
Under review as a conference paper at ICLR 2024

6 SUPPLEMENTARY MATERIAL

6.1 TRAINING DETAILS

Single-process training. For smaller scale tasks (NAS-Bench-101 and Ngyuen), we use a single-
process training procedure (Algorithm 2) which alternates between two phases: collecting new
samples and fitting the binary predictor. An optional exploration parameter ε may be used to allow a
small probability of using the vanilla mutator instead of a mutation strategy with the predictor.

Distributed training. For larger scale tasks (Hero and AutoRL), we use asynchronous distributed
training to speed up candidate evaluation and model training. We use a central population server
that tracks all the candidates discovered so far while maintaining a population buffer. A single
learner periodically syncs new candidates data from the population server and maintains the bounded
replay buffer. The learner starts learning as soon as enough data has been collected, and it learns
continuously—not blocked by workers’ progress. Parallel workers sync population buffer and model
parameters from the population server and the learner respectively. Workers are responsible for
tournament selection, mutation, and candidate evaluation. Candidates are sent to the population
server once evaluation completes.

Architecture details. For the graph encoder, we use the standard GPS architecture from Pytorch
Geometric Fey & Lenssen (2019) with 10 layers of GPS convolutions. Nodes and edges from the
DAG are input into an embedding layer of size 64 and 16 respectively to obtain node and edge
embeddings which are then processed by the GNN. The GPS convolution has 64 input channels, 4
heads with an attention dropout of 0.5, and uses a GINE Hu et al. (2019) message passing layer which
uses a 2 layer (64, 64) MLP. A final global addition pooling layer across node features is applied to
obtain the graph embedding of size 64. The binary predictor is a 2 layer MLP of size (64, 64) with
dropout of 0.2. For all MLPs, we use ReLU activations.

Other training details. The predictor is trained with Adam with a learning rate of 1e−4 and weight
decay of 1e−5. Samples from evolution are added to the replay buffer. For NAS-Bench-101 we
train the predictor for 100 epochs every 100 samples. For Nguyen, we train the predictor for 10
epochs every 100 samples. One epoch is iterating over the shuffled replay buffer twice to obtain pairs
of graphs and then minimizing the binary classification loss on these pairs. For Hero and AutoRL,
we use the asynchronous distributed training logic described above. We detail configurations and
hyperparameters in Table 1.

Task NAS-Bench-101 Nguyen Hero AutoRL
Population Size 100 100 100 300
Tournament Size 20 25 25 25

Num Workers 1 CPU 1 GPU 20 GPUs 100 CPUs
Replay Buffer Size 1000 10000 50000 100000

Min Data Before Model Use 100 100 1000 3000

Table 1: Hyperparameters for tasks

Compute budget. Evaluating time for a candidate varies greatly for AutoRL (from under one minute
to over an hour due to the hurdle mechanism). Therefore, we set a timing budget of total 4800 CPU
hours (summed from 100 parallel workers), instead of a budget on number of samples, as they vary
greatly for a given time budget.

Training tricks. We discuss important tricks for training and using the model. We found that
delaying using the model until enough samples have filled the replay buffer to be important for Hero
(1000 samples) and AutoRL (3, 000 samples). This could be because these search spaces are larger,
so the model can easily overfit to a small number of samples and struggle to generalize. Another
important hyperparameter related to this one, was using a large enough replay buffer size. Smaller
buffer sizes (< 1000) had a detrimental effect.

13



Under review as a conference paper at ICLR 2024

Algorithm 2 Online Training of Binary Predictors with Evolution

Input: Total samples S, random mutation probability ε, training frequency F , max attempts K.
1: Initialize population buffer P , predictor f , replay buffer D
2: samples← 0
3: while samples < S do
4: if Uniform(0, 1) < ε or samples < min data then
5: child← RandomMutation(P )
6: else
7: child← PAM-RT(P, f,K) . Select child with Algorithm 1
8: end if
9: if samples mod F == 0 then

10: f ← TrainBinary(f,D)
11: end if
12: D ← D ∪ child . Remove oldest if hit max D size
13: P ← P ∪ child . Remove oldest if hit max P size
14: samples← samples+ 1
15: end while

6.2 HOW PAM IMPROVES LOCAL SEARCH

We show how the modified hill climbing rate (defined in Section 3.3) relates to the natural hill
climbing rate for a given model accuracy using PAM. As a corollary, we show the modified rate is
always higher than the natural rate—if the model is better than random.

For simplicity, assume we can retry as many times as needed (i.e., K → ∞ in Algorithm 1). Let
p denote the parent, c denote the child, q be the probability c > p and a be the binary predictor’s
accuracy. At each step, the probability of accepting c is:

paccept = qa+ (1− q)(1− a). (1)

Here we assume the event c > p (or c ≤ p) and the event that model makes a correct (or incorrect)
prediction are independent. Let d = 1− paccept denote the probability we reject c.

For a sequence of trials, let random variable Ci ∈ {0, 1} denote if the child sampled at i-th round is
better than the parent (according to the ground truth) and let the random variable Ai ∈ {0, 1} denote
we accept the child according to the model. The probability that we eventually accept a child that’s
better than the parent is the sum of probability of the following mutually exclusive events:

1. The first mutation is good and we accept it: P (C1 = 1)P (A1 = 1|C1 = 1) = q · a.

2. We reject the first mutation, and the second mutation is good and we accept it: P (A1 =
0)P (C2 = 1)P (A2 = 1|C2 = 1) = d · q · a.

3. In general, dn−1 · q · a if we accept at n-th trial (n starts with 1).

Summing over the geometric series gives

q · a · 1

1− d
=

qa

paccept

=
qa

qa+ (1− q)(1− a)

=
1

1 + 1−a
a · (

1
q − 1)

,

recovering the result in Section 3.3. It is easy to see that if the model accuracy is better than random
(a > 0.5), the modified hill climb rate is always higher than the natural hill climb rate. Increasing
model accuracy leads to larger gains (Figure 8).

14



Under review as a conference paper at ICLR 2024

Figure 8: Modified hill climbing rate as a function of natural hill climbing rate for different model
accuracy levels (using PAM).

6.3 EXPLOITATION AND EXPLORATION OF PAM-RT ON NAS-BENCH-101

We show PAM-RT strikes a balance between exploitation and exploration on NAS-Bench-101. In
Figure 9, we show that on NAS-Bench-101, evolution’s performance strongly correlates with the
modified hill climbing rate (and the predictor’s accuracy). This suggests that PAM-RT can exploit
the model for improved local search. In Figure 10, we study the diversity of samples both in the
population buffer and during the whole evolution process for the experiments used in Figure 11.
These measurements may serve as an indicator for the degree of exploration. We observe that PAM
and PAM-RT explore more than the baseline RegEvo whereas Max-Pairwise explores much less.

Figure 9: Strong correlation among evolution’s performance, cumulative hill climbing rate, and
the predictor’s accuracy on NAS-Bench-101. Left: Evolution curves for noisy oracles of different
accuracies. Right: Cumulative hill climbing rates in the corresponding experiments.

Figure 10: A followup study for Figure 11 on NAS-Bench-101 using the perfect oracle. Left: Number
of unique candidates (by isomorphism Ying et al. (2019)) in the population buffer. Right: Number of
total unique candidates (by isomorphism).

15



Under review as a conference paper at ICLR 2024

6.4 PAM-RT IS AN EFFECTIVE MUTATION STRATEGY

We show that PAM-RT is an effective way to combine binary predictor with evolution compared
to other mutation strategies. In Figure 11 (left), we compare PAM, PAM-RT, and Max-Pairwise
on NAS-Bench-101 using an oracle model. We observe that while all three methods converge to
the same max reward value, PAM-RT reaches that value faster. In Figure 11 (right), we show the
cumulative hill climbing rate for these methods along with the regularized evolution baseline. The
cumulative hill climbing rate at step N is defined as the average of the observed one-sample hill
climbing rate at all steps up toN . PAM-RT and PAM both have higher rate than regularized evolution,
and PAM-RT has slightly higher rate than PAM. This agrees with the analysis in Section 3.3. In Figure
9 (Appendix), we compare the cumulative hill climbing rate of PAM-RT for different noisy oracles
and show that evolution’s performance strongly correlates with this rate on NAS-Bench-101. Note
that Max-Pairwise has an overall lower cumulative hill climb rate even compared to the regularized
evolution baseline. One hypothesis is that selecting the max from a list of candidates exploits the
model more in the early phase of evolution, making subsequent local improvements harder.

Figure 11: Comparison of three mutation strategies on NAS-Bench-101. Left: Fitness curves using
the perfect oracle showing PAM-RT with the quickest convergence. Right: PAM-RT has the highest
cumulative hill climbing rate compared to other strategies.

We also show PAM-RT is robust when the model is not perfect. In Figure 12a, we show that PAM-RT
is similar to or better than Max-Pairwise when using noisy oracles of different accuracies. In Figure
12b, we show results with learned models and compare them with regularized evolution. Both
PAM-RT and Max-Pairwise are better than the baseline, but PAM-RT reaches the best performance
faster than Max-Pairwise. We emphasize that the same model architecture and training logic are used
in both cases.

(a) Noisy Oracles (b) Learned Models

Figure 12: Comparison of PAM-RT and Max-Pairwise on NAS-Bench-101. Left: Fitness curves
showing PAM-RT (solid line) is more robust to predictor accuracy using a noisy oracle compared
to Max-Pairwise (dashed line). Right: Using an online learned predictor and regularized evolution,
PAM-RT is still better than Max-Pairwise.

16


