dtq if not absorbing
ρp1.5 ´ 5 ¨ clipp|yt|, 0, 0.1qq if puck in goal
ρp1 ´ 2 ¨ clipp|yt| ´ 0.1, 0, 0.35qq if puck on backboard next to goal
ρp0.3 ´ 0.3 ¨ clipp1.43 ´ |xt|, 0, 1qq if puck on sidebars
0 otherwise

where ρ is a constant that scales the reward. The constraint prevents the mallet from touching480

the sides of the table and the robot from violating its joint position and joint velocity limits. The481

mallet cost is defined as cM psq “ maxip´diW ` ωq where diW is the distance to the ith wall and482

ω is a constant that accounts for the width of the mallet. Given the joint positions qi and the joint483

velocities 9qi the position cost is cP psq “ maxipqi ´qu,i,´qi `ql,iq and the velocity cost is cV psq “484

maxpt 9qi ´ 9qu,i,´ 9qi ` 9ql,iq. The total cost is cpsq “ maxpcP psq, cV psq, cM psq, 0q485
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C Implicit Quantile Network486

IQN is a parametric model representing the quantile function of the distribution, which takes a487

quantile value τ as input and outputs a threshold value z so that the probability of Z being less or488

equal to z is τ . Let ητϕpsq be the quantile function at τ P r0, 1s for the random feasibility value at489

state s. The TD error between two samples τ, τ 1 „ Upr0, 1sq for the transition ps, a, s1, r, kq is490

dτ,τ
1

ϕ “ k1psq ` γητ
1

ps1q ´ ητϕpsq

The IQN model can be optimized via the Huber quantile regression loss491

Lτ pdq “ |τ ´ Itdu|Lkpdq, where Lkpdq “

#

d2{2k, |d| ă k

|d| ´ k{2, otherwise
(9)

In Figure 8 we compare the Gaussian and IQN approaches for the navigation task. In this experi-492

ment, both algorithms use the same hyperparameters. The Gaussian approach slightly outperforms493

IQN in terms of performance and safety. We theorize that the source of the performance difference494

is the hyperparameters, which are tuned for the Gaussian assumption. The main difference in the495

constraint estimation is that the Gaussian approach predicts higher uncertainty leading to higher per-496

formance and safety in this environment. To achieve the same similar with IQN, the cost budget or497

accepted risk has to be decreased. We plan to further investigate the performance of IQN-ATACOM498

in future work, especially in environments providing only sparse cost feedback.499
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Figure 8: Comparison between the Gaussian distribution assumption and the direct CDF estimation
for the navigation task. Both experiments use the same hyperparameters.
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D Hyperparameter tuning500

In this section, we report the parameter tuning for all the baselines in all tasks. In general, we501

test all the methods with different learning rates, cost budgets and safety parameters to ensure the502

performance of the baseline is optimal. We report all the hyperparameter configurations we tried503

and indicate which configuration is used for the main evaluation.504

Every algorithm is first evaluated with the learning rates of 1e´4, 5e´4 and 1e´3. To keep the505

computation reasonable, we use the same learning rate for the actor, the critic, the constraints, and506

the learning rates for the Lagrangian multiplier that are updated every step. We report the results of507

these experiments for each task in the following sections.508

As a second step, we experimented with different cost budgets to get the best trade-off between509

safety and performance. Our goal is to get the least constraint violations possible while maintaining510

reasonable behavior. As we show in Section E.1, setting the cost budget too low can have an impact511

on the performance with no safety benefit.512

Lastly, we tuned the cost-dampening parameters of LagSAC and WCSAC using the same principle513

we used for the cost budget.514

D.1 CartPole515

Figure 9 shows the results of the learning rate tuning for the CartPole task. We can see that RCPO516

and LagSAC have a learning rate that achieves the best performance. For PPOLag and WCSAC, the517

differences are more nuanced. Table 1 shows all the parameters we tried for the Cartpole task. The518

resulting best parameters used for the main evaluation can be found in Table 2.519

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint t1e´3, 5e´4, 1e´4u

cost budget 5 5 {0.1, 5, 25, 40}
cost dampening - - {1, 10} -
learning rate lagrangien multipliers 0.035 0.035 t1e´4, 5e´4, 1e´4u

accepted risk - - - {0.1, 0.5, 0.9}
Default parameter
epochs 100 100 100 100 100
steps per epoch 20000 20000 10000 10000 10000
steps per fit 20000 20000 1 1 1
episodes per test - - 25 25 25
network size [128 128]
batch size 128 64 64 64 64
initial replay size - - 2000 2000 2000
max replay size 200000 200000 200000 200000 200000
soft update coefficient - - 1e´3 1e´3 1e´3

warm-up transitions - - 2000 2000 2000
target kl 0.01 0.02 - - -
update iterations 10 40 - - -

Table 1: Training Parameters for the CartPole task
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RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint 5e´4 1e´4 5e´4 5e´4 5e´4

cost budget 5 5 5 5 40
cost dampening - - 1 1 -
learning rate lagrangian multipliers 0.035 0.035 5e´4 5e´4 5e´4

accepted risk - - - 0.9 0.9
Table 2: Result of hyperparameter tuning for the CartPole task
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Figure 9: Learning rate ablation study for the Cartpole task. For each experiment we run 10 seeds
with all learning rates of the algorithm set to the respective value.
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D.2 Navigation520

Figure 10 shows the results of the learning rate tuning for the navigation task. We can see WCSAC521

is the only algorithm where the learning rate has a significant impact on the performance. Table 3522

shows all the parameters we tested for the navigation task. The resulting best parameters used for523

the main evaluation can be found in Table 4.524

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint t1e´3, 5e´4, 1e´4u

cost budget 0 0 {0, 1}
cost dampening - - {1, 10} -
learning rate lagrangian multipliers 0.035 0.035 t1e´4, 5e´4, 1e´4u

accepted risk - - - {0.1, 0.5, 0.9}
Default parameter
epochs 100 100 100 100 100
steps per epoch 20000 20000 10000 10000 10000
steps per fit 20000 20000 1 1 1
episodes per test - - 25 25 25
network size [128 128]
batch size 128 64 64 64 64
initial replay size - - 2000 2000 2000
max replay size 200000 200000 200000 200000 200000
soft update coefficient - - 1e´3 1e´3 1e´3

warm-up transitions - - 2000 2000 2000
target kl 0.01 0.02 - - -
update iterations 10 40 - - -

Table 3: Training Parameters for the navigation task

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint 1e´4 1e´4 1e´4 1e´4 1e´4

cost budget 0 0 0 0 0
cost dampening - - 1 1 -
learning rate lagrangian multipliers 0.035 0.035 1e´4 1e´4 1e´4

accepted risk - - - 0.9 0.5
Table 4: Result of hyperparameter tuning for the navigation task
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Figure 10: Learning rate ablation study for the Navigation task. For each experiment, we run 10
seeds with all learning rates of the algorithm set to the respective value.
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D.3 Air Hockey525

Figure 11 shows the results of the learning rate tuning for the air hockey task. We can see that RCPO526

and PPOLag learn safer behaviors compared to LagSAC and WCSAC. However, their discounted527

return is lower, and they need twice as many steps. Table 5 shows all the parameters we tested for528

the air hockey task. The resulting parameters used for the main evaluation can be found in Table 6.529

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint t1e´3, 5e´4, 1e´4u

cost budget 0 0 {0, 1}
cost dampening - - {1, 10} -
learning rate lagrangian multipliers 0.035 0.035 t1e´4, 5e´4, 1e´4u

accepted risk - - - {0.1, 0.5, 0.9}
Default parameter
epochs 100 100 100 100 100
steps per epoch 20000 20000 10000 10000 10000
steps per fit 20000 20000 1 1 1
episodes per test - - 25 25 25
network size [128 128]
batch size 128 64 64 64 64
initial replay size - - 2000 2000 2000
max replay size 200000 200000 200000 200000 200000
soft update coefficient - - 1e´3 1e´3 1e´3

warm-up transitions - - 2000 2000 2000
target kl 0.01 0.02 - - -
update iterations 10 40 - - -

Table 5: Training Parameters for the air hockey task

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint 5e´4 1e´3 5e´4 5e´4 5e´4

cost budget 0 0 0 0 1
cost dampening - - 1 1 -
learning rate lagrangian multipliers 0.035 0.035 5e´4 5e´4 5e´4

accepted risk - - - 0.9 0.9
Table 6: Result of hyperparameter tuning for the air hockey task
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Figure 11: Learning rate ablation study for the Air Hockey task. For each experiment, we run 10
seeds with all learning rates of the algorithm set to the respective value.
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E Additional Experiments530

E.1 CartPole with different Cost Budget531

In this experiment, we will compare the impact of the cost budget parameter on D-ATACOM and532

WCSAC. We chose the CartPole task for this comparison because both algorithms do not learn a533

completely safe policy. Figure 12 shows the performance of D-ATACOM and WCSAC with differ-534

ent cost budgets. We can observe that the performance of D-ATACOM is more sensitive to the cost535

budget parameter compared to WCSAC. When the policy cannot achieve the given cost budget the536

performance of D-ATACOM degrades significantly. This performance drop occurs because the delta537

eventually will converge towards zero, which results in a very conservative policy. The behavior for538

D-ATACOM with the cost budgets of 0.1 and 5 is balancing to the pole in its initial position because539

the policy is too conservative to move towards the goal, as this will lead to constraint violations.540

On the other hand, WCSAC is more robust w.r.t. the cost budget parameter. An unreasonable cost541

budget will increase the Lagrange multiplier, giving more weight to the constraint. The difference542

is that the Lagrange multiplier does not set an explicit limit to the constraint like the delta does in543

D-ATACOM. Instead, WCSAC gives more weight to the constraint violations in the optimization544

problem, which has less impact on policy performance. Is worth noting that, depending on the545

application, one of the two behaviors would be preferable. In safety-critical applications, having546

an algorithm that strongly enforces the constraint violation, independently of the performance, is547

preferable. Instead, when partial constraint satisfaction is enough, it may be better to choose a548

lagrangian-based algorithm.549
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Figure 12: Impact of the cost budget parameter on D-ATACOM and WCSAC performance in the
CartPole task
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E.2 Experiment with different Accepted Risk550

In the distributional setting, the parameter accepted risk determines how much of the tail of the551

distribution we are willing to violate, i.e., how much risk we want to take. However, this is not the552

only parameter that influences the safety of a policy. Usually, there is another parameter that is tuned553

with a given cost budget that also influences how safe the behavior is. For WCSAC this parameter is554

the Lagrange multiplier beta, and for D-ATACOM it is the learned δ. To show the complete impact555

of the accepted risk, we fix δ to a constant value such that it cannot compensate for the difference in556

the accepted risk. Figure 13 shows the performance of D-ATACOM with a fixed delta and different557

levels of accepted risk in the Navigation task. Clearly, a lower accepted risk leads to safer behavior.558

The impact of the accepted risk on the safety shrinks for D-ATACOM when the delta is learned.559

Delta can compensate for a high accepted risk, resulting in the same safe policy as a lower accepted560

risk would produce. The accepted risk has an impact in this setting toward the beginning of the561

training when delta is not yet converged. Thus accepted risk determines how risky the exploration562

at the beginning of the training will be. Figure 14 shows the impact of different accepted risk563

settings on the air hockey task. The lower accepted risk explores slower, thus the discounted return564

converges slower. The maximum violation and sum of cost are comparable for all accepted risk565

settings because, in the air hockey task, the constraint does not majorly affect the optimal policy.566
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Figure 13: Impact of accepted risk on performance in the Navigation task with a fixed delta. The
plots are smoothed via the exponential moving average with 0.9 weight
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Figure 14: Impact of accepted risk on performance the air hockey task
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E.3 Analysis of Air Hockey567

In the air hockey task, D-ATACOM cannot reach the same discounted return as LagSAC and WC-568

SAC. We investigate the final performance of the policies to understand the differences that lead to569

the performance gap. As D-ATACOM results in a safer policy, we theorize that performance is lost570

when the puck is initialized too close to the edge of the table. To test this hypothesis, we evaluate571

the performance of the final policies with an adjusted region for the initial puck position, that omits572

these critical positions. Figure 15 shows the performance for the original and adjusted regions and573

the difference between them.574

For the original region D-ATACOM has significant outliers in the discounted return compared to575

WCSAC and LagSAC. However, LagSAC and WCSAC have more outliers in the maximum vio-576

lation and sum of cost. Thus, WCSAC and LagSAC sacrifice safety to gain a stable performance.577

The safe exploration of D-ATACOM results in the opposite behavior, where the policy will sacrifice578

performance to ensure safety.579

When we evaluate the performance with the adjusted region, we can observe that the discounted580

return of D-ATACOM increases more compared to WCSAC and LagSAC. Additionally, the decrease581

in maximum violation and sum of cost is more significant for LagSAC and WCSAC. This result582

confirms our hypothesis that D-ATACOM does not properly hit the puck when it is too close to the583

edge of the table because it is not possible to do so safely. WCSAC and LagSAC learn to hit the584

puck in these critical positions, but this comes at the cost of safety.585

Discounted Return Maximum Violation Sum of Cost
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Figure 15: Performance of the final policy from D-ATACOM, WCSAC, and LagSAC in the air
hockey task. The performance is evaluated with the original and an adjusted region for the initial
puck position.
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