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1 Overview and Outline

In this supplement, we provide more analysis about (1) the properties of RSTs, (2) the applications
of R2S on top of RSTs/RTTs, and (3) the experiment details, providing a complement to the main
content as outlined below:

* We provide the detailed search and attack settings in Sec. [2}
* We evaluate RSTs’ robustness against more adversarial attacks in Sec. [3}
* We provide the natural accuracy achieved by RSTs, fine-tuned RSTs, and RTTs in Sec.

* We provide more discussions about the adversarial transferability between RSTs and evaluate
R2S with more candidate RST sets in Sec.[5]and Sec. [} respectively;

* We visualize the adversarial transferability between adversarial RTTs and apply R2S on top
of them in Sec. [7]and Sec. [§] respectively;

* We further demonstrate the advantages of RSTs over adversarial RTTs in Sec. [9]

2 Detailed Search and Attack Settings

Adversarial search settings on CIFAR-10/100. We adopt PGD-7 (7-step PGD) training for the
adversarial search and update the mask m for a total of 160 epochs using an SGD optimizer with a
momentum of 0.9 and an initial learning rate of 0.1 which decays by 0.1 at both the 80-th and 120-th
epochs with a batch size of 256.

Adversarial search settings on ImageNet. We adopt FGSM with random starts (FGSM-RS) [[1] for
the adversarial search and update the mask m for a total of 100 epochs using an SGD optimizer with
a momentum of 0.9 and a cosine learning rate decay with an initial learning rate of 0.256 and a batch
size of 256 following [2].

Attack settings. We evaluate the robustness of RSTs under (1) PGD-20 attacks [3]], (2) CW-L2/CW-
Inf attacks [4]], (3) Auto-Attack [5], and (4) the gradient-free attack Bandits [[6]. We mainly evaluate
RSTs’ robustness under PGD-20 attacks in the main text and show RSTs’ consistent robustness against
other attacks in Sec. 3| In particular, for the CW-L2/CW-Inf attacks we adopt the implementation in
AdverTorch [[7] and follow [8. 9] to adopt 1 search step on ¢, which balances the distance constraint
and the objective function, for 100 iterations with an initial constant of 0.1 and a learning rate of 0.01;
for the Auto-Attack [5] and Bandits [6], we adopt the official implementation and default settings in
their original papers.
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Table 1: Evaluating the robustness of RSTs with different weight remaining ratios against the
Auto-Attack [S]], CW-L2/CW-Inf attacks [4]], and Bandits [6] on top of two networks on CIFAR-10.

Network Remaining  Auto-Attack CW-L2 CW-Inf Bandits

Ratio (%) e=8 e=12 - e=8 e=12 e=8 e=12

ResNetl18 100% 4639 41.13 5278 4899 4591 6699 64.17
(Dense)

5% 4575 4143 5174 4807 4557 61.18 5930

10% 4530 40.84 52.03 4795 4505 63.82 61.55

RST 20% 4255 3797 4935 4503 4245 6547 62.80

@ ResNetl8 30% 45.14 3994 5197 4776 44.08 6503 62.40

50% 42.19 3775  49.07 44.85 4227 6410 61.43

70% 4218 37.80 48.14 4444 4218 60.17 5797

WideResNet32 100%  49.66 4497 57.13  54.16 4922 69.28 65.86
(Dense)

5% 4890 4476 5558 5153 4879 66.04 64.00

10% 4391 43.67 5567 5147 4838 67.97 65.12

RST 20% 46.80 4375 5533 5125 4817 6854 65.66

@ WideResNet32 30% 4891 4453 5738 5295 49.60 67.75 65.11
50% 48.28 4235 5593 50.74 47.48 66.80 64.22
70% 44.46 39.04 5130 4733 4436 67.08 64.56

Evaluation settings for R2S. We assume that adversaries generate adversarial examples based on a
randomly selected RST from a candidate RST set and our R2S then randomly selects an RST from
the same set for performing inference. Such assumption does not lose the generality since (1) any
RST out of the candidate RST set selected by the adversaries will merely increase the achieved robust
accuracy of R2S due to the mismatch between the RSTs for inference and generating attacks, (2)
while adversaries may tend to select RSTs with better attacking success rates, our R2S can also
increase the probability of sampling more robust RSTs for stronger defense, and (3) the average robust
accuracy under each attack RST (i.e., the RST with a specific weight remaining ratio for generating
adversarial examples) is similar, thus the random selection strategy can be a good approximation of
the defense effectiveness. Here we assume both the adversaries and R2S adopt the same candidate
RST set for simplicity. In particular, we adopt a candidate RST set of [5%, 7%, 10%, 15%, 20%,
30%] in Sec. 6.3 of the main text, and the robustness under other set options can be found in Sec. @

3 RSTs’ Robustness against More Adversarial Attacks

We evaluate the identified RSTs’ robustness against more attacks on top of two networks on CIFAR-
10 as a complement for Sec. 5.4 in the main text. As observed from Tab.[I] we can see that the
RSTs searched by PGD-7 training are also robust against other attacks. For example, under the
Auto-Attack with € =8/12, the RST with a remaining ratio of 5% in WideResNet32 achieves (1) only
2 0.76%/0.21% drop in robust accuracy together with a 95% reduction in the model size, as compared
to the adversarially trained dense WideResNet32, and (2) a 2.51%/3.63% higher robust accuracy and
a 80% reduction in the model size, compared with the adversarially trained dense ResNet18. This
set of experiments indicates that the identified RSTs are generally robust without overfitting to one
specific type of attacks.

4 The Natural Accuracy of RSTs, Fine-tuned RSTs, and RTTs

Here we provide the natural accuracy of RSTs and their variants as a complement to the the robust
accuracy shown in Sec. 4 and Sec. 5 of the main text.

The natural accuracy of RSTs under different initializations. As shown in Fig. (I} RSTs under
Signed Kaiming Constant initialization consistently achieve the best natural accuracy and the overall
ranking between different initialization methods is generally consistent with the robust accuracy
ranking in Sec. 4.4 of the main text.
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Figure 1: The natural accuracy of RSTs identified from different initializations under different weight
remaining ratios and found in ResNet18 on (a) CIFAR-10 and (b) CIFAR-100.
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Figure 2: Comparing the natural accuracy of RSTs, fine-tuned RSTs with inherited weights, and
fine-tuned RSTs with reinitialization, with zoom-ins for the low remaining ratios (1%~20%).

The natural accuracy of RSTs and fine-tuned RSTs. As observed from Fig. 2} we can see that our
analysis about the lottery ticket phenomenon in Sec. 5.1 of the main text still holds for the natural
accuracy. In particular, (1) the vanilla RSTs can generally achieve a comparable natural accuracy
with that of the fine-tuned RSTs, indicating that the untrained RSTs naturally achieve a good balance
between their robust and natural accuracy according to both Fig. 2| here and Fig. 2 in the main text;
(2) under low weight remaining ratios (1%~20%), fine-tuned RSTs with inherited weights mostly
achieve the best natural accuracy among the three RST variants, indicating that RSTs win better
initializations; and (3) the vanilla RSTs on ResNet18 without any training can achieve a comparable
natural accuracy compared with fine-tuned RSTs with re-initialization, while the latter ones on
WideResNet32 can achieve a slightly better natural accuracy, which we conjecture is resulting from
a higher degree of overparameterization in the original networks and thus indicates that the drawn
RSTs favor a stronger capacity for effective feature learning during the fine-tuning process.

The natural accuracy of RSTs and RTTs. As observed in Fig. [3] RSTs drawn from randomly
initialized networks achieve a comparable natural accuracy with the RTTs drawn from natu-
rally/adversarially trained networks and adversarial RTTs generally achieve the best natural accuracy.
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Figure 3: The natural accuracy achieved by RSTs, natural RTTs, and adversarial RTTs drawn from
ResNet18/WideResNet32 on CIFAR-10/100, with zoom-ins under low remaining ratios (1%~20%).
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Figure 4: The adversarial transferability between RSTs with different weight remaining ratios drawn
from ResNet18/WideResNet32 on CIFAR-10/100, where the robust accuracy is annotated.

5 More Visualizations of the Adversarial Transferability between RSTs

As shown in Fig.[d] the adversarial transferability between RSTs with different weight remaining
ratios is consistently poor among all the considered networks and datasets based on the robust



Table 2: Evaluating the robustness of RSTs with different remaining ratios against the tranferred
attacks generated by (1) naturally trained dense models (Dense Nat. Trained), (2) adversarially
trained dense models (Dense Adv. Trained), and (3) another RST with the same remaining ratios
searched from the same dense network initialized by different random seeds (Same Ratio) on top of
ResNet18 and CIFAR-10.

Attack S RST RST RST RST RST RST RST RST Dense Dense

ack Source @3% @5% @7% @10% @15% @20% @40% @60% Nat. Trained Adv. Trained

Dense Nat. Trained 70.70 74.35 77.20 77.71 7555 7922 7885 771.33 0 81.28

Dense Adv. Trained 60.17 62.01 6533 6492 6237 6678 6689  64.93 81.96 50.19
Same Ratio 62.01 6478 6477 6561 6994 6822 6784  66.41 - -

accuracy gap between those in the diagonal and non-diagonal elements. This indicates that the
proposed R2S technique is generally applicable to different networks and datasets.

We further provide more results regarding the adversarial transferability between (1) dense models and
RSTs, and (2) RSTs with the same remaining ratios searched from the same dense network initialized
by different random seeds. From Tab. @ we can observe that (1) the adversarial transferability from
the naturally/adversarially trained dense models to RSTs is still poor; and (2) the robust accuracy
against the attacks from RSTs of the same remaining ratio still transfer poorly, indicating that the
adversaries cannot train or search another subnetwork of the same remaining ratio as an effective

proxy.

Table 3: Evaluating R2S with different candidate RST sets on top of ResNetl8/WideResNet32
on CIFAR-10/100. Here ‘dense’ denotes the adversarially trained dense networks which are the
baselines.

Dataset CIFAR-10 CIFAR-100
Network ResNet18 WideResNet32 ResNet18 WideResNet32
Candidate Natural PGD-20 Natural PGD-20 Natural PGD-20 Natural PGD-20
RST Set Acc (%) Acc (%) Acc (%) Acc(%) Acc(%) Acc(%) Acc(%) Acc (%)
Dense 81.73 50.19 85.93 52.27 56.88 26.94 61.14 29.81
3%, 5%, 1%, 10% 75.34 61.03 79.86 64.91 48.40 36.77 52.35 41.04
3%, 5%, 1%, 10%, 15%, 20%, 30% 76.56 64.02 81.08 67.86 50.85 40.43 53.72 43.51
7%, 10%, 15%, 20%, 30% 78.06 63.60 82.34 66.96 52.88 40.56 54.89 42.47

6 R2S with More Candidate RST Sets

We evaluate R2S with different candidate RST sets in Tab. E} We can observe that [€)) R2S consis-
tently and aggressively improves the robust accuracy compared with the adversarially trained dense
baselines, e.g., up to a 13.83%/15.59% and 13.62%/13.70% robust accuracy improvement on top of
ResNet18/WideResNet32 on CIFAR-10 and CIFAR-100, respectively; and (2) R2S when using a
candidate RST set with a wider range can generally achieve a better robust accuracy, while RSTs
with weight remaining ratios that are too low or too high will influence the average natural accuracy.
As such, it is suggested that the candidate RST sets are constructed within a specific range, e.g., the
last row in Tab.[3l

7 The Adversarial Transferability between Adversarial RTTs

As shown in Fig. [} the adversarial transferability between adversarial RTTs with different weight
remaining ratios is also poor, showing a consistent phenomenon as the one between RSTs in Sec. 3
This indicate that the proposed R2S technique can be also applied on top of adversarial RTTs (here
R2S denotes Random adversarial RTT Switch), which can potentially achieve better performance
considering the decent robust and natural accuracy of adversarial RTTs as analyzed in Sec. 4 and Sec.
5.2 in the main text.

8 R2S on top of Adversarial RTTs

We apply R2S on top of adversarial RTTs as shown in Tab. [d] We can observe that it can also
aggressively improve the robust accuracy, e.g., a 14.95% and 15.09% robust accuracy improvement
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Figure 5: The adversarial transferability between adversarial RTTs with different weight remaining
ratios in ResNet18 on CIFAR-10/100, where the robust accuracy is annotated.

Table 4: Evaluating R2S on top of adversarial RTTs on ResNet18 and CIFAR-10/100. Here ‘dense’
denotes the adversarially trained dense networks which are the baselines.

Dataset CIFAR-10 CIFAR-100
Candidate Natural PGD-20 Natural PGD-20
RTT Set Acc (%) Acc (%) Acc(%) Acc(%)
Dense 81.73 50.19 56.88 26.94
3%, 5%, 7%, 10% 77.33 61.97 51.19 38.73
3%, 5%, 7%, 10%, 15%, 20%, 40% 78.57 65.14 53.52 42.03
7%, 10%, 15%, 20%, 40% 79.57 64.15 55.42 41.38

over the adversarially trained dense networks with a comparable natural accuracy. This indicates
that our R2S can also serve as a plug-in technique on top of existing adversarial training methods,
i.e., one option is to do adversarial training first, then draw adversarial RTTs, and finally perform
inference with R2S.

9 Advantages of RSTs over Adversarial RTTs on More Datasets

In Sec. 6.3 of the main text, we analyze that a unique property of RSTs is their advantageous
parameter efficiency, i.e., the same randomly initialized network can be shared among different tasks,
and task-specific RSTs can be drawn from this same network, while the task-specific adversarial
RTTs drawn from adversarially trained networks on a different task will lead to a reduced robustness.
We further validate this on another two datasets, i.e., CIFAR-10 and SVHN [10].
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Figure 6: Comparing transferred adversarial RTTs with RSTs identified in ResNet18 on (a) SVHN
and (b) CIFAR-10.



Experiment setup. We conduct adversarial search on SVHN with the same settings as that on CIFAR-
10/100 in Sec.|2[except here the initial learning rate is 0.01. We conduct two sets of comparisons: (1)
SVHN-specific RSTs from ResNet18 vs. SVHN-specific adversarial RTTs drawn from ResNet18
adversarially trained on CIFAR-10 and (2) CIFAR-10-specific RSTs from ResNet18 vs. CIFAR-10-
specific adversarial RTTs drawn from ResNet18 adversarially trained on SVHN. In particular, all the
RSTs are drawn from ResNet18 with the same random initialization.

Results and analysis. As shown in Fig.[f] a consistent observation as Sec. 6.3 of the main text
can be found, i.e., RSTs consistently outperform the transferred adversarial RTTs drawn from the
adversarially trained network on another task. For example, RSTs achieve up to a 2.75% higher
robust accuracy than transferred adversarial RTTs on SVHN under the same weight remaining ratio.
This further indicates that it is a unique advantage of RSTs for being able to improve parameter
efficiency, especially when more tasks are considered under resource constrained applications.
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