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Defending Against Adversarial Attacks via
Neural Dynamic System (Appendix)
A Proof of Proposition and Theorem
dz(t)

= = h(a(t).1). M

Assume x* is an equilibrium of (I)). We have the same meaning for x* in our Appendix.

A.1 Proof of Theorem[T]

Theorem 1 Suppose that the perturbed instance X is produced by adding perturbations smaller than
0 on a clean instance. If all the clean instances x € X are the asymptotically stable equilibrium
points of ODE , there exists § > 0, for each contaminated instance X € {x : x € X,x ¢ X},
there exists x € X such that tiigloo lls(x,t) —x|| = 0.

Proof:

According to the definition of asymptotic stability, A constant vector of (1) is asymptotically stable if
it is stable and attractive. Based on the definition of stability of , for each € > 0 and each tg € R,
there exists d; = d(¢, 0) such that

Vx € Bs, (x) = ||s(X,t) — x|| <€,V > .
Based on the Attractivity Definition , there exists d = §(0) > 0 such that
X € Bs,(x), tl}gloo [ls(x;t) — x|| = 0.
We make § = min{d;, J2}. Because the perturbed instance X is produced by adding perturbation
smaller than § on the clean instance, then for each contaminated instance X € {X: x € X', x ¢ X'},

there exists clean instance x € X such that x € Bjs(x). Because the clean instance x is an
asymptotically stable equilibrium point of (I}, we have

Jim[[s(x,¢) — x|| = 0.
[ |
A.2 Proof of Theorem
suppose x* is an equilibrium point of nonautonomous systems (IJ),
h(x*, ) = 0,V > 0, 2)
and h is a C! function. Define
Oh(z,t)
At) = 3
( ) |: 8Z :|z_x* ’ ( )
h.(z,t) = h(z,t) — A(t)(z — x*). 4)
Then, by the definition of the Jacobian, it follows that for each fixed ¢t > 0, it is true that
h,(z,t
lim e Ol ®)
l|z||—=x* ||z — x*||
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However, it may not be true that

h
lim sup M =0. 6)

llzl|—x* 10 ||z —x*||

In other words, the convergence in (3) may not be uniform in ¢. Provided (6) holds, the system will

dz(t) _ ]
5 = A(t)(z — x¥). ™

is called the linearization of (I)) around the equilibrium x*.

Lemma 1 ([T]) Suppose Q : Rt — R is continuous and bounded, and that the equilibrium x*
of (7)) is uniformly asymptotically stable. Then, for each t > 0, the matrix is as follows:

+oo
P(t) = /t <I>T(7'7 HQ(T)®(r, t)dr

is well defined and P (t) is bounded as a function of t. Here, ®(-, -) is the state transition matrix of
system ([7) defined in [1]].

Lemma 2 ([2]) Suppose that Q : Rt — R¥* is continuous and bounded and that the equilibrium
x* of (/) is uniformly asymptotically stable. Moreover, if the following conditions also hold:
(i) Q(t) is symmetric and positive definite for each t > 0 and there exists a constant « > 0 such that

a(z —x*) (2 —x*) < (z—x*)TQ(t)(z — x*),Vz € RY, Wt > 0.
(ii) The matrix A(t) in (7) is bounded; ie,

mo := sup |[|A(t)]] < +oo,
>0

under these conditions, the matrix P(t) defined in Lemma |l|is positive definite for each t > 0;
moreover, there exists a constant 3 > 0 such that

Bz —x*)T(z—x*) < (z—x*)"P(t)(z — x*),Vz € R, ¥Vt > 0.
Lemma 3 ([3]) Suppose there exist constants a,b,c,r > 0, p > 1, and a C* function V : R% x
R+ — R such that

allz — x*||P < V(z — x",t) < b|jz — x*||P,z € VB, (x"),Vt > 0,

V(z —x*,t) < —c||z — x*||P,Vz € B,.(x*),Vt > 0.

Then the equilibrium x* is exponentially stable.

Theorem 2 Suppose that (2)) holds and h(z,t) is continuously differentiable. Define A(t), h,(z,t)
asin , (EI), respectively, and assume that (@) holds and A(t) is bounded. If x* is an exponentially
stable equilibrium of the linear system ([7), then it is also an exponentially stable equilibrium of the

system ([I).

Proof: Since A(t) is bounded and the equilibrium x* is uniformly asymptotically stable, from
Lemma 2] that the matrix

P(t) = /tm " (1,t)®(r, t)dr (8)

is well-defined for ¢ > 0; moreover, there exist constants «, 3 > 0 such that

az—x)T(z—x")<(z—x")"Pt)(z—x") <B(z—x")"(z—x"),Vz c RLVt > 0. (9)
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Hence the function
V(z —x*t) = (z —x") P(t)(z — x*)

is a decrescent positive definite function. Calculating V for the system (1)) gives

+2(z —x*)TP(2)
However, from (8] it can be easily shown that
P(t)+AT(t)P(t) + P(H)A(t) = -1
where I is the identity matrix. Therefore,

V(z—x*t) = —(z—x")"(z — x*) + 2(z — x*)TP(t)M.

ot
In the view of (6)), one can pick a number » > 0 and a p < 0.5 such that
Oh(z — x*,t)
=5
Then (I0) and () together imply that
Oh(z — x*,t)
ot

< Hlla = x|, va € B, G) e 2 0 (10)

1< 22— x") (2 —x"), Y2 € B,(x"), V¢ > 0.

2(z —x*) "P(1) 5

therefore,

V(z—x"t) < —(1-2p)(z—x")"(z—x*),z € B,(x*),Vt > 0.
this shows that —V is an locally positive definite function. Based on Lemma we conclude that x*
is an exponentially stable equilibrium.

A.3 Proof of Theorem 3|

Lemma 4 (Gronwall [4]) Suppose a(t): RT — RT is a continuous function and b, ¢ > 0 are given
constants. Under these conditions, if

t
a(t) <b —|—/ ca(T)dT,Vt > 0,
0

then
a(t) < bexp (ct),Vt > 0.
Lemma 5 ([2]) Consider the system , and suppose h is C*, and that h(x*,t) = 0, Vt > 0.
Suppose that there exist constants ji, 0,7 > 0 such that
[Is(z — x*,t,7)|| < pllz —x*||exp (—0(7 — 1)), VT >t > 0,2 € B,.(x").
Finally, suppose that, for some finite constant 7,
|Vh(z —x*,t)|| <n,Vt >0,z € B, (x")

Under these conditions, there exist a C* function V : R? x Rt — R and constants a,b,c,m >
0,p > 1, such that

allz —x*||P <V(z—x*,t) < b||z fx*||p,"/(z —x"1) < —c||z — x*||P,Vz € B,.(x*),Vt > 0,

oV (z — x*,t)

I %2 I §m||z—x*\|p_1,VzEBT(X*),VtZO.
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We first prove the general case of the Theorem [3]in our main paper. We introduce the frozen system.
dz(t)
dt

we use s,(z,7,t) to denote the frozen system (11) solution, starting at time 7 and state z, and
evaluated at time ¢.

= h(z(t),r). (11

Theorem 3 (general) Consider the system . Suppose (i) h is C and (ii)

sup sup ||Vh(z — x*,t)|| = < cc. (12)
zER™ >0

(iii) there exist constants i, § such that
|Isr(z — x*, 7, t)|| < pl|lz — x*||exp (=6(t — 7),Vt > 7 >0,Vz € R",r € RT. (13)
(iv), suppose that there is a constant € > 0 such that
H3h(z —x*1)
ot
Then the nonautonomous system ({I)) is exponentially stable, provided that
dl(p—1)0 —
c e =1)d =]
pur

|| < el|lz — x*||,Vt > 0,Vz € R™. (14)

) (15)

where p > 1 is any number such that (p — 1) —n > 0.

Proof:

We begin by estimating the rate of variation of the function s,.(z — x*, 0, t) with respect to . From
(TT), it follows that

t
ST(Z—X*,O,t):Z—X*+/ h(ST(Z_X*707U)7T)dO'
0

Differentiating with respect r gives

Os,z —x*,0,1) _/t(ah(s,.(z —x*,0,0),1) +8h(s,.(z —x*,0,0),r)0s,(z —x*,0,0) Vo
or —Jo or Os,. or ’
(16)
For conciseness, define
Osy(z —x*,0,t)
t)=||—————=
o(t) = | 2200
and note from (T4) that
Oh(s,(z —x*,0,0),r . Y
| PEZZX001)) < s, (- x,0,0)l1 < el — N exp (~d0). (17
Using (12),(T7) in (T6), we have
t t
o)< [ enll—x"l|exp (-00)do + [ ng(o)do 1s)
0 0
< =l / ng(o)do.
g 0
Applying Lemmadto (I8) gives
Os,(z —x*,0,t eullz — x*
||¥H:g(t)gwexp(nt)ﬁ’tzo. (19)
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For each r > 0, define a Lyapunov function V. : RY — R for the system . Selectp > 1+ 1,
and define

+oo
Vi(z) = / s, (z — x*,0, )| dt.

Since the system is autonomous. we replace 7 by 7, and define V : R? x R — R by

+oo
Viz, 1) = / |Is-(z — x*,0,t)||Pdt, (20)
0
then, as shown in the lemmaﬂ
L s <vE—x ) < B x| 21
2(P+1)77,u - ’ - p§ ’
P, = =l = x|

Let us compute the derivative V(z — x*, 7) along the trajectories of . By definition

. oV (z —x*,71) oV(z—x*1) 0OV(z—x*71)
ot =2\ (7 — x* ) — ) _ _x*|P.
V(e 7) = T2 D e gy Ll
(22)
It only remains to estimate %, lety := g, then, from ,
oV (z — x*,7) /+°° d[s/) (z —x*,0,t)s,(z — x*,0,t)]"
—_— = dt
or 0 or
oo 9s(2,0,t
:/ 2y[s) (z — x*,0,t)s,(z — x*,0,t)]" " 's] (z — x*,0, t)%dt
0 T
oV(z —x*, 1 oo . _1,,08.:(z —x*0,t
XD < [ pylnta— w000 EHE 0 D
T 0 T

Now use the bound in for ||s,(z — x*,0,t)|| and for w, and note that 2y = p.
This gives

oV (z — x* oo —x”
I%IS/ pﬂp—1||z_X*Hp—lwexp[—(p—1)6t+nt}dt
T

B pepr
6[(p— 1) —n]
Let m denote the constant multiplying ||z — x*||? on the right side, and note that m < 1 by .
Finally, from (22)

Iz — x|

Viz—x"t) < —(1—m)||lz —x*|]P. (23)

Now and (23) show that V' is a suitable Lyapunov function for applying the Lemma/5]to conclude
the exponential stability. And we get Theorem [3in the main paper when we set the initial time 7 = 0.

B ASODE algorithm

The architecture of our ASODE is presented in Figure 4 in our main paper and the process of ASODE
is illustrated in Section 5.3. We transform them into ASODE algorithm [T}
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Algorithm 1 ASODE algorithm

Input: Training data S := {(x1,y1),...,(Xn,¥n~)}; parameters: a, asg; evolution time: T7;
the number of samples drawn from the neighbor of x,,: K; the radius of neighbourhood of x,,:
d; batch size m; number of batches M ; number of epochs 77, Ts; the loss Lopg and Lioder;
stepsize: 11, 1)2; an algorithm for generating adversarial samples: AS(L, x).
Initialization: 9, 6.
for epoch =1 to 77 do
for mini-batch =1 to M do
Sample a mini-batch {(x,, ¥, )}, from S
fori =1to mdo

sample x; /. .. ,XEK) from Bs(x;);
end for
Update § = 0 — 771‘%5%;
end for

end for
for epoch =1 to 75 do
for mini-batch =1 to M do
Sample a mini-batch {(x,,, yn) }neq from S
Update = 0 — 1 7‘9’::9”92‘1” ;
end for
end for
Output: 6, 6.
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