A Compiling Procedure

MTS-Compiler takes as inputs a user-specified backbone model in the format of prototxt and a task list, and
then generates a multi-task supermodel represented as a graph of VCNs. Algorithm 1 elaborates the compiling
procedure. The backbone is first parsed into a list of operators ops (line 4). Then the compiler will iterate over
ops to initialize the corresponding VCNs (line 5-7). The final multi-task supermodel mtSuper is a list of VCNs.

Algorithm 1 Compiling Procedure

1: Input: backbone: a backbone model in prototxt format; tasks: the IDs of tasks to learn.
2: Output: mtSuper: a multi-task supermodel
3: mtSuper =[]

4: ops = parse_prototxt(backbone)
5: for op in ops do
6.
-
8

mtSuper.append(VCN(op, tasks))
: end for

9: Class VCN:

10: function init(op, tasks)

11: self.op=op

12: self.parents =[]

13: for pin op.parentOps do

14: sel f.parents.append(getVCN(p))

15: end for

16: for tin tasks do

17: sel f.sp' = op.deepcopy()

18: sel f.sk! = SkipConnection()

19: sel f. P! = Gumbel-Softmax([0., 0., 0.])
20: end for

21: end function

B Hyper-parameter Settings

Table 5 summarizes the hyper-parameters used in training. For CityScapes and NYUv2, AutoMTL spends
10,000 iterations on pre-training the supermodel (pre-train), then 20,000 iterations for training policy and
supermodel jointly (policy-train), and finally 30,000 iterations for training the identified multi-task model
(post-train). As for Tiny-Taskonomy, the three stages need 20,000, 30,000, 50,000 iterations respectively to
converge. The hyper-parameters are chosen by empirical experience in AdaShare [44] and manual search during
our experiments.

Table 5: Hyper-parameters for training CityScapes, NYUv2, and Tiny-Taskonomy.

Dataset |weight Ir policy Ir weight Ir decay|Ascg Asn Adepth Akp Aedge| Areg
CityScapes 0.001 0.01 0.5/4,000 iters | 1 - 1 - - 10.0005
NYUv2 0.001 0.01 0.5/4,000iters | 5 20 5 - - 10.001
Tiny-Taskonomy| 0.0001 0.01 0.3/10,000iters| 1 3 2 7 7]0.0005

C Full Comparison of All Metrics on NYUv2 and Taskonomy
The full comparison of all metrics on NYUv2 and Taskonomy are summarized in Table 6 and 7. On NYUv2,

AutoMTL could achieve outstanding performance on 7 out of 12 metrics, while on Taskonomy, AutoMTL
outperforms all the baselines on almost all the 5 metrics.

D Ablation Studies on NYUv2

The ablation studies are also conducted on NYUv2. The same phenomenon as Section 4.2 Ablation Studies
in the main paper can be observed in Figure 4. In short, both the architecture search process and the proposed
policy regularization term are indispensable to obtain a feature-sharing pattern with high task performance.

13

Table 6: Quantitative results on NYUv2. (Abs. Prf.)

Semantic Seg. Surface Normal Prediction Depth Estimation

Model |# Params (M) | mioU 1 Pixel Error | A, within T Error | &, within
Acc. T[Mean Median|11.25° 22.5° 30° [Abs. Rel.|1.25 1.25% 1.25°
Single-Task 63.855 265 582|177 163 | 294 723 87.3]0.62 0.24]|57.8 85.8 96.0
Multi-Task 21.285 222 544|172 158 | 322 70.5 84.8/0.59 0.22|60.9 87.7 96.7
Cross-Stitch 63.855 254 57.6 |17.2 140 | 41.4 67.7 80.4/0.58 0.23|61.4 88.4 95.5
Sluice 63.855 238 569 |17.2 144 | 389 69.0 81.4/0.58 0.24|61.9 83.1 96.3
NDDR-CNN 67.047 21.6 539|171 145 | 374 709 83.1/0.66 0.26(55.7 83.7 94.8
MTAN 66.217 260 572|172 139 | 43.7 705 81.9|0.57 0.25(62.7 87.7 95.9
DEN 23.838 239 549|171 148 | 36.0 70.6 83.4/0.97 0.31|22.8 62.4 83.2
AdaShare 21.285 244 57.8 |17.7 13.8 | 423 68.9 80.5/0.59 0.20(61.3 88.5 96.5
AutoMTL | 35.056 | 26.6 582|173 144 | 39.1 70.7 83.1/0.54 0.22]65.1 89.2 96.9

Table 7: Quantitative results on Taskonomy. (Abs. Prf.)

Models |# Params (M) ¢|Semantic Seg. | Surface Normal 1 Depth Est. | Keypoint Det. | Edge Det. |

Single-Task 106.424 0.575 0.807 0.022 0.197 0.212
Multi-Task 21.285 0.596 0.796 0.023 0.197 0.203
Cross-Stitch 106.424 0.570 0.779 0.022 0.199 0.217
Sluice 106.424 0.596 0.795 0.024 0.196 0.207
NDDR-CNN 115.151 0.599 0.800 0.023 0.196 0.203
MTAN 95.994 0.621 0.787 0.023 0.197 0.206
DEN 23.838 0.737 0.786 0.027 0.192 0.203
AdaShare 21.285 0.562 0.802 0.023 0.191 0.200
Learn to Branch 30.650 0.521 0.850 0.023 0.202 0.217
AutoMTL | 53.106 | 0.558 0.873 0.022 0.191 0.197

E Ablation Study on the Training Pipeline

We also conducted additional ablation study on the proposed three-stage training pipeline. Specifically, the
necessity of the policy-train stage is verified in Section 4.2 already, so we focus on the pre-train and the post-train
stages in this section.

The quantitative results on CityScapes with and without the pre-train stage are shown in Table 8. The results
are collected using the same hyper-parameter setting reported in the paper. We can see that AutoMTL with
pre-training can obtain higher task performance than the model without pre-training. This observation echoes
existing work in NAS [54], which also suggests warming up the supermodel first and then conducting searching.
Both ablation studies in [54] and our empirical study demonstrate that such a pre-train stage produces a
better initialization for the parameters of the supermodel and eventually results in a more accurate multi-task
architecture with a similar amount of parameters.

The post-train stage can either use fine-tuning or training-from-scratch. Table 9 compares the task performance
of the two options on the identical sampled multi-task architecture under the same hyper-parameter setting. The
results show that re-training the identified multi-task model from scratch would produce higher task performance,
which suggests retraining as a better post-train strategy. The observation is consistent with that of the well-known
differentiable NAS method DARTS [30], which has become a common practice in recent years [49, 54, 53].
Note that in our paper, we also retrain all baselines from scratch for a fair comparison.

F Policy Visualizations on NYUv2 and Taskonomy

Figure 5 visualizes the learned policy distribution on NYUv2. It can be seen that for top layers near the output,
the semantic segmentation and the depth estimation tend to have their own computation operators instead of
sharing with other tasks. This trend leads that the two tasks may suffer less from the negative interference
between tasks, which becomes a possible explanation of why the model searched by AutoMTL can have better
task performance on them than existing methods as analyzed in Section 6.2 in the main paper.

14

T Th — Median
| e e | T Mean
Dj:l E]:l 1 Random
CTh| A o fH T AutoMTLW/0 £,
T T T T T T T . 1 AutomTLw/ Lyeg
22 23 24 25 26 54 56 58
mloU T Pixel Acc. T
I+ HE - {HIH o [[H I+
o HIEH U] HE H
HIH— HIEH HT} o [H —H
17.417.617.818.018.2 14.5 15.0 15.5 16.0 16.5 25 30 35 69 70 71 81 82 83
Error Mean | Error Median | heta<11251 heta<2251 heta<30 1
—i | - —— —TH
o - IHg] o [o {H HiH
oﬂ-l |I| ° ||o |.||o 10
0.6 0.7 0.8 0.25 0.30 0.35 50 55 60 65 80 85 90 90 92 94 96
Abs. Rel. <1251 6<1.25%1 6<1.2531

Figure 4: Ablation study on NYUv2. Distributions of different metrics for three groups of multi-task
models are exhibited, including models generated from Random policies or those sampled from the
trained policy with or without the policy regularization (AutoMTL w/o L., and AutoMTL w/ L,¢4).

Table 8: Ablation study about the pre-train stage on CityScapes.

| #Params] | Semantic Seg. Depth Estimation |
Model Pixel Error | 0, within T At T
‘Abs' (M) Rel. ()| mloU T 5 o 4| A0 VA Rel 125 1.257 1257 12 T‘
Single-Task | 42569 - | 365 738 | - [0.026038]57.5 769 87.0| - | -
AutoMTL w/o pre-train| 28.878 -32.1 41.1 745 | +6.8 (0.020 0.41]|65.7 82.7 90.6 | +8.2 | +7.5
AutoMTL w/ pre-train | 30.096 -29.3 428 74.8 | +9.3 (0.018 0.33|70.0 86.6 93.4 |(+17.1(+13.2

Figure 6 visualizes the learned policy distribution on Taskonomy. By comparing the brightness of the three
branches in each layer (brighter means higher probability to be chosen), it can be found that the brightness
differences between the three branches are more salient in layer No. 0~10 and No. 30~35, which indicates
that tasks would be more likely to have branch preferences in the top and bottom layers. While for intermediate
layers (layer No. 18~28), the chance of each branch being selected is basically equal. This phenomenon is
consistent with traditional multi-task model design principles, which pay more attention to top and bottom layers
to decide whether they should be shared or not.

G Task Correlation

We use cosine similarity between task-specific policies to quantify task correlations. Figure 7 illustrates the task
correlations in Taskonomy (the darker the higher correlation) and we can make the following observations. (a)
Semantic segmentation has a relatively weak correlation with depth estimation compared to other tasks. (b)
Surface normal prediction has good correlations with all the other tasks. (c) Depth estimation has low correlations
with keypoint and edge detection. (d) Keypoint detection has a strong correlation with edge detection.

H Extension to other Architectures

The users are able to feed any convolution-based model into the proposed MTS-Compiler. We try to demonstrate
the superiority of this function by quantifying the manual efforts of using AutoMTL or AdaShare [44] when users
switch to different backbones. Specifically, we invited 7 graduate students who are proficient in PyTorch and
Machine Learning to convert the backbone model from Deeplab-ResNet34 to MobileNetV2 in both AutoMTL
and AdaShare and then record their working time. When using AutoMTL, they firstly spent around 20 minutes
reading through our document. After that, all they need to do is to download a MobileNetV2 prototxt from the
Internet and use our MTS-Compiler and trainer tools directly. On the other hand, since the public implementation
of AdaShare is based on Deeplab-ResNet34, our participants had to re-implement MobileNetV2 as well as

15

Table 9: Ablation study about the post-train stage on CityScapes.

| #Params| | Semantic Seg. Depth Estimation |
Model Pixel Error | 4, within T At T
‘Abs' (M) Rel. ()| mloU T\ "4 1A% T aps Rel (125 1.257 1.257| 12 T‘
Single-Task | 42569 - | 365 738 | - [0.026038]57.5 769 870| - | -
post-train w/ fine-tune| 30.096 -29.3 41.8 74.6 | +7.8 |0.019 0.38|68.1 84.8 92.2 |+12.3|+10.1
post-train w/ retrain | 30.096 -29.3 428 74.8 | +9.3 [0.018 0.35(69.7 85.7 92.9 |+15.6|+12.5

the embedded policy from scratch to fit into the AdaShare training framework. According to the feedback, it
generally took 20 ~ 40 hours to complete coding and debugging.

We also conduct experiments on CityScapes with two other typical backbone models MobileNetV2 [40] and
MNasNet [46]. Table 10 and 11 report the task performance when constructing multi-task models on them.
AutoMTL always could search out a better multi-task architecture when compared to the vanilla multi-task

model.

Table 10: Quantitative results with MobileNetV2 on CityScapes.

Params Semantic Seg. Depth Estimation
Model Pixel Error | 0, within T At
@) |mIeUT pce, 4| A T Abs. Rt 125 1257 .57 2 T
Single-Task - 259 635 - 10.043 0.53(32.1 71.1 86.5| - -
Multi-Task | -50.0 263 63.4 | +0.7 |0.042 0.48(33.6 66.5 829 | +1.2 [+0.9
AdaShare | -50.0 26.7 612 | -0.3 |0.032 0.46|42.1 71.6 84.3 |+13.6(+6.7
AutoMTL | -33.5 258 63.7 | +0.0 |0.035 0.47|44.4 74.8 87.3 |+149|+7.4
Table 11: Quantitative results with MNasNet on CityScapes.
" Paramsl Semantic Seg. Depth Estimation |
Model Pixel Error | 0, within At
() L mIoUT pce. 4|2 T Aps. Rel[125 1257 1.05°] T‘
Single-Task - 255 63.6 - 10.040 0.49(36.7 73.3 87.3 - -
Multi-Task | -50.0 | 25.1 63.5 | -0.9 |0.040 0.48/|35.9 67.8 84.2| -2.2 |-1.6
AutoMTL | -359 | 25.5 63.7 | +0.1 |0.028 0.43|53.7 77.1 87.8 |+18.9|+9.5

16

=
[
Uu’ shared
‘2 specific
o kil
= skip
a 15 20
Layer No.
k-]
2 shared
T specific
g skip
=z 15 20
Layer No.
:"j shared L 0.75
£ specific 0.50
% skip
[a]
15 20
Layer No.
Figure 5: Learned policy distributions for the three tasks in NYUv2.
o
@
0
o
=]
c
©
£
@
wv
Layer No.
k]
<
& F
©
£ i .
S
=
Layer No.
:"j shared l
£ specific
% skip
2 .
Layer No.
ey
[
O shared g
=
.g specific
S skip .
<
Layer No.
5 shared
Q o
o specific
o .
- skip
w

15
Layer No.

Figure 6: Learned policy distributions for the five tasks in Taskonomy.
high

Seg

SN

Depth

Keypoint

Edge

low

=
(%]

Seg
Depth
Edge

Keypoint

Figure 7: Task correlations in Taskonomy.

17

