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Abstract Standard machine learning (ML) problems are formulated on data converted into a suitable 5

tensor representation. However, there are data sources, for example in cybersecurity, that 6

are naturally represented in a unifying hierarchical structure, such as XML, JSON, and 7

Protocol Buffers. Converting this data to a tensor representation is usually done by manual 8

feature engineering, which is laborious, lossy, and prone to bias originating from the human 9

inability to correctly judge the importance of particular features. JsonGrinder.jl is a 10

library automating various ML tasks on these difficult sources. Starting with an arbitrary 11

set of JSON samples, it automatically creates a differentiable ML model (called HMILnet ), 12

which embeds raw JSON samples into a fixed-size tensor representation. This embedding 13

network can be naturally extended by an arbitrary ML model expecting tensor inputs in 14

order to perform classification, regression, or clustering. 15

1 Motivation 16

{ "mac": "00:04:4b:a9:c1:f3",
"ip": "192.168.1.122",
"services": [{ "protocol": "udp", "port": 5353 },

{ "protocol": "tcp", "port": 6466 }],
"upnp": [{ "model_name": "AirReceiver",

"manufacturer": "SoftMedia Inc.",
"model_description": "AirReceiver - Media Renderer",
"services": ["urn:upnp-org:serviceId:AVTransport",

"urn:upnp-org:serviceId:RenderingControl"]},
{ "model_name": "SHIELD Android TV",

"manufacturer": "NVIDIA",
"services": []}],

"mdns_services": ["_airplay._tcp.local.",
"_nv_shield_remote._tcp.local."]}

Figure 1: A part of JSON sample from the Device ID chal-

lenge (CSP, 2019).

The last decade has witnessed a 17

departure from feature engineering to 18

end-to-end systems taking raw data 19

as an input. It substantially reduced 20

the human effort and increased per- 21

formance for example in image recog- 22

nition (Krizhevsky et al., 2017), natu- 23

ral language processing (Devlin et al., 24

2019), or game-playing tasks (Silver 25

et al., 2017). There is a plethora of 26

algorithms (and libraries) for creat- 27

ing classifiers, regressors, and other 28

models when thr raw input is a 29

fixed-dimensional tensor (images), se- 30

quences (text) or general graphs. In 31

contrast, a lot of data used in the en- 32

terprise sector (e.g., data exchanged by web services) are stored in a hierarchically structured 33

serialization formats like JSON, XML, Protocol Buffer (Varda, 2008), or Message Pack (Furuhashi, 34

2010). Its structure resembles a tree with leaves being strings, numbers, or other primitive types; 35

and internal nodes forming either arbitrarily long lists of subtrees (e.g. services in Fig. 1) or 36

possibly incomplete sets of key-value pairs (e.g., elements of upnp in Fig. 1). Let us call them 37

Hierarchical Multiple Instance Learning (HMIL) data, which refers to the hierarchical structure and 38

to multiple instance learning problems, as introduced in Dietterich et al. (1997). HMIL data cannot 39

be naturally represented as fixed vectors without the laborious and lossy feature engineering, and 40

it cannot be represented as plain sequences without losing the key information captured by its 41

structure (e.g., leaf data types, irrelevance of ordering of key-value pairs). 42
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Sample Accuracy

Dataset Size Default Tunned Comp.

Device ID 0.1k-0.3M 0.937 0.961 0.967

EMBER 2018 3k-6M 0.954 0.968 0.969

Mutagenesis 4k-8k 0.886 0.909 0.912

Table 1: Accuracy of HMILnet with parameters from tutorial (Default), with tuned hyperparameters

(Tuned), and that of SOTA solution (Comp.).

The proposed framework solves this in a very general way. This is demonstrated on a range of 43

uncurated datasets, modifying only the path to the input data. In the Device ID challenge (CSP, 44

2019) hosted by kaggle.com, the samples originate from a network scanning tool. In EMBER (Ander- 45

son and Roth, 2018), the samples were produced by a binary file analyzer. Mutagenesis (Debnath 46

et al., 1991) describes molecules trialed for mutagenicity on Salmonella typhimurium. Table 1 47

shows that the default setting of our framework, where the JSON embedding is followed by a 48

simple feed-forward classification network, reaches a very good performance off-the-shelf (De- 49

fault), while further tuning (Tunned) allows reaching the performance of competing approaches 50

(Comp.) taken from CSP (2019) and Loi et al. (2021). Experimental details can be found at 51

https://github.com/CTUAvastLab/JsonGrinderExamples. Woof and Chen (2020) also describe a 52

framework for hmil data, but, according to limited comparison therein JsonGrinder.jl performs 53

better. 54

2 Background on Hierarchical Multiple Instance Learning 55
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Figure 2: A sketch of a suitable model for processing

the document in Figure 1.

The set of all possible HMIL data samples, H, 56

is defined recursively. Any data type that can 57

be conveniently represented as a fixed-size vec- 58

tor (i.e., integer, float, string categorical value) 59

is an atomic HMIL sample from a set A ⊆ H. 60

More complex HMIL samples are created using 61

two constructions: sets – {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ H 62

for 𝑥𝑖 ∈ H; and dictionaries – {(𝑘𝑖 , 𝑣𝑖) |𝑖 ∈ 63

1 . . . 𝑘} ∈ H for 𝑘𝑖 ∈ A, 𝑣𝑖 ∈ H. Keys 𝑘𝑖 in the 64

dictionaries are identifiers of properties with 65

a semantic meaning (e.g., mac, ip, services) 66

rather than plain carriers of information. In 67

other words complex HMIL samples contain 68

other HMIL samples as children. 69

It is common to assume that samples in one dataset obey a fixed schema, which means that if 70

data in a particular set are atoms, they are of the same type and if they are more complex samples, 71

they follow the same sub-schema. The same should hold for values under a specific dictionary key 72

in different samples. These assumptions are not necessary for our framework, but they are needed 73

for the generalization to unseen samples. Some data formats enforce a schema, e.g. ProtocolBuffer 74

and to some extent XML, otherwise the schema can be derived automatically from a dataset. 75

3 Overview and Design 76

The key idea of processing HMIL data is creating a hierarchy of trainable embeddings, which 77

gradually project atoms, sets, and dictionaries to fixed-sized vectors (see Pevný and Kovařík (2019) 78
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for the extension of the universal approximation theorem). By knowing that child data-nodes are 79

always projected by the child-embeddings to vectors, the embeddings can be arbitrarily nested 80

according to the structure of data. For computational efficiency, once data are converted into 81

internal structures, they are packed to continuous tensors. 82

create a schema from samples

create an extractor from the schema

prepare the data using the extractor

create the model

train the model

Figure 3: Steps to create a model.

While the model for given HMIL data can be constructed 83

manually from primitives, doing so is tedious and prone to 84

errors. Therefore JsonGrinder.jl automatizes this process 85

without sacrificing the flexibility. Models are constructed in 86

five steps as shown in Figure 3
1
and briefly described below. 87

In the following walkthrough, it is assumed that jsons is an 88

array of parsed JSON documents. 89

Step 1. Create a schema of a given dataset consisting of a set of 90

jsons, using the function sch = JsonGrinder.schema(jsons). 91

The returned structure, sch, contains basic statistics at the 92

nodes within the data, e.g., types nodes (dictionary, array, 93

leaf), how often is a particular element present, the distribution of lengths of lists at a specific 94

position, the distribution of leaf values, and names of the keys of the dictionaries. sch can be 95

visualized in HTML, which helps to understand the data. 96

Step 2. The schema facilitates the creation of an extractor, converting raw JSON data to internal 97

structures derived from AbstractDataNodes. JSON lists (e.g., services in Fig. 1) are converted 98

into BagNodes2 and JSON dictionaries (elements of upnp in Fig. 1) are mapped to ProductNodes. 99

We acknowledge that there are many ways to represent JSON leaves and the flexibility of their 100

representation is preserved. By default, JsonGrinder.jl represents numbers directly, diverse 101

collections of strings as n-gram histograms, and small collections of unique values as one-hot 102

encoded categorical variables. The extractor can be created automatically from a schema as 103

ex = JsonGrinder.suggestextractor(sch), which uses heuristics to decide how to represent 104

individual leaves. If the default extractors are not satisfactory, they can be easily replaced by custom 105

implementations. 106

Step 3. Use the extractor, ex, to convert raw JSONs into internal structures using, e.g, map function 107

as dss = map(ex, jsons). 108

Step 4. Define a neural network model reflecting the schema. For the basic functionality, three 109

types of nodes are sufficient. ArrayNode is the data node for atomic data and the corresponding 110

to ArrayModel wraping a trainable function, e.g., a feed-forward neural networks (FNN). BagNode 111

for sets and the corresponding BagModel implements various permutation invariant aggregation 112

functions (a concatenation of coordinate-wise mean and maximum seems to be most effective in 113

practice). ProductNode for dictionaries and the corresponding ProductModel containing a trainable 114

function for each key. It applies them to the corresponding values, concatenates the outputs, and 115

executes an additional trainable function on the concatenation. The model can be created automat- 116

ically from the schema, sch, and the extractor, ex, as model = JsonGrinder.reflectinmodel(sch, 117

ex). The creation of the model is fully customizable, allowing to insert a particular FNNs and an 118

aggregation function at each location. model(ex(json)) projects a single json to a vector. 119

1
The complete example is available at https://github.com/CTUAvastLab/JsonGrinder.jl/blob/master/

examples/mutagenesis.jl. The code building the model consists of 25 lines of code, the rest are mostly comments.

2
This ignores the information contained in the list’s ordering, but results in much more computationally efficient

training. Support for sequences can be achieved by recurrent neural networks or transformers as shown in one of the

examples in Mill.jl , but this never achieved performance gains worth the computational cost in our experiments.
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Step 5. Train and then use the model as any other model constructed by adopting the Flux.jl 120

library and arbitrary associated libraries facilitating data handling. 121

122

The model handles missing data (e.g., missing keys in dictionaries) that can be present at all 123

levels of the structure. Missing atomic value is expressed as a missing value (a feature of Julia) at 124

the level of atomic values. During the inference, such values are replaced by trainable imputations 125

that are unique for each node. 126

Integration with the ecosystem 127

The framework is written in the Julia language (Bezanson et al., 2017), and it is fully integrated with 128

the Julia ecosystem. It uses Flux.jl for the implementation of neural networks and allows to use any 129

automatic differentiation engine interfacing with ChainRulesCore.jl. Extracted JSON documents 130

can be freely concatenated and divided, which facilitates the creation of minibatches during the 131

training. JsonGrinder.jl is registered and can be added by typing Pkg.add("JsonGrinder") 132

command. For Python users who want to use the library, we provide an example notebook 133

demonstrating the interface. 134

4 Conclusion 135

JsonGrinder.jl facilitates the automated creation of models from HMIL data, which despite 136

being ubiquitous in the industry are rarely considered in the ML literature. The library is flexible, 137

extensible, and well-integrated into the Julia ecosystem, allowing to benefit from its improvement. 138

The authors have used it in practical applications on large problems containing 10
8
samples of 139

size up to 1GB each, frequently achieving better performance than with hand-designed features. 140

We are not aware of any other software package that would allow the processing of JSON data 141

without feature engineering, and therefore we consider the library to be an essential contribution 142

to automating ML. 143
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5 Broader Impact Statement 174

The above presented JsonGrinder.jl simplifies use of machine learning on data stored in the 175

hierarchical format, which is most of data exchanged on the internet. It therefore simplifies 176

application to domains, which has been previously difficult due to the need to design features 177

projecting hierarchical formats to tensors of fixed size needed by most machine learning toolkits. 178

Authors therefore believe that JsonGrinder.jl democratizes the use of machine learning. This 179

democratication can be potentially dangerouse. A naïve user might easily create a biassed classifier 180

or classifier relying on non-informative features without users being aware of it. Authors are 181

therefore developing a companion library explaining the decisions of HMILnet models, which 182

would simplify identification of these problems. 183

6 Submission Checklist 184

1. For all authors. . . 185

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 186

contributions and scope? [Yes] We believe the claims to be accurate. 187

(b) Did you describe the limitations of your work? [Yes] This paper is mainly about imple- 188

mentation of the framework theoretically proposed in Pevný and Kovařík (2019). Due to 189

the page limit, we desribed limitations of the implementation briefly and they are fully 190

described in the documentation. The theoretical assumptions on which the mathematical 191

aparatus is built is described in Pevný and Kovařík (2019). 192

(c) Did you discuss any potential negative societal impacts of your work? [No] We are not 193

aware of negative societal impacts except the democratization of ML, which is discussed 194

above in the Broader impact statement. 195

(d) Have you read the ethics author’s and review guidelines and ensured that your paper 196

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] We have read them. 197

2. If you are including theoretical results. . . 198

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This paper describes 199

a library built on top of theoretical foundations published in Pevný and Kovařík (2019). 200

The Pevný and Kovařík (2019) clearly states all theorerical assumptions. 201
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(b) Did you include complete proofs of all theoretical results? [N/A] The paper Pevný and 202

Kovařík (2019) contains all proofs. 203

3. If you ran experiments. . . 204

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 205

results, including all requirements (e.g., requirements.txt with explicit version), an in- 206

structive README with installation, and execution commands (either in the supplemental ma- 207

terial or as a url)? [Yes] We have created a repository https://github.com/CTUAvastLab/ 208

JsonGrinderExampleswhich contains code and download the relevat datatasets if available. 209

One dataset, DeviceId, is not available anymore due to issues of privacy. We have used it in 210

the comparison, since we used it during development of the library. 211

(b) Did you include the raw results of running the given instructions on the given code and 212

data? [No] We do not provide raw results, as the scripts were designed to output directly 213

the reported numbers. 214

(c) Did you include scripts and commands that can be used to generate the figures and tables 215

in your paper based on the raw results of the code, data, and instructions given? [No] 216

Figures in the paper are mostly illustrative. There is one table with results, which we copied 217

manually to the manuscript. 218

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 219

code is properly documented? [Yes] We did our best to make the code for experiments 220

clean, as it was designed as an example of how the library can be used. 221

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 222

hyperparameter settings, and how they were chosen)? [Yes] It is all in the scripts. 223

(f) Did you ensure that you compared different methods (including your own) exactly on 224

the same benchmarks, including the same datasets, search space, code for training and 225

hyperparameters for that code? [Yes] We did our best. 226

(g) Did you run ablation studies to assess the impact of different components of your approach? 227

[N/A] We are not aware of space for ablation. 228

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] The 229

evaluation protocol was fixed formethods implemented by us. In all cases, we have preserved 230

the split to train and test data. 231

(i) Did you compare performance over time? [No] The datasets were not designed to measure 232

how the performance degrade over time. 233

(j) Did you perform multiple runs of your experiments and report random seeds? [No] We 234

have not repeated the experiments, since the training and testing split of datasets was fixed. 235

By repetition, we would measure sensitivity to initialization of weights, which in case of 236

supervised training is usually low. 237

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 238

multiple times)? [N/A] Since we did not repeat experiments, we could not draw error bars. 239

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] No tabular 240

or surrogate banchmarks were used. 241

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 242

gpus, internal cluster, or cloud provider)? [No] The experiments were used to demonstrate 243

the presented library. We have therefore not counted the compute time. 244
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(n) Did you report how you tuned hyperparameters, and what time and resources this required 245

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 246

also hyperparameters of your own method)? [Yes] All tuning is in the scripts. 247

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 248

(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited the original 249

creators. 250

(b) Did you mention the license of the assets? [No] We do not mention the licenses as we 251

expect this information to be available at the publications listing the datasets. 252

(c) Did you include any new assets either in the supplemental material or as a url? [No] We 253

do not publish new assets. 254

(d) Did you discuss whether and how consent was obtained from people whose data you’re 255

using/curating? [No] We expect this not to be needed, since the data were freely available 256

at the time of writing. The exception was a DeviceID dataset, where we had permission 257

from Avast to use it. 258

(e) Did you discuss whether the data you are using/curating contains personally identifiable 259

information or offensive content? [No] In case of DeviceID datasets, there might be a 260

potential of privacy attacks, since the exact configuration of network devices might be 261

specific to identify a deployment site. Because of this, the data are not publicly available 262

anymore. 263

5. If you used crowdsourcing or conducted research with human subjects. . . 264

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 265

cable? [N/A] We did not used crowdsourcing during the research. 266

(b) Did you describe any potential participant risks, with links to Institutional Review Board 267

(irb) approvals, if applicable? [N/A] We did not used crowdsourcing during the research. 268

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 269

on participant compensation? [N/A] We did not used crowdsourcing during the research. 270
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