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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? Yes

(b) Did you describe the limitations of your work? Yes. Limitations and requirements for
all main results to hold are clearly stated in each theorem

(c) Did you discuss any potential negative societal impacts of your work? NA. This work
essentially generalizes causal inference techniques that have been developed in other
contexts. While harms can certainly result from the improper use of such techniques,
we do not perceive any additional problems emerging from the use of this estimand.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? Yes

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? Yes
(b) Did you include complete proofs of all theoretical results? Yes

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? Yes

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? Yes

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Yes. The standard error of the bias estimates is discussed in
footnote 4. They are quite low relative to the magnitude of performance improvement
that our approach brings and should be unconcerning.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? No. These analyses are not computationally
intensive and can be run locally on most computers.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? Yes
(b) Did you mention the license of the assets? NA
(c) Did you include any new assets either in the supplemental material or as a URL? NA
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? NA
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? NA

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? NA

12



(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? NA

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? NA
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A Restoring Efficiency With Cross Fitting

The estimator described in Section 4 is inefficient because it only uses a subset of the data for each of
the two steps. Efficiency can be improved by rotating the roles of the splitting and estimation sets,
repeating the estimation procedure and then averaging the results – a procedure that Chernozhukov
et al. [2017] term cross-fitting. Formally, we now assume that the researcher has randomly split the

data into K folds and let M̂CSEq

(k)
denote the estimate for MCSEq generated using fold k as SProb

and the remaining folds as SEst. The crossfit estimator then takes the form:

M̂CSEq

CF
=

1

K

K∑
k=1

M̂CSEq

(k)

Because this estimator is an average of conservative and consistent estimators for MCSEq , it will itself
be a conservative and consistent estimator for the MCSEq as long as the assumptions introduced in
Section 4.2 are maintained. By the same logic, it will also be asymptotically normal if the assumptions
needed for Proposition 4 are also maintained.

Because this estimator reuses the same data, estimates M̂CSEq

(k)
for different choices of k will not

be independent.10 Consequently, I use the following conservative variance estimator:

Proposition 5. Let,

V̂ar
(

M̂CSEq

CF
)

=
1

K

K∑
k=1

V̂ar
(

M̂CSEq

(k)
)

where V̂ar
(

M̂CSEq

(k)
)

is the bootstrap variance estimator for M̂CSEq

(k)
discussed in Section 4.3.

Then,

E
(

V̂ar
(

M̂CSEq

CF
))

≤ Var
(

M̂CSEq

CF
)

Proof. Conservatism of this estimator follows trivially from the validity of the boostrap variance
estimator demonstrated in Section 4.3 and one application of the Cauchy-Schwarz inequality.

The bias of this variance estimator will be minimized when there are only 2 folds. Since performance
of M̂CSEq is not otherwise impacted by the number of folds, most applications will be best served by
setting K equal to 2.

B Additional Experimental Details

B.1 M̂CSEq Estimator Details

Both experiments involve using a linear model for both P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) and τ̂(T ′, T ′′).
Specifically, the estimator for P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q ) first fits the following regression using

only observations i ∈ SProb:

̂E (Yi|ti, xi) = t′iβ̂ + x′
iγ̂

Where β and γ are regression coefficients and ti, xi, and Yi are defined in the same way as in Section
2.3. We then construct estimates for P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q ) by first monte carlo sampling B

values of β(b) and γ(b) for b = 1 . . . B such that:

10Indeed, simulations demonstrate that the correlation between estimates with different values of K can be as
high as .9.
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[
β(b)

γ(b)

]
∼ N

([
β̂
γ̂

]
, σ̂2Q−1

)

where Q = [T ′ X ′]

[
T
X

]
where the matrices T and X are defined such that each row i in T

contains vector ti and each row i in X contains vector xi. Predictions T Max(b)
q and T Min(b)

q are then
constructed as:

T Max(b)
q = argmax

T ′∈Tq

∑
i∈SProb

1{ti ∈ T ′}tiβ(b)

1{ti ∈ T ′}

and

T Min(b)
q = argmin

T ′∈Tq

∑
i∈SProb

1{ti ∈ T ′}tiβ(b)

1{ti ∈ T ′}

Finally, P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) is constructed from these monte carlo draws as:

P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) =

B∑
b=1

1{T Max(b)
q = T ′}1{T Min(b)

q = T ′′}
B

Estimates for τ̂(T ′, T ′′) on the other hand are constructed by first subsetting to just the elements of
SEst that are contained in either T ′ or T ′′ and then using those observations to fit the following linear
regression:

̂E (Yi|ti, xi) = 1{ti ∈ T ′}τ̂(T ′, T ′′) + x′
iγ̂

where τ̂(T ′, T ′′) and γ̂ are estimated via OLS.

In the synthetic data experiment, ti is unconfounded by construction, so xi is a null set. In the
democratic institutions application on the other hand, xi includes a dummy variable indicating
whether country i was in a state of civil war in any of the previous four years and a set of dummy
variables corresponding to the country and year fixed effects. Note that such fixed effects estimators
are a common approach to causal inference when using panel data in this type and can recover
estimates of causal effects under assumptions that, while certainly debatable, are relatively common
in the social sciences [Wooldridge, 2010]. In both cases, we use 100 monte carlo draws to estimate
P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q ) and 100 bootstrap iterations to estimate the confidence intervals in the

democratic institutions experiment.

B.2 Details on Implementation of the PCA Estimator

For the PCA estimator, we began by conducting a principal components analysis of the set {ti : i ∈ S}
to extract the corresponding value of the first principal component zi for all units i. We then estimated
the conditional expectation of Yi given zi using the following linear regression:

̂E (Yi|zi) = ziβ

where β is the regression coefficient estimated using OLS. We then estimate MCSEq as:

∑
i∈S

̂E (Yi|zi)1{ ̂E (Yi|zi) > Q1−q}
1{ ̂E (Yi|zi) > Q1−q}

−
∑
i∈S

̂E (Yi|zi)1{ ̂E (Yi|zi) < Qq}
1{ ̂E (Yi|zi) < Qq}

Where Q1−q and Qq represent the 1− q and q quantiles of { ̂E (Yi|zi) : i ∈ S}
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Figure 4: Simulation Root Mean Squared Error
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B.3 Root Mean Squared Error in Synthetic Data

Figure 4 visualizes the root mean squared error (RMSE) for the same two estimators using the same
simulation set up. Overall the RMSE shows the same general pattern as the bias, unless n is very
small, the MCSE estimator outperforms the PCA estimator, suggesting that there are considerable
gains in efficiency from modeling the full effect of the many causes, even when the many causes are
highly correlated.
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Figure 5: False Positive Rate in Synthetic Data
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B.4 False Positive Rate in Synthetic Data

We also validated the performance of our variance estimator on simulated data. Because the standard
errors are conservative (see the discussion of the cross-fit estimator in Section A), we focused on the
control over the false positive rate when the true MCSE is equal to zero. Specifically, null set up
used the same simulation structure as those in the main paper, except that µi is always zero. Figure 5
visualizes the results of this analysis, when the threshold for statistical significance is assumed to
be .05. Here each dot represents the false positive rate in 300 simulations (averaging over the three
different value of ρ). Overall, the results are encouraging. The false positive rate is consistently low,
and usually much below .05, as we would expect from a conservative variance estimator.

C Proofs

C.1 Proof for Proposition 1

Proof. Note, by construction, for any T ′, T ′′ ∈ Tq :

MCSEq = max
T ′,T ′′∈Tq

τ(T ′, T ′′) = τ
(
T Max
q , T Min

q

)
≥ τ(T ′, T ′′)

Therefore, from Assumption 1 and the assumption that E (τ̂(T ′, T ′′)) ≤ τ(T ′, T ′′) introduced in
the proposition statement

MCSEq ≥
∑

T ′,T ′′∈Tq

E
(
P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q )

)
τ(T ′, T ′′)

=
∑

T ′,T ′′∈Tq

E
(
P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q )

)
E (τ̂(T ′, T ′′))

= E
(

M̂CSEq

)

C.2 Proof of Theorem 2

Proof. In the following proof, I use super-scripting by (n) to denote a quantity that is dependent on
the sample size and has been estimated using a sample of size n. Turning to the proof, first consider
the case when ∀T ′, T ′′ ⊆ T :,

P̂ (n)(T ′ = T Max
q ∩ T ′′ = T Min

q |SProb)
p−−−−→

n→∞
1{T ′ = T Max

q }1{T ′ = T Max
q }
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and,

τ̂ (n)(T ′, T ′′)
p−−−−→

n→∞
τ(T ′, T ′′)

Then,

M̂CSEq

(n)
=

∑
T ,T ′′∈Tq

P̂ (n)(T ′ = T Max
q ∩ T ′′ = T Min

q |SProb)τ̂ (n)(T ′, T ′′)

p−−−−→
n→∞

∑
T ,T ′′∈Tq

1{T ′ = T Max
q }1{T ′ = T Max

q }τ̂ (n)(T ′, T ′′)

p−−−−→
n→∞

τ(T Max
q , T Min

q )

= MCSEq

The proof for almost sure convergence is identical to that for convergence in probability, however,
convergence in probability is replaced with almost sure convergence in all cases.

C.3 Proof for Proposition 3

Arbitrarily index every ordered pair (T ′, T ′′) ∈ Tq with 1 . . . J and let wi, di, and τ̂i denote the
corresponding random variables w(T ′, T ′′), d(T ′, T ′′), and τ̂(T ′, T ′′). Further, let ϵi = τ̂i − τ .
First note that by the tower property,

E

( J∑
i=1

diϵi

)2
 = E

E

( J∑
i=1

diϵi

)2 ∣∣∣∣d


= E

E

( J∑
i=1

1{di = 1}ϵi

)2 ∣∣∣∣d


= E

((
J∑

i=1

E
(
1{di = 1}ϵ2i

) ∣∣∣∣d
))

=

J∑
i=1

E (1{di = 1})E
(
ϵ2i
)

=

J∑
i=1

E (wi)E
(
ϵ2i
)

And by the Cauchy Schwarz inequality,
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E

( J∑
i=1

wiϵi

)2
 = E

 J∑
i,j=1

wiϵiwjϵj


≤ E

(
J∑

i=1

w2
i ϵ

2
i

)

≤
J∑

i=1

E
(
w2

i

)
E
(
ϵ2i
)

≤
J∑

i=1

E (wi)E
(
ϵ2i
)

where the final inequality holds because wi is between 0 and 1.

C.4 Proof for Proposition 4

Proof. As is the case in Appendix C.2, I use super-scripting by (n) to denote a quantity that is
dependent on the sample size and has been estimated using a sample of size n.

For any T ′, T ′′ ∈ Tq let v(n)i = f
(n)
i (Z, T ′, T ′′)Yi − E

(
f
(n)
i (Z, T ′, T ′′)Yi

)
where f

(n)
i () and

Z have the same definition as in assumption 2. Also, to simplify notation, let p(n) = P̂ (T ′ =
T Max
q ∩ T ′′ = T Min

q ).

Neumann [2013] shows that a sufficient condition for
∑

i∈SEst p(n)v
(n)
i to be asymptotically normal

is that along with satisfying the lindberg-feller condition and having finite second moments (which
are both assumed in the statement of the proposition), for any i, j, and any measurable function l
such that ||l||∞ ≤ 1,

Cov(l(p(n)v(n)−j )p
(n)v

(n)
i , p(n)v

(n)
j |Z) = 0

and

Cov(l(p(n)v(n)−i,j), p
(n)v

(n)
i p(n)v

(n)
j ) = 0

where p(n)v
(n)
−j denotes the vector of outcomes except for v(n)i and p(n)v

(n)
−i,j denotes the same, but

exempting both units i and j. To simplify the notation in the following derivations, I omit the explicit
conditioning on Z, but all expectations and covariance should be understood as being conditional
on Z. However, note the assumption that Yi ⊥⊥ Yj for all i ̸= j implies that conditional on Z,
v
(n)
i ⊥⊥ v

(n)
j

Now, considering the first condition,

Cov(l(p(n)v(n)−j )p
(n)v

(n)
i , p(n)v

(n)
j ) = E

(
l(p(n)v

(n)
−j )p

(n)v
(n)
i p(n)v

(n)
j

)
− E

(
l(p(n)v

(n)
−j )p

(n)v
(n)
i

)
E
(
p(n)v

(n)
j

)
= E

(
l(p(n)v

(n)
−j )p

(n)v
(n)
i p(n)

)
E
(
v
(n)
j

)
− E

(
l(p(n)v

(n)
−j )p

(n)v
(n)
i

)
E
(
p(n)

)
E
(
v
(n)
j

)
= E

(
v
(n)
j

)(
E
(
l(p(n)v

(n)
−j )p

(n)v
(n)
i p(n)

)
− E

(
l(p(n)v

(n)
−j )p

(n)v
(n)
i

)
E
(
p(n)

))
= 0

(
E
(
l(p(n)v

(n)
−j )p

(n)v
(n)
i p(n)

)
− E

(
l(p(n)v

(n)
−j )p

(n)v
(n)
i

)
E
(
p(n)

))
= 0

Next, the second condition,
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Cov(l(p(n)v−i,j), p
(n)vip

(n)vj) = E
(
l(p(n)v−i,j)p

(n)vip
(n)vj

)
− E

(
l(p(n)v−i,j)

)
E
(
p(n)vip

(n)vj

)
= E

(
l(p(n)v−i,j)

(
p2
)(n))E (vi)E (vj)− E

(
(p(n)v−i,j)

)
E
((

p(n)
))2

E
(
v
(n)
i

)
E
(
v
(n)
j

)
= E

(
v
(n)
i

)
E
(
v
(n)
j

)(
E
(
(p(n)v−i,j)

(
p(n)

)2)
− E

(
(p(n)v

(n)
−i,j)

)
E
((

p(n)
)2))

= 0

(
E
(
(p(n)v

(n)
−i,j)

(
p(n)

)2)
− E

(
(p(n)v

(n)
−i,j)

)
E
((

p(n)
)2))

= 0

So, we conclude that
∑

i∈SEst p(n)v
(n)
i

D−−−−→
n→∞

N
(
0,Var

(∑
i∈SEst v

(n)
i

))
. Since the sum of

normal random variables is also normally distributed, we then conclude that, M̂CSEq

(n)
=∑

T ,T ′′∈Tq
P̂ (n)(T ′ = T Max

q ∩ T ′′ = T Min
q |SProb)τ̂ (n)(T ′, T ′′) will also be asymptotically nor-

mal, completing the proof.
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