
A EXPERIMENTAL DETAILS

A.1 REPRODUCTION DETAILS FOR TI-MAE

The default setting and all the components in details of Ti-MAE is shown in Table 1. We use one
Conv1d layer with the setting of kernel = 3, stride = 1, padding = 1 to obtain the encoder input
embedding, and then we add a fixed positional encoding as

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
),

(1)

where dmodel represents the hidden state dimension. After encoder input embedding, we randomly
mask out 75% tokens and remaining visible parts are fed into the encoder. The encoder and decoder
of Ti-MAE both contain 2 Transformer blocks, each of which consists of one vanilla self-attention
layer with 4 heads and a point-wise feed forward layer. Similar as ViT Dosovitskiy et al. (2021),
we adopt pre-norm instead of post-norm for stability of the model. In the decoder, we first apply a
linear layer to reduce the input dimension (64 → 32). Given the position to be reconstruct, randomly
initialized learnable masked tokens are padded to the encoded tokens with the original positional
encoding. A dropout layer (p = 0.1) is added to the bottom of Transformer blocks to prevent the
over-fitting problem. The last linear projection layer of the decoder is to reconstruct the missing
values at the point-level. All the linear layers in Ti-MAE are initialized through xavier Glorot &
Bengio (2010). Note that the choice of Transformer blocks in Ti-MAE is flexible so that you can
use other designed Transformer blocks with more inductive biases if necessary.

Table 1: Default setting of Ti-MAE

Config Value

optimizer Adam Kingma & Ba (2015)
learning rate 0.001

learning rate schedule cosine decay
epochs 10

masking ratio 75%
sampling time 30

batch size 64
#encoder layer 2
#decoder layer 2

dmodel 64
dropout 0.1

A.2 DETAILS ON BASELINES

For forecasting tasks, the results of CoST Woo et al. (2022), TS2Vec Yue et al. (2022), TNC Tonek-
aboni et al. (2021), MoCo Chen et al. (2021), Autoformer Wu et al. (2021), Informer Zhou et al.
(2021), LogTrans LI et al. (2019) and TCN Bai et al. (2018) are all based on our reproduction. For
classification tasks, the results of TS2Vec are based on our reproduction. Other results of classifica-
tion are directly taken from Yue et al. (2022).

CoST Woo et al. (2022) was recently proposed as a contrastive learning framework of disentangled
seasonal-trend representations for time series forecasting. They comprises both time domain and
frequency domain contrastive losses to learn discriminative trend and seasonal representations. We
use the public official source code from https://github.com/salesforce/CoST.

TS2Vec Yue et al. (2022) is a universal framework for learning representations of time series
in an arbitrary semantic level through applying contrastive learning in a hierarchical way over
augmented context views. TS2Vec can obtain timestamp-level and instance-level representations
for forecasting and classification simultaneously. We take the officially implemented code from
https://github.com/yuezhihan/ts2vec.
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TNC Tonekaboni et al. (2021) is a self-supervised contrastive learning framework for time series,
where the positive samples come from the neighboring similar signals. We use the official open
source code from https://github.com/sanatonek/TNCrepresentationlearning
and all the settings of hyper-parameters follows Woo et al. (2022).

MoCo Chen et al. (2021) is a self-supervised contrastive learning framework widely used in com-
puter vision domain, which uses a dynamic queue to save a large number of positive and negative
samples with consistency. We directly apply this framework on time series data using the official
code from https://github.com/facebookresearch/moco. Hyper-parameters are the
same as Woo et al. (2022).

Autoformer Wu et al. (2021) is a novel end-to-end supervised model with a decomposition ar-
chitecture for time series forecasting. By directly subtracting trend parts obtained from mov-
ing average, they design an auto-correlation mechanism as a replacement for self-attention to
capture long-term dependencies from seasonality parts. We use their open source code from
https://github.com/thuml/Autoformer. Hyper-parameters are remain the default val-
ues in the code.

Informer Zhou et al. (2021) is an efficient end-to-end supervised model for time series forecasting.
They propose a novel sparse attention to reduce time complexity and memory usage. We take
the officially implemented code from https://github.com/zhouhaoyi/Informer2020.
Hyper-parameters are used as suggested in their paper.

LogTrans LI et al. (2019) proposes a novel sparse attention scheme compared to canonical Trans-
former and reduces the usage of computing resources. Due to no official code available, we fol-
low Yue et al. (2022) and refer to their experimental settings.

TCN Bai et al. (2018) is a strong feature extractor based on dilated convolutions for time series,
and is also widely used as backbone in other frameworks. We use the official code from https:
//github.com/locuslab/TCN and follow Yue et al. (2022) to set all the hyper-parameters.

A.3 DETAILS ON BENCHMARK TASKS

For time series forecasting tasks, the evaluation settings of end-to-end supervised models and other
representation learning methods are slightly different. For other representation learning methods,
we follow Yue et al. (2022) to evaluate the performance of their models. Specifically, we use a ridge
regression trained on the learned representations to predict the future values. The regularization term
α is selected by grid search from {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. For end-to-
end models, we set the sum of the input length and the predicted length as a constant value (e.g.
200 length input to predict 100 length future values) for fairness. We set the size of the observation
window to 300 to evaluate forecasting performance at different time steps.

For classification tasks, we directly obtain instance-level representations by average or max pooling
over all timestamps following Yue et al. (2022). To evaluate the performance of models on classi-
fication, we follow the same protocol Franceschi et al. (2019), where an SVM classifier with RBF
kernel is trained on obtained instance-level representations. The full results of each dataset in UCR
are provided in Table 6 and 7.

Notably, due to the flexible design of the Transformer block, we can utilize any layer of the encoder
or the decoder of Ti-MAE to get intermediate representations. Extra class token is also a choice if
necessary. In our experiments, we simply gather the encoder embedding of Ti-MAE as instance-
level representations for evaluation. To accelerate the training of the model, we perform equidistant
sampling for different datasets to reduce input length.

TS2Vec also reports an interesting phenomenon that using Transformer instead of Dilated CNN as
backbone will largely degrade the performance on classification tasks. We also find similar prob-
lems, especially on morphological datasets. We suppose that some morphological datasets have
almost no seasonality, while the local morphological characteristics determine the data classifica-
tion. The positional encoding introduced in the encoder may destroy these morphological features.
Simply removing position embedding in the encoder when generating representations will signif-
icantly affect the performance of classification. Table 2 shows the classification results on some
morphological datasets with or without position embedding.
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Table 2: The classification results on morphological datasets with or without positional encoding

dataset w/ PE w/o PE

Beef 0.90 0.77
OSULeaf 0.59 0.74

ShapeletSim 0.54 0.91
Worms 0.64 0.78

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 THE IMPACT OF THE LENGTH OF HISTORICAL TIME SERIES

Table 3 shows the time series forecasting results on Weather with different length of input historical
data. Longer input time series will significantly degrade the performance of other Transformer-
based end-to-end models, which is in contrast to the ability of Transformer to capture long-term
dependencies. We suppose that it is the fixed training paradigm that limits the ability of Transformer-
based models to learn adequate local and global features.

Table 3: The results of forecasting 100 time steps in future on Weather with different length of input.

Input length 100 200 400

Ti-MAE MSE 0.2413 0.2103 0.2328
MAE 0.2844 0.2696 0.2985

Autoformer MSE 0.2375 0.3143 0.3144
MAE 0.3127 0.3789 0.3810

B.2 ABLATION STUDY ON TI-MAE’S COMPONENTS

Table 4 shows the impact of different components of Ti-MAE, which proves the effectiveness of
random masking strategy, Transformer-based backbone and other necessary parts.

Table 4: Ablation study of Ti-MAE’s components on the Exchange dataset.

Ablation variant MSE MAE

Default 0.2111 0.3367
Random → fixed continuous masking 0.2505 (-18.7%) 0.3700 (-9.9%)

Encoder w/o positional encoding 0.3082 (-46.0%) 0.3996 (-18.7%)
Decoder w/o positional encoding 0.2276 (-7.8%) 0.3518 (-4.5%)

pre-norm → post-norm 0.2213 (-4.8%) 0.3474 (-3.2%)
Transformer → TCN 0.2340 (-10.8%) 0.3558 (-5.7%)

Transformer → LSTM 0.2406 (-14.0%) 0.3612 (-7.3%)

B.3 TRANSFERABILITY STUDY

To evaluate the transferability of our framework, we generate a set of time series data with different
trend and seasonality patterns, which follows

y(t) = cos(α · t) + cos(
α

2
· t) + cos(

α

4
· t) + β · t+ ϵ (2)

where the hyper-parameters α and β respectively control the trend and seasonality patterns, and the
noises ϵ ∼ N(0, 0.1). We train our Ti-MAE under the setting of α = 300, β = 3 and evaluate the
forecasting performance on other different settings. Table 5 and Figure 1 demonstrate the strong
transferability of Ti-MAE under different trend and seasonality patterns.
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Table 5: The results of forecasting 400 time steps on simulated time series data with different trend
and seasonality patterns.

Setting α = 300 α = 600 α = 300 α = 600
β = 3 β = 3 β = 100 β = 100

MSE 0.0134 0.0596 0.0089 0.0232
MAE 0.0778 0.1912 0.0881 0.0711
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Figure 1: Transferability of Ti-MAE on different trend and seasonality patterns.
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Table 6: Full classification results on 128 UCR datasets part 1.

Dataset TMAE TS2Vec T-Loss TNC TS-TCC TST DTW

ACSF1 0.820 0.870 0.900 0.730 0.730 0.760 0.640
Adiac 0.788 0.726 0.675 0.726 0.767 0.550 0.604

AllGestureWiimoteX 0.633 0.782 0.763 0.703 0.697 0.259 0.716
AllGestureWiimoteY 0.682 0.791 0.726 0.699 0.741 0.423 0.729
AllGestureWiimoteZ 0.671 0.760 0.723 0.646 0.689 0.447 0.643

ArrowHead 0.874 0.794 0.766 0.703 0.737 0.771 0.703
BME 1.000 0.987 0.993 0.973 0.933 0.760 0.900
Beef 0.900 0.700 0.667 0.733 0.600 0.500 0.633

BeetleFly 0.900 0.750 0.800 0.850 0.800 1.000 0.700
BirdChicken 1.000 0.800 0.850 0.750 0.650 0.650 0.750

CBF 1.000 1.000 0.983 0.983 0.998 0.898 0.997
Car 0.867 0.800 0.833 0.683 0.583 0.55 0.733

Chinatown 0.985 0.974 0.951 0.977 0.983 0.936 0.957
ChlorineConcentration 0.725 0.804 0.749 0.760 0.753 0.562 0.648

CinCECGTorso 0.971 0.793 0.713 0.669 0.671 0.508 0.651
Coffee 1.000 1.000 1.000 1.000 1.000 0.821 1.000

Computers 0.780 0.648 0.664 0.684 0.704 0.696 0.700
CricketX 0.674 0.777 0.713 0.623 0.731 0.385 0.754
CricketY 0.659 0.769 0.728 0.597 0.718 0.467 0.744
CricketZ 0.718 0.810 0.708 0.682 0.713 0.403 0.754

Crop 0.751 0.756 0.722 0.738 0.742 0.710 0.665
DiatomSizeReduction 0.984 0.990 0.984 0.993 0.977 0.961 0.967

DistalPhalanxOutlineAgeGroup 0.763 0.719 0.727 0.741 0.755 0.741 0.770
DistalPhalanxOutlineCorrect 0.793 0.754 0.775 0.754 0.754 0.728 0.717

DistalPhalanxTW 0.727 0.698 0.676 0.669 0.676 0.568 0.590
DodgerLoopDay 0.613 0.538 0.241 0.183 0.206 0.200 0.500

DodgerLoopGame 0.739 0.826 0.415 0.508 0.493 0.696 0.877
DodgerLoopWeekend 0.978 0.949 0.623 0.684 0.601 0.732 0.949

ECG200 0.910 0.860 0.940 0.830 0.880 0.830 0.770
ECG5000 0.942 0.932 0.933 0.937 0.941 0.928 0.924

ECGFiveDays 0.988 1.000 1.000 0.999 0.878 0.763 0.768
EOGHorizontalSignal 0.558 0.528 0.605 0.442 0.401 0.373 0.503

EOGVerticalSignal 0.547 0.483 0.434 0.392 0.376 0.298 0.448
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748 0.719

ElectricDevices 0.685 0.724 0.707 0.700 0.686 0.676 0.602
EthanolLevel 0.744 0.388 0.382 0.424 0.486 0.260 0.276

FaceAll 0.880 0.789 0.786 0.766 0.813 0.504 0.808
FaceFour 0.875 0.852 0.920 0.659 0.773 0.511 0.830

FacesUCR 0.866 0.929 0.884 0.789 0.863 0.543 0.905
FiftyWords 0.787 0.754 0.732 0.653 0.653 0.525 0.690

Fish 0.897 0.920 0.891 0.817 0.817 0.720 0.823
FordA 0.818 0.940 0.928 0.902 0.930 0.568 0.555
FordB 0.652 0.802 0.793 0.733 0.815 0.507 0.620

FreezerRegularTrain 0.987 0.984 0.956 0.991 0.989 0.922 0.899
FreezerSmallTrain 0.959 0.872 0.933 0.982 0.979 0.920 0.753

Fungi 0.968 0.935 1.000 0.527 0.753 0.366 0.839
GestureMidAirD1 0.662 0.592 0.608 0.431 0.369 0.208 0.569
GestureMidAirD2 0.546 0.523 0.546 0.362 0.254 0.138 0.608
GestureMidAirD3 0.400 0.323 0.285 0.292 0.177 0.154 0.323
GesturePebbleZ1 0.901 0.849 0.919 0.378 0.395 0.500 0.791
GesturePebbleZ2 0.918 0.854 0.899 0.316 0.430 0.380 0.671

GunPoint 0.993 0.973 0.980 0.967 0.993 0.827 0.907
GunPointAgeSpan 0.994 0.962 0.994 0.984 0.994 0.991 0.918

GunPointMaleVersusFemale 0.997 1.000 0.997 0.994 0.997 1.000 0.997
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 1.000 0.838

Ham 0.800 0.714 0.724 0.752 0.743 0.524 0.467
HandOutlines 0.919 0.919 0.922 0.930 0.724 0.735 0.881

Haptics 0.484 0.519 0.490 0.474 0.396 0.357 0.377
Herring 0.656 0.609 0.594 0.594 0.594 0.594 0.531

HouseTwenty 0.941 0.899 0.933 0.782 0.790 0.815 0.924
InlineSkate 0.380 0.403 0.371 0.378 0.347 0.287 0.384

InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 0.872
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000 1.000 0.735
InsectWingbeatSound 0.639 0.616 0.597 0.549 0.415 0.266 0.355
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Table 7: Full classification results on 128 UCR datasets part 2.

Dataset TMAE TS2Vec T-Loss TNC TS-TCC TST DTW

ItalyPowerDemand 0.967 0.932 0.954 0.928 0.955 0.845 0.950
LargeKitchenAppliances 0.787 0.869 0.789 0.776 0.848 0.595 0.795

Lightning2 0.836 0.869 0.869 0.869 0.836 0.705 0.869
Lightning7 0.808 0.781 0.795 0.767 0.685 0.411 0.726

Mallat 0.956 0.904 0.951 0.871 0.922 0.713 0.934
Meat 0.967 0.967 0.950 0.917 0.883 0.900 0.933

MedicalImages 0.771 0.799 0.750 0.754 0.747 0.632 0.737
MelbournePedestrian 0.949 0.958 0.944 0.942 0.949 0.741 0.791

MiddlePhalanxOutlineAgeGroup 0.675 0.643 0.656 0.643 0.630 0.617 0.500
MiddlePhalanxOutlineCorrect 0.811 0.831 0.825 0.818 0.818 0.753 0.698

MiddlePhalanxTW 0.623 0.578 0.591 0.571 0.610 0.506 0.506
MixedShapesRegularTrain 0.922 0.917 0.905 0.911 0.855 0.879 0.842
MixedShapesSmallTrain 0.875 0.854 0.860 0.813 0.735 0.828 0.780

MoteStrain 0.913 0.859 0.851 0.825 0.843 0.768 0.835
NonInvasiveFetalECGThorax1 0.918 0.924 0.878 0.898 0.898 0.471 0.790
NonInvasiveFetalECGThorax2 0.938 0.939 0.919 0.912 0.913 0.832 0.865

OSULeaf 0.736 0.851 0.760 0.723 0.723 0.545 0.591
OliveOil 0.933 0.867 0.867 0.833 0.800 0.800 0.833
PLAID 0.458 0.555 0.555 0.495 0.445 0.419 0.840

PhalangesOutlinesCorrect 0.772 0.806 0.784 0.787 0.804 0.773 0.728
Phoneme 0.229 0.296 0.276 0.180 0.242 0.139 0.228

PickupGestureWiimoteZ 0.840 0.800 0.740 0.620 0.600 0.240 0.660
PigAirwayPressure 0.240 0.807 0.510 0.413 0.380 0.120 0.106

PigArtPressure 0.760 0.966 0.928 0.808 0.524 0.774 0.245
PigCVP 0.750 0.813 0.788 0.649 0.615 0.596 0.154

Plane 1.000 0.990 0.990 1.000 1.000 0.933 1.000
PowerCons 1.000 0.967 0.900 0.933 0.961 0.911 0.878

ProximalPhalanxOutlineAgeGroup 0.863 0.834 0.844 0.854 0.839 0.854 0.805
ProximalPhalanxOutlineCorrect 0.876 0.890 0.859 0.866 0.873 0.770 0.784

ProximalPhalanxTW 0.829 0.790 0.771 0.810 0.800 0.780 0.761
RefrigerationDevices 0.611 0.603 0.515 0.565 0.563 0.483 0.464

Rock 0.660 0.660 0.580 0.580 0.600 0.680 0.600
ScreenType 0.579 0.411 0.416 0.509 0.419 0.419 0.397

SemgHandGenderCh2 0.838 0.960 0.890 0.882 0.837 0.725 0.802
SemgHandMovementCh2 0.700 0.862 0.789 0.593 0.613 0.420 0.584

SemgHandSubjectCh2 0.813 0.947 0.853 0.771 0.753 0.484 0.727
ShakeGestureWiimoteZ 0.900 0.940 0.920 0.820 0.860 0.760 0.860

ShapeletSim 0.911 0.939 0.672 0.589 0.683 0.489 0.650
ShapesAll 0.840 0.890 0.848 0.788 0.773 0.733 0.768

SmallKitchenAppliances 0.741 0.733 0.677 0.725 0.691 0.592 0.643
SmoothSubspace 0.993 0.980 0.960 0.913 0.953 0.827 0.827

SonyAIBORobotSurface1 0.912 0.910 0.902 0.804 0.899 0.724 0.725
SonyAIBORobotSurface2 0.934 0.897 0.889 0.834 0.907 0.745 0.831

StarLightCurves 0.972 0.971 0.964 0.968 0.967 0.949 0.907
Strawberry 0.970 0.967 0.954 0.951 0.965 0.916 0.941

SwedishLeaf 0.938 0.923 0.914 0.880 0.923 0.738 0.792
Symbols 0.961 0.981 0.963 0.885 0.916 0.786 0.950

SyntheticControl 0.993 0.997 0.987 1.000 0.990 0.490 0.993
ToeSegmentation1 0.890 0.925 0.939 0.864 0.930 0.807 0.772
ToeSegmentation2 0.908 0.900 0.900 0.831 0.877 0.615 0.838

Trace 1.000 1.000 0.990 1.000 1.000 1.000 1.000
TwoLeadECG 0.985 0.982 0.999 0.993 0.976 0.871 0.905
TwoPatterns 0.994 1.000 0.999 1.000 0.999 0.466 1.000

UMD 1.000 0.993 0.993 0.993 0.986 0.910 0.993
UWaveGestureLibraryAll 0.956 0.938 0.896 0.903 0.692 0.475 0.892
UWaveGestureLibraryX 0.814 0.797 0.785 0.781 0.733 0.569 0.728
UWaveGestureLibraryY 0.736 0.714 0.710 0.697 0.641 0.348 0.634
UWaveGestureLibraryZ 0.749 0.759 0.757 0.721 0.690 0.655 0.658

Wafer 0.996 0.999 0.992 0.994 0.994 0.991 0.980
Wine 0.907 0.741 0.815 0.759 0.778 0.500 0.574

WordSynonyms 0.705 0.676 0.691 0.630 0.531 0.422 0.649
Worms 0.779 0.727 0.727 0.623 0.753 0.455 0.584

WormsTwoClass 0.792 0.740 0.792 0.727 0.753 0.584 0.623
Yoga 0.834 0.888 0.837 0.812 0.791 0.830 0.837
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