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Notation. We use boldface small letters like u,x,ω to denote points in R2 and sub-scripted letters24

like x1, x2 to denote their entries. Boldface capital letters like X,Y would be used to denote points25

on a Riemann manifold. For any positive integer n, the symbol [n] refers to the set of all positive26

integers no larger than n. For any set S, the symbol 2S represents the power set of S, which contains27

all subsets of S as its elements. The set of all non-negative real numbers would be denoted as R≥0.28

For any function f with domain A, the infinity norm of f is denoted as ∥f∥∞ := supx∈A |f(x)|.29

A Background: The persistence diagram30

In this section, we give a brief introduction to the persistence diagram. We refer readers to [CD19]31

for a detailed description. Consider a random point cloud X = (X1,X2, . . . ,XN ) ∈ MN where32

M is a Riemann manifold; and a filtering function φ : 2[N ] ×MN → R, which satisfies33

φ(J,X) ≤ φ(J ′,X), ∀J ⊂ J ′ ∈ 2[N ],X ∈ MN .

A simplicial complex given X and φ at level α is defined as34

Kα(X, φ) = {J ⊂ 2[N ] | φ(J,X) ≤ α}.
Two common examples are the Cech complex, where φ(J,X) equals the radius of the circumscribed35

ball of X[J ]; and the Vietoris-Rips complex, where φ[J,X] is chosen as the maximum distance36

between points in X[J ].37

Throughout the paper, we assume that the filtering function φ takes its value in [0, L]. For all values38

α ∈ [0, L], the sequence of simplicial complexes {Kα(X, φ)}α∈[0,L] forms a filtration denoted as39

F(X, φ), where Kα(X, φ) ⊆ Kα′(X, φ) whenever α ≤ α′.40

Persistent homology is a method for computing topological features of a simplicial complex, and can41

be represented by the persistence diagram. In the filtration F(X, φ), for any persistent homology42

that begins to appear at level b and disappears at level d, we say that the homology is born at b and43

dies at d. With Ω defined as in (1), the persistence diagram of the point cloud X is a multiset on Ω44

that summarizes the birth and death times of all persistent homologies in the filtration F(X, φ):45

Dgm(X, φ) = {(bi, di) : the i-th persistent homology in F(X, φ)

that is born at bi and dies at di}.

B Supportive theoretical results46

B.1 Validation of Assumption 3.347

In this part, we provide some common data-generating mechanisms where Assumption 3.3 can be48

validated.49

Theorem B.1 Let q, d be two positive integers and q > d. Let κ be a density on [0, 1]d such that50

0 < inf κ ≤ supκ <∞. Suppose that XN be either a binomial process with parameters N and κ51

or a Poisson process of intensity Nκ in the cube [0, 1]d. Denote p(u) as the intensity function for the52

k-dimensional expected persistent measure induced by the Vietoris-Rips filtration. Then when N is53

sufficiently large, for u ∈ Ω, there exists a polynomial function poly(·), such that54

p(u) ≤ poly(N, d) supκ,

and p(u) can be correspondingly bounded.55

Theorem B.2 Let q, d be two positive integers and q > d. Let κ be a density on [0, 1]d×N56

such that 0 < inf κ < supκ < ∞. Suppose that X1,X2, . . . ,XN ∈ [0, 1]d and that57

X = (X1,X2, . . . ,XN ) ∼ κ. Denote p̃(u) as the persistence density induced by the Vietoris-Rips58

filtration of X . Then there exists a polynomial function (·), such that59

p̃(u) ≤ poly(N, d) supκ.

B.2 Clarification of Assumptions60

In this part, we provide the details in the smoothness assumption of the persistence intensity and61

density functions, and the regularization assumptions of the kernel function.62
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Hölder smoothness. Recall from Assumption 3.2 that we assume the persistence intensity function63

p(·) and the persistence density function p̃(·) are Hölder smooth. A function f : Ω → R≥0 is64

s-th order Hölder smooth with parameter Lf if it is at least (s− 1)-differentiable and that for any65

x,x′ ∈ Ω,66 ∣∣∣∣∣f(x′)− f(x)−
s−1∑
t=1

1

t!

∑
t1+t2=t

dtf(x)

dxt11 dxt22
(x′1 − x1)

t1(x′2 − x2)
t2

∣∣∣∣∣ ≤ Lf∥x′ − x∥s2. (1)

Assumptions regarding the kernel function. Throughout the paper, we assume the kernel func-67

tion K(·) satisfies some properties that are commonly used in non-parametric statistics [GN21].68

Specifically, we make the following assumption.69

Assumption B.3 The kernel function K : R2 → R satisfies the following conditions:70

(a) K(x) = 0 for all x with ∥x∥2 > 1;71

(b) ∥K∥∞ := supx |K(x)| <∞;72

(c)
∫
R2 K(x)dx = 1;73

(d) ∥K∥22 :=
∫
R2 K

2(x)dx <∞.74

(e) There exists a positive integer s, such that for all non-negative integers s1, s2 satisfying75

1 ≤ s1 + s2 < s,76 ∫
x∈R2

xs11 x
s2
2 K(x)dx = 0.

(f) K is LK-Lipchitz with respect to the ℓ2 norm on R2.77

B.3 Minimax lower bound for estimating the persistence intensity function78

Below we provide a minimax lower bound on the L∞ estimation error of the persistence intensity79

function by levering well-known minimax arguments for estimating a smooth probability density80

function based on an i.i.d. sample; see [GN21] for details, as well for the definition of Besov norms.81

Theorem B.4 Let F denote the set of functions on Ω with Besov norm bounded by B > 0:82

F = {f : Ω → R, ∥f∥Bs
∞,∞

≤ B}.

Then,83

inf
p̂n

sup
P

E
µ1,...,µn

i.i.d.∼P
sup
ω∈Ω

∥ω − ∂Ω∥q2|p̂n(ω)− p(ω)| ≥ O(n−
s

2(s+1) ),

where the infimum is taken over estimator p̂n mapping µ1, . . . , µn to an intensity function in F , the84

supremum is over the set of all probability distribution on Zq
L,M and p is the intensity function of85

EP [µ].86

B.4 Estimating the persistence surface87

For estimating the persistence surface in (6), we directly generate the persistence surface from the88

empirical averaged persistence measure µ̄n given by89

A ∈ B 7→ µ̄n(A) =
1

n

n∑
i=1

µi(A).

Since µ̄n is unbiased for E[µ] and ρ is a linear transformation, ρh(µ̄n) is also unbiased for ρh(E[µ]).90

The following theorem bounds its variation.91
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Theorem B.5 With the choice of the weight function92

f(ω) = ∥ω − ∂Ω∥q2,

when Assumptions 3.3(a) and 3.4 hold true, there exists a constant C depending on L,M,LK , ∥K∥∞93

and ∥p̄∥∞, such that for any δ ∈ (0, 1), it can be guaranteed with probability at least 1− δ that94

∥ρh(µ̄n)− ρh(E[µ])∥∞ ≤ Cmax

{
1

nh2
log

1

δh2
,

√
1

nh2

√
log

1

δh2

}
.

B.5 Estimating the persistent betti number by the empirical averaged persistence measure95

As an alternative to the kernel-based estimator for the persistent betti number in (10), we can directly96

use the empirical persistent betti number as the estimator:97

β̄x = µ̄n(Bx).

Since µ̄n is an unbiased estimator for E[µ], β̄x is an unbiased estimator for βx. As for the variation98

of the estimator, we provide the following theorem.99

Theorem B.6 Under Assumptions 3.2, 3.3(a) and 3.4, for any δ ∈ (0, 1), there exists a universal100

constant C such that with probability at least 1− δ , it can be guaranteed that101

sup
x∈Ωℓ

|β̄x − βx| ≤ C

(
Mℓ−q

n

(
2 log(Mℓ−qn+ 1) + log

1

δ

)

+

√√√√min

{
M2ℓ−2q

n
,

√
2MLℓ1−2q ∥p̄∥∞
(q − 1)+n

}(√
2 log(Mℓ−qn+ 1) +

√
log

1

δ

))
,

where (q − 1)+ = max{q − 1, 0}.102

C Preliminary facts103

In this section we present and prove various auxiliary results that are needed in the proofs of the main104

theorems.105

C.1 Preliminary facts for the proof of Theorem B.1106

Bounding the weighted intensity function as in Theorem B.1 requires a detailed exploration of the107

persistent diagram for the Vietoris-Rips filtration. Throughout this section, we will consider the108

filtering function corresponding to the Vietoris-Rips filtration109

φ[J ](X) = min
i,j∈J,i ̸=j

∥Xi −Xj∥2.

Firstly, we state a form of the area formula given by [Mor16], which would be useful for a change110

of variable in deriving the intensity function for the expected persistence measure.111

Theorem C.1 Denote L M as the M -dimensional Lebesgue measure and H M as the M -112

dimensional Hausdorff measure. Consider a Lipchitz function f : RM → RN for M ≤ N . If113

h : RM → R is an L M -integrable function, then114 ∫
RM

h(X)JXf(X)dL M (X) =

∫
RN

∑
X∈f−1{Y }

h(X)dH MY ,

where JXf(X) is the Jacobian determinant of the function f :115

JXf(X) =

√√√√det

((
df

dX

)⊤(
df

dX

))
.
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Theorem C.1 directly implies the following corollary, the proof of which would be omitted.116

Corollary C.2 Let ψ : RM → RN be a Lipchitz bijection with M ≤ N , and κ : RN → R be a117

function which satisfies that h := κ ◦ ψ is L M -integrable. Then118 ∫
RM

κ ◦ ψ(X)JXψ(X)dL M (X) =

∫
RN

κ(Y )dH M (Y ).

The following proposition considers two kinds of partitions of the unit cube [0, 1]d×N , with each part119

satisfying some desired properties.120

Proposition C.3 There exists a set S with cardinality card(S) = 4d2, such that for any J1, J2 ⊂ [N ]121

that satisfies J1 ̸= J2, |J1| = |J2| = 2, bearing a zero-measured set, [0, 1]d×n can be partitioned as122

[0, 1]d×n =
⋃
s∈S

W s
J1,J2

,

such that within each part W s
J1,J2

, there exists a diffeomorphism Ψs
J1,J2

:W s
J1,J2

→ R2× [0, 1]nd−2,123

such that:124

1. For every X ∈W s
J1,J2

, Ψs
J1,J2

(X)1 = φ[J1](X) and Ψs
J1,J2

(X)2 = φ[J2](X);125

2. The Jacobian determinant JXΨs
J1,J2

(X) ≥ 1
d .126

Proof : Let S = [d]2 × {−1,+1}2, then it is easy to see that |S| = 4d2. For any J1, J2 ⊂ [n] with127

J1 ̸= J2 and |J1| = |J2| = 2, let denote J1 = {i1, j1}, J2 = {i2, j2} with j2 = max{j ∈ J2 : j /∈128

J1}. For any s = (k1, k2, s1, s2) ∈ S, let129

W s
J1,J2

= {X :{k1} = argmaxk|Xk
i1 −Xk

j1 |, s1(X
k
j1 −Xk

i1) > 0,

{k2} = argmaxk|Xk
i2 −Xk

j2 |, s2(X
k
j2 −Xk

i2) > 0.}

Notice here that {k1} = argmaxk|Xk
i1
−Xk

j1
| means k1 is the only index for |Xk

i1
−Xk

j1
| to reach its130

maximum.131

We begin by proving that {W s
J1,J2

}s∈S forms a partition of [0, 1]d×n bearing a zero-measured set.132

Firstly, for s, s′ ∈ S with s ̸= s′, it is easy to see that W s
J1,J2

and W s′

J1,J2
are disjoint. Secondly, if133

X ∈ [0, 1]d×n −
⋃
s∈S

W s
J1,J2

,

then by definition, there exists k, k′ ∈ [d], such that k ̸= k′ and that either134

|Xk
j1 −Xk

i1 | = |Xk′

j1 −Xk′

i1 |
or135

|Xk
j2 −Xk

i2 | = |Xk′

j2 −Xk′

i2 |.

Notice that for any k, k′ ∈ [d] with k ̸= k′, the set136 {
X : |Xk

j1 −Xk
i1 | = |Xk′

j1 −Xk′

i1 |
}

=
{
X : Xk

j1 −Xk
i1 = |Xk′

j1 −Xk′

i1 |
}
∪
{
X : Xk

j1 −Xk
i1 = −|Xk′

j1 −Xk′

i1 |
}
,

where the sets137 {
X ∈ [0, 1]d×n : Xk

j1 −Xk
i1 = |Xk′

j1 −Xk′

i1 |
}

and{
X ∈ [0, 1]d×n : Xk

j1 −Xk
i1 = −|Xk′

j1 −Xk′

i1 |
}

are a subsets of (nd− 1) dimensional linear manifolds in [0, 1]d×n, and are therefore zero-measured138

in L nd. Similarly, we can prove that the set [0, 1]d×n −
⋃

s∈S W
s
J1,J2

is the union of a finite number139

of subsets of (nd− 1) dimensional linear manifolds in [0, 1]d×n. Consequently,140 ⋃
s∈S

W s
J1,J2
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is a partition of [0, 1]d×n bearing a zero-measured set.141

Furthermore, define Ψs
J1,J2

as142

Ψs
J1,J2

(X) =

φ[J1](X), φ[J2](X), {Xk
j } 1≤j≤n

1≤k≤d
(j,k)̸=(j1,k1)
(j,k)̸=(j2,k2)

 , ∀X ∈W s
J1,J2

.

Then we can firstly notice that143

Xk1
j1

= s1

√
u21 −

∑
k ̸=k1

(
Xk

j1

)2
+Xk1

i1
and

Xk2
j2

= s2

√
u22 −

∑
k ̸=k2

(
Xk

j2

)2
+Xk2

i2
,

for u1 = φ[J1](X) and u2 = φ[J2](X). This validates Ψs
J1,J2

as a diffeomorphism. The proof now144

boils down to bounding the Jacobian of Ψs
J1,J2

. Towards this end, notice that the partial derivative of145

φ is bounded by146 ∣∣∣∣∣∂φ[J1](X)

∂Xk1
j1

∣∣∣∣∣ =
∣∣∣∣∣∣ ∂

∂Xk1
j1

√√√√ d∑
k=1

(Xk
i1
−Xk

j1
)2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ Xk1
j1

−Xk1
i1√∑d

k=1(X
k
i1
−Xk

j1
)2

∣∣∣∣∣∣
≥ 1√

d
,

where in the last line we applied the fact that147 ∣∣∣Xk1
j1

−Xk1
i1

∣∣∣ = max
1≤k≤d

∣∣Xk
j1 −Xk

i1

∣∣ ≥
√√√√1

d

d∑
k=1

(Xk
i1
−Xk

j1
)2.

Similarly,148 ∣∣∣∣∣∂φ[J2](X)

∂Xk2
j2

∣∣∣∣∣ =
∣∣∣∣∣∣ ∂

∂Xk2
j2

√√√√ d∑
k=1

(Xk
i2
−Xk

j2
)2

∣∣∣∣∣∣ ≥ 1√
d
.

Furthermore, since j2 /∈ J1, it is easy to see that149

∂φ[J1](X)

∂Xk2
j2

= 0.

Therefore, the Jacobian determinant of Ψs
J1,J2

is bounded by150

JXΨs
J1,J2

(X) =

∣∣∣∣det
(
dΨs

J1,J2
(X)

dX

)∣∣∣∣
=

∣∣∣∣∣∣∣∣det




Ind−2 0(nd−2)×1 0(nd−2)×1

01×(nd−2)
∂φ[J1](X)

∂X
k1
j1

∂φ[J1](X)

∂X
k2
j2

01×(nd−2)
∂φ[J2](X)

∂X
k1
j1

∂φ[J2](X)

∂X
k2
j2



∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∂φ[J1](X)

∂Xk1
j1

· ∂φ[J2](X)

∂Xk2
j2

∣∣∣∣∣ ≥ 1

d
.

This completes the proof. ■151

The following is important for representing of the persistence intensity function p and the persistence152

density function p̃.153
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Proposition C.4 Bearing a zero-measured set, [0, 1]d×n can be partitioned as154

[0, 1]d×n =

R⋃
r=1

Vr,

such that155

1. For every X,X ′ ∈ Vr, J1, J2 ⊂ [n] with |J1| = |J2| = 2, it is guaranteed that φ[J1](X) ̸=156

φ[J2](X); furthermore, if φ[J1](X) < φ[J2](X), then φ[J1](X ′) < φ[J2](X
′);157

2. For every X,X ∈ Vr, J1, J2, J3, J4 ⊂ [n] with |J1| = |J2| = |J3| = |J4| = 2,158

it is guaranteed that φ[J1](X) − φ[J2](X) ̸= φ[J3](X) − φ[J4](X); furthermore, if159

φ[J1](X) − φ[J2](X) > φ[J3](X) − φ[J4](X) > 0, then φ[J1](X ′) − φ[J2](X
′) >160

φ[J3](X
′)− φ[J4](X) > 0.161

3. For every r ∈ [R] and X ∈ Vr, there are Nr points in Dgm(X, φ); furthermore, all these162

points can be ordered by their orthogonal distance to the diagonal, and the order is fixed for163

all X ∈ Vr.164

Furthermore, the expected persistence measure E[µ] and its normalized counterpart E[µ̃] can be165

characterized such that for any Borel set B ⊂ Ω,166

E[µ](B) =

R∑
r=1

Nr∑
i=1

∫
x∈Φ−1[J1

ir,J
2
ir](B)∩Vr

κ(X)dX and

E[µ̃](B) =

R∑
r=1

1

Nr

Nr∑
i=1

∫
x∈Φ−1[J1

ir,J
2
ir](B)∩Vr

κ(X)dX

, in which167

Φ[J1, J2](X) = (φ[J1](X), φ[J2](X)),

and J1
ir, J

2
ir are the simplicial complexes corresponding to the birth and death of the i-th persistence168

homology for all X ∈ Vr.169

Proof: For simplicity, we only give a sketch of the proof for this proposition. A weaker version170

of this proposition is proved in [CD19], where the second property of the partition is not required.171

Therefore, the partition we aim to construct here is a refinement of the partition given in [CD19]. In172

order to see that the second condition can be reached, we firstly prove that the set173

A =
{
X ∈ [0, 1]d×n :∃J1, J2, J3, J4 ⊂ [n], s.t.

|J1| = |J2| = |J3| = |J4| = 2,

J1 ̸= J2, J3 ̸= J4, (J1, J2) ̸= (J3, J4),

φ[J1](X)− φ[J2](X) = φ[J3](X)− φ[J4](X)
}

is zero-measured. For this step, the technique in proving Lemma 4.1 in [CD19] can be applied to174

prove that A does not contain any open set, and all its points are singular.175

We can further define176

F2
n = {(J1, J2) : J1, J2 ⊂ [n], |J1| = |J2| = 2, J1 ̸= J2}.

Since A is zero-measured, we can only consider the set [0, 1]d×n −A, on which177

{∆φ[J1, J2](X) := φ[J1](X)− φ[J2](X)}(J1,J2)∈F2
n

must take different values for different (J1, J2) ∈ F2
n. Denote these values as r1 < r2 < ... <178

rL, and let Eℓ(X) denote the element (J1, J2) ⊂ F2
n such that ∆φ[J1, J2](X) = rℓ. The sets179

E1(X), E2(X), ..., EL(X) then form a partition of F2
n. With similar techniques as Lemma 4.2 in180

[CD19], we can prove that the map X 7→ A2(X) is locally constant almost surely everywhere. This181

essentially completes the proof.182
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■183

The following lemma is a direct application of Proposition 4.6 in [DP19], and guarantees that the184

number of points in the persistence diagram Dgm(X, φ) that are far enough from the diagonal is185

upper bounded in terms of the expectation.186

Lemma C.5 Let κ be a probability density function on [0, 1]d that satisfies 0 < inf κ < supκ <∞.187

Denote Xn as a binomial process with parameters n and κ or a Poisson process with parameter nκ188

on [0, 1]d. In the kth dimensional persistence diagram of the Vietoris-Rips filtration of Xn, let Nℓ be189

the number of points with persistence of at least ℓ. Then there are some universal constant C that the190

expectation of Nℓ is upper bounded as191

E [Nℓ] ≤ Cn exp
(
−Cnℓd

)
,

where C is a constant depends only on k.192

Proof: Let µ be the persistence measure corresponding to the k-th dimensional persistence diagram193

of the Vietoris-Rips filtration of Xn. From Proposition 4.6 in [DP19],194

P (µ(R× [ℓ,∞)) > t) ≤ c1 exp

(
−c2

(
nℓd + (

t

n
)1/(k+1)

))
.

And hence the expectation of µ(R× [ℓ,∞)) is bounded as195

E [µ(R× [ℓ,∞))] ≤
∫ ∞

0

c1 exp

(
−c2

(
nℓd + (

t

n
)1/(k+1)

))
dt

= c1 exp
(
−c2(nℓd)

) ∫ ∞

0

exp

(
−c2(

t

n
)1/(k+1)

)
dt

= c1 exp
(
−c2(nℓd)

) ∫ ∞

0

(k + 1)nuk exp (−c2u) du

= Cn exp
(
−Cnℓd

)
,

for some constant C that depends on k. Now, R× [ℓ,∞) contains all the homological features whose196

persistence is at least ℓ, so197

Nℓ ≤ µ(R× [ℓ,∞)).

And hence198

E [Nℓ] ≤ Cn exp
(
−Cnℓd

)
.

■199

C.2 Uniform tail bounds200

In this section, we provide some uniform tail bound theorems that are important for bounding the201

variation of estimators. We will omit the proofs of these theorems in the paper.202

The Talagrand’s inequality. The following form of the Talagrand’s inequality was shown in203

[SC08].204

Theorem C.6 Let (Z,F , P ) be a probability space and (T, d) be a separable metric space. Con-205

sider a function class G = {gt : t ∈ T} ∈ L0(Z), such that the function t 7→ gt(z) is continuous in206

t for all z ∈ Z . Furthermore, suppose that there exists a constant B > 0, σ2 > 0 such that for all207

g ∈ G, E[g] = 0,E[g2] ≤ σ2, ||g||∞ ≤ B. Let Z1, Z2, ..., Zn ∼ i.i.d. P , and define208

G = sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(Zi)

∣∣∣∣∣ .
Then for any δ ∈ (0, 1), with probability of at least 1− δ,209

G ≤ 4E[G] +
√

2σ2

n
log

1

δ
+
B

n
log

1

δ
. (2)

8



Theorem C.6 implies that the expectation of G is an important factor in bounding G. The following210

theorem gives and upper bound of E[G] by the covering number of G.211

Theorem C.7 Under the same conditions as in Theorem C.6, if for any η ∈ (0, B), there exists212

A > 0, ν > 0 such that for any probability measure Q on Z , the covering number213

N (G, L2(Q), η) ≤
(
AB

η

)ν

,

then there exists a constant C such that214

E[G] ≤ C

(
νB

n
log

(
AB

σ

)
+

√
νσ2

n
log

(
AB

σ

))
.

Tail bound by polynomial discrimination. As an alternative to the Talagrand’s inequality, the215

following theorem bounds G with high probability when the function class G has polynomial216

discrimination. The proof applies the Bernstein’s inequality and a straightforward union bound217

argument.218

Theorem C.8 Under the same conditions as in Theorem C.6, define219

G(Zn
1 ) = {(g(Z1), g(Z2), ..., g(Zn)) : g ∈ G}. (3)

If the cardinality of the set G(Zn
1 ) is bounded by220

Card(G(Zn
1 )) ≤ (An+ 1)ν (4)

for some ν > 0, then there exists a universal constant C such that with probability at least 1− δ,221

G ≤ C

(√
σ2

n

(√
ν log(An+ 1) +

√
log

1

δ

)
+
B

n

(
ν log(An+ 1) + log

1

δ

))
(5)

The following lemma shows that for persistent measures with bounded total persistence, the total222

mass of the set away from the diagonal ∂Ω is upper bounded.223

Lemma C.9 Let Ωℓ denote the set of points in Ω that are at least ℓ away from the diagonal:224

Ωℓ = {ω ∈ Ω : ∥ω − ∂Ω∥2 ≥ ℓ}.

Then for a persistent measure µ, if Persq(µ) ≤M , then µ(Ωℓ) ≤Mℓ−q .225

The following theorem shown in [DL21] provides a standard lower bound for the minimax rate of226

estimating a probability density function using independent samples. This is useful for deducting the227

minimax rate for estimating the (weighted) intensity functions.228

Theorem C.10 Let F denote the set of probability density functions on [0, 1]2 with Bounded Besov229

norm:230

F = {f : [0, 1]2 → R,
∫
[0,1]2

f(x)dx = 1, ||f ||r∞,∞ ≤ B}.

Then for any estimator (measurable function)231

f̂n : ([0, 1]2)n → F ,

there exists f ∈ F , such that if X1, X2, ..., Xn ∼ i.i.d. f , then232

E∥f̂n(X1, X2, ..., Xn)− f∥∞ ≥ O
(
n−

r
2r+2

)
.

D Proof of theorems and supportive propositions233

D.1 Proof of Theorem 3.1234

In order to prove Theorem 3.1, we firstly show the following supportive lemma.235

9



Lemma D.1 Let Ω and ∂Ω be defined as in (1) and (2). Then for any q > 0,236 ∫
Ω

∥x− ∂Ω∥q2dx =
2

(q + 1)(q + 2)

(
L√
2

)q+2

.

Proof of Lemma D.1: Take the coordinate transformation237 {
y1 = x2−x1√

2
= ∥x− ∂Ω∥2;

y2 = x2+x1√
2
.

Then it can be easily verified that the determinant of the Jacobian matrix between x and y coordinates238

is 1, and that the ℓ1 ball Ω can be represented using y coordinates by239

Ω = {(y1, y2) : 0 < y1 ≤ L√
2
, y1 ≤ y2 ≤

√
2L− y1}.

Therefore,240 ∫
Ω

∥x− ∂Ω∥q2dx =

∫ L√
2

0

(∫ √
2L−y1

y1

dy2

)
yq1dy1

=

∫ L√
2

0

(
√
2L− 2y1)y

q
1dy1

=
2

(q + 1)(q + 2)

(
L√
2

)q+2

.

With this lemma, we can now prove Theorem 3.1.241

Proof of Theorem 3.1: The main idea of bounding the OT distance is to construct an admissible242

transport between µ and ν, and then control the cost of this transport. We will separate the proof into243

three steps accordingly.244

Step 1: Construct an admissible transport from µ to ν. Define π̂ as a measure on Ω× Ω such245

that for any Borel sets A,B ⊂ Ω,246

π̂(A×B) =

∫
A∩B∩Ω

min{pµ(x), pν(x)}dx+∫
A∩Proj−1

∂Ω(B)∩Ω

[pµ(x)− pν(x)]
+dx+

∫
B∩Proj−1

∂Ω(A)∩Ω

[pν(x)− pµ(x)]
+dx.

(6)

Here, for any set A ⊂ Ω,247

Proj−1
∂Ω(A) = {ω ∈ Ω : Proj∂Ω(ω) ∈ A}.

Intuitively, π̂ represents such a transport: at each point x ∈ Ω, if pµ(x) > pν(x), then we transport the248

mass of pν from x to x, and the remaining mass from x to its projection onto ∂Ω; if pν(x) > pµ(x),249

then the opposite is done.250

Firstly, we prove that this is an admissible transport between µ and ν. Notice that for any Borel set251

A ⊂ Ω, A∩Ω∩Ω = A, A∩Proj−1
∂Ω(Ω)∩Ω = A and Proj−1

∂Ω(A) = ∅. Therefore, by taking B = Ω252

in (6), we get253

π̂(A× Ω) =

∫
A

min{pµ(x), pν(x)}dx+

∫
A

[pµ(x)− pν(x)]
+dx+ 0

=

∫
A

{
min{pµ(x), pν(x)}+ [pµ(x)− pν(x)]

+
}
dx

=

∫
A

pµ(x)dx = µ(A).

Similarly, we can prove that π̂(Ω × B) = ν(B) for any Borel set B ⊂ Ω. Therefore, π̂ is an254

admissible transport between µ and ν.255
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Step 2: Present dπ̂. In order to calculate the transport cost of π̂, we firstly need to present dπ̂. For256

this, we would make use of pushforward measures. Define ı : Ω̄ → Ω̄× Ω̄ by ı(x) = (x,x), and257

let ȷ : Ω̄× Ω̄ → Ω̄ be satisfying ȷ ◦ ı = id. Furthermore, let ı∗(λΩ) be the pushforward measure on258

Ω̄× Ω̄ generated by ı. Then for any Borel sets A,B ⊂ Ω, one has ı−1(A× B) = A ∩ B, and the259

first term in (6) can be presented as260 ∫
A∩B∩Ω

min {pµ(x), pν(x)} dx

=

∫
ı−1(A×B)

min {(pµ ◦ ȷ)(ı(x)), (pν ◦ ȷ)(ı(x))} dλΩ(x)

=

∫
A×B

min {(pµ ◦ ȷ)(x,y), (pν ◦ ȷ)(x,y)} dı∗(λΩ)(x,y).

For the second term in (6), we can similarly, define ı(1) : Ω̄ → Ω̄× Ω̄ by ı(1)(x) = (x,Proj∂Ω(x)),261

let ȷ(1) : Ω̄× Ω̄ → Ω̄ be satisfying ȷ(1) ◦ ı(1) = id, and consider the pushforward measure ı(1)∗ (λΩ).262

Then (ı(1))−1(A×B) = A ∩ Proj−1
∂Ω(B), and263 ∫

A∩Proj−1
∂Ω(B)∩Ω

[pµ(x)− pν(x)]
+
dx

=

∫
(ı(1))−1(A×B)

[
(pµ ◦ ȷ(1))(ı(1)(x))− (pν ◦ ȷ(1))(ı(1)(x))

]+
dλΩ(x)

=

∫
A×B

[
(pµ ◦ ȷ(1))(x,y)− (pν ◦ ȷ(1))(x,y)

]+
dı

(1)
∗ (λΩ)(x,y).

For the third term in (6), we can similarly define ı(2) : Ω̄ → Ω̄× Ω̄ by ı(2)(x) = (Proj∂Ω(x),x), let264

ȷ(2) : Ω̄× Ω̄ → Ω̄ be satisfying ȷ(2) ◦ ı(2) = id, and consider a pushforward measure ı(2)∗ (λΩ). Then265

(ı(2))−1(A×B) = Proj−1
∂Ω(A) ∩B, and266 ∫

Proj−1
∂Ω(A)∩B∩Ω

[pµ(x)− pν(x)]
+
dx

=

∫
(ı(2))−1(A×B)

[
(pµ ◦ ȷ(2))(ı(2)(x))− (pν ◦ ȷ(2))(ı(2)(x))

]+
dλΩ(x)

=

∫
A×B

[
(pµ ◦ ȷ(2))(x,y)− (pν ◦ ȷ(2))(x,y)

]+
dı

(1)
∗ (λΩ)(x,y).

Combining these results, we can obtain the following presentation of dπ̂:267

dπ̂ = min {(pµ ◦ ȷ)(x,y), (pν ◦ ȷ)(x,y)} dı∗(λΩ)

+
[
(pµ ◦ ȷ(1))(x,y)− (pν ◦ ȷ(1))(x,y)

]+
dı

(1)
∗ (λΩ)

+
[
(pµ ◦ ȷ(2))(x,y)− (pν ◦ ȷ(2))(x,y)

]+
dı

(2)
∗ (λΩ).

Step 3: Calculate the transportation cost of π̂ . Based on our presentation of dπ̂, the q-th order268

transportation cost of π̂ is, by definition:269

Cq
q (π̂) =

∫
Ω×Ω

∥x− y∥q2dπ̂(x,y)

=

∫
Ω×Ω

∥x− y∥q2 min {(pν ◦ ȷ)(x,y), (pµ ◦ ȷ)(x,y)} dı∗(λΩ)

+

∫
Ω×Ω

∥x− y∥q2
[
(pµ ◦ ȷ(1))(x,y)− (pν ◦ ȷ(1))(x,y)

]+
dı

(1)
∗ (λΩ)

+

∫
Ω×Ω

∥x− y∥q2
[
(pµ ◦ ȷ(2))(x,y)− (pν ◦ ȷ(2))(x,y)

]+
dı

(2)
∗ (λΩ). (7)
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We now explore the three terms in (7). First of all, since ı∗(λΩ) is a pushforward measure generated270

by the function ı(x) = (x,x), it is easy to see that271

ı∗(λΩ)({(x,y) ∈ Ω× Ω : x ̸= y}) = 0.

Therefore, the first term in (7) is simply272 ∫
Ω×Ω

∥x− y∥q2 min {(pν ◦ ȷ)(x,y), (pµ ◦ ȷ)(x,y)} dı∗(λΩ)

=

∫
(x,y)∈Ω×Ω,x=y

∥x− y∥q2 min {(pν ◦ ȷ)(x,y), (pµ ◦ ȷ)(x,y)} dı∗(λΩ)

=

∫
x∈Ω

∥x− x∥q2 min{pµ(x), pν(x)}dx = 0.

As for the second term, notice that ı(1)∗ (λΩ) is a pushforward measure generated by the function273

ı(1)(x) = (x,Proj∂Ω(x)). Therefore by definition,274

ı
(1)
∗ (λΩ)({(x,y) ∈ Ω× Ω : y ̸= Proj∂Ω(x)}) = 0.

Hence, the second term in (7) is equal to275 ∫
Ω×Ω

∥x− y∥q2
[
(pµ ◦ ȷ(1))(x,y)− (pν ◦ ȷ(1))(x,y)

]+
dı

(1)
∗ (λΩ)

=

∫
(x,y)∈Ω×Ω,y=Proj∂Ω(x)

∥x− y∥q2

×
[
(pµ ◦ ȷ(1))(x,Proj∂Ω(x))− (pν ◦ ȷ(1))(x,Proj∂Ω(x))

]+
dı

(1)
∗ (λΩ)

=

∫
x∈Ω

∥x− Proj∂Ω(x)∥
q
2

[
(pµ ◦ ȷ(1) ◦ ı(1))(x)− (pν ◦ ȷ(1) ◦ ı(1))(x)

]
dx

=

∫
Ω

∥x− ∂Ω∥q2 [pµ(x)− pν(x)]
+
dx.

Similarly, we can obtain that the third term of (7) is equal to276 ∫
Ω×Ω

∥x− y∥q2
[
(pµ ◦ ȷ(2))(x,y)− (pν ◦ ȷ(2))(x,y)

]+
dı

(2)
∗ (λΩ)

=

∫
Ω

[pν(x)− pµ(x)]
+∥x− ∂Ω∥q2dx.

Combining these results, we obtain277

Cq
q (π̂) =

∫
Ω

[pµ(x)− pν(x)]
+∥x− ∂Ω∥q2dx+

∫
Ω

[pν(x)− pµ(x)]
+∥x− ∂Ω∥q2dx

=

∫
Ω

|pµ(x)− pν(x)|∥x− ∂Ω∥q2dx

≤ ∥pµ − pν∥∞
∫
Ω

∥x− ∂Ω∥q2dx =
2

(q + 1)(q + 2)

(
L√
2

)q+2

∥pµ − pν∥∞.

Notice that the last equality uses Lemma D.1.278

Finally, since π̂ is an admissible transport from µ to ν, the optimal transport distance between µ and279

ν, OTq(µ, ν), should be at most Cq(π̂). The bound (7) follows naturally.280

Example of converging OT distance while intensity functions diverge. Consider the following281

sequences of intensity functions282

pµn
=

4n

L2
1

{
∥x− un∥1 <

√
2L

2n+1

}

pνn =
4n

L2
1

{
∥x− dn∥1 <

√
2L

2n+1

}
,
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in which283

un =

(√
2L

4
,

√
2L

4
+

√
2L

2n+1

)

dn =

(√
2L

4
−

√
2L

2n+1
,

√
2L

4

)
.

Essentially, µn and νn are uniform distributions on two adjacent ℓ1 balls. It is easy to verify that the284

total mass of both µn and νn is 1, and the optimal transport distance between µn and νn is upper285

bounded by286

OTq(µn, νn) ≤
L

2n
→ 0;

on the other hand, the ℓ∞ distance between the intensity functions clearly diverges as n→ ∞:287

∥pµn
− pνn

∥∞ ≥ |pµn
(un)− pνn

(un)| =
4n

L2
→ ∞.

■288

A remark on the bottleneck distance. We argue that there can be no meaningful upper bound for the289

bottleneck distance OT∞ by the ℓ∞ distance between the intensity or density functions. Consider290

the following example: define Th as an upper-left triangle in Ω:291

Th := {ω ∈ Ω | ∥ω − ∂Ω∥2 ≥ L− h√
2

},

and T ′
h as a triangle tangent to the diagonal:292

T ′
h :=

{
ω ∈ Ω |

∥∥∥∥ω −
(
L

2
,
L

2

)∥∥∥∥
∞

≤ h

2

}
.

We define µh as the uniform distribution on Th, so that293

pµh
(ω) =

2

h2
1{ω ∈ Th};

on the other hand ν is very similar to µ but has a small part of its mass on T ′
h:294

pνh
(ω) =

(
2

h2
− h

)
1{ω ∈ Th}+ h1{ω ∈ T ′

h}.

As h → 0, it is easy to verify that ∥pµh
− pνh

∥∞ = h → 0, while OT(µh, νh) → L/
√
2. This is295

because although the densities for µ and ν becomes very close, there is always a small part of the296

mass of µ in Th that has to be transported to T ′
h; since the bottleneck distance only considers the297

maximum transport cost, it would converge to the limiting distance between Th and T ′
h, which is298

L/
√
2. It is easy to generalize this example to the case where pµh

and pνh
are smooth.299

D.2 Proof of Theorem 3.5300

Both theorems are classic results on the bias of kernel estimators and are proved by the smoothness301

of the target functions as supposed by Assumption 3.2. We here provides the proof of Theorem 3.5302

(a), and part (b) can be proved in a completely similar fashion.303

We firstly clarify the specific smoothness condition proposed by Assumption 3.2. It guarantees Hence,304

we can represent the bias of E[p̂h(ω)] as an integral. Since µ̄n is an unbiased estimator for E[µ],305

E[p̂h(ω)]− p(ω) = E
[∫

x

1

h2
K

(
x− ω

h

)
dµ̄n

]
− p(ω)

=

∫
x

1

h2
K

(
x− ω

h

)
dE[µ̄n]− p(ω)

=

∫
x

1

h2
K

(
x− ω

h

)
p(x)dx− p(ω)

=

∫
x

1

h2
K

(
x− ω

h

)
[p(x)− p(ω)]dx,
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where in the last line we applied the property that the kernel function K(·) integrals to 1. We can306

then apply the smoothness of p(·) as in (1) and obtain that307

|E[p̂h(ω)]− p(ω)|

≤

∣∣∣∣∣
∫
x

1

h2
K

(
x− ω

h

) s−1∑
t=1

1

t!

∑
t1+t2=t

dtp(ω)

dωt1
1 dωt2

2

(x1 − ω1)
t1(x2 − ω2)

t2dx

∣∣∣∣∣
+

∫
x

1

h2

∣∣∣∣K (x− ω

h

)∣∣∣∣Lp∥x− ω∥s2dx

By taking a change of variable v = x−ω
h , the first term can be represented as308

s−1∑
t=1

1

t!

∑
t1+t2=t

dtp(ω)

dωt1
1 dωt2

2

∫
∥v∥2≤1

K(v)htvt11 v
t2
2 dv.

The zero-moment condition of the kernel function in Assumption B.3 guarantees that this term equals309

to 0. Hence,310

|E[p̂h(ω)]− p(ω)| ≤
∫
x

1

h2

∣∣∣∣K (x− ω

h

)∣∣∣∣Lp∥x− ω∥s2dx

v=(x−ω)/h
========= Lph

s

∫
∥v∥2≤1

|K(v)|∥v∥s2dv.

D.3 Proof of Theorem 3.6 (a)311

A useful claim. The following claim can be applied for easing calculation in Theorem 3.6.312

Claim D.2 For q ∈ R and x ∈ [0, 1],313

1− xq ≤ (q ∨ 1)(1− x),

where q ∨ 1 = max{q, 1}.314

Proof of Claim D.2. If q ≥ 1 or q ≤ 0, let f(x) = 1 − xq. Then f ′(x) = −qxq−1 and315

f ′′(x) = −q(q − 1)xq−2, so f ′′(x) ≤ 0 for x ∈ [0, 1] and f is concave on [0, 1]. Then by Jensen’s316

inequality,317

1− xq = f(x) ≤ f(1) + f ′(1)(x− 1) = q(1− x).

If q ∈ [0, 1], then xq ≥ x implies318

1− xq ≤ 1− x.

Hence combining these gives319

1− xq ≤ (q ∨ 1)(1− x).

■320

This proof applies the Talagrand’s inequality. For this purpose, we firstly define an auxiliary family321

of functions, and then verify the conditions in Theorems C.6 and C.7 .322

Defining an auxiliary function class. Let µ1, µ2, ...., µn be i.i.d. random measures in Zq
L,M ,323

ℓω = ∥ω − ∂Ω∥2 − h and gω be defined as324

gω(µ) = ℓqω

(∫
Ω

1

h2
K

(
x− ω

h

)
dµ−

∫
Ω

1

h2
K

(
x− ω

h

)
dE[µ]

)
, (8)

and K satisfy Assumption B.3. Take Z = Zq
L,M , (T, d) = (Ω2h, ∥ · ∥2), and for all µ ∈ Zq

L,M ,325

define G = {gω : ω ∈ Ω2h}. By definition, gω(µ) has zero mean and the variation of the kernel326

estimator p̂h(·) can be represented by327

sup
ω∈Ω2h

ℓqω|p̂h(ω)− E[p̂h(ω)]| = sup
ω∈Ω2h

∣∣∣∣∣ 1n
n∑

i=1

gω(µ)

∣∣∣∣∣ .
Hence, in order to apply the Talagrand’s inequality, we need to bound ∥gω(µ)∥∞, E[gω(µ)2] and the328

covering number of G. We provide these upper bound accordingly in the following paragraphs.329
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Bounding∥gω(µ)∥∞ and E[gω(µ)2]. Notice that since K vanishes outside the unit circle of R2,330

for any x /∈ Ωℓω , we have
∣∣∣∣x−ω

h

∣∣∣∣
2
> 1 and therefore K

(
x−ω
h

)
= 0. Hence, for all ω ∈ Ω2h,331

|gω(µ)| = ℓqω

∣∣∣∣∫
Ω

1

h2
K

(
x− ω

h

)
dµ−

∫
Ω

1

h2
K

(
x− ω

h

)
dE[µ]

∣∣∣∣
≤ ℓqω max

{∣∣∣∣∫
Ω

1

h2
K

(
x− ω

h

)
dµ

∣∣∣∣ , ∣∣∣∣∫
Ω

1

h2
K

(
x− ω

h

)
dE[µ]

∣∣∣∣}
= ℓqω max

{∣∣∣∣∣
∫
Ωℓω

1

h2
K

(
x− ω

h

)
dµ

∣∣∣∣∣ ,
∣∣∣∣∣
∫
Ωℓω

1

h2
K

(
x− ω

h

)
dE[µ]

∣∣∣∣∣
}

≤ ℓqω
∥K∥∞
h2

max {(µ(Ωℓω ),E[µ](Ωℓω ))}

≤ ℓqω
∥K∥∞M
h2ℓqω

=
∥K∥∞M

h2
(9)

where in the last inequality we used Lemma C.9. On the other hand, the variance of gω is bounded by332

E[gω(µ)2] = ℓ2qω E
∣∣∣∣∫ 1

h2
K

(
x− ω

h

)
dµ−

∫
1

h2
K

(
x− ω

h

)
dE[µ]

∣∣∣∣2
≤ ℓ2qω E

∣∣∣∣∣
∫
Ωℓω

1

h2
K

(
x− ω

h

)
dµ

∣∣∣∣∣
2

≤ ℓ2qω E
{
µ(Ωℓω ) ·

∫
Ωℓ

1

h4
K2

(
x− ω

h

)
dµ

}
= ℓ2qω µ(Ωℓ)

∫
Ωℓω

1

h4
K2

(
x− ω

h

)
dE[µ] (10)

≤ ℓ2qω · M
ℓqω

∫
∥x−ω∥2≤h

1

h4
K2

(
x− ω

h

)
p(x)dx

v=(x−ω)/h
========= ℓqωM

∫
∥v∥2≤1

1

h2
K2(v)p(ω + vh)dv

≤ ℓqωM
1

h2
∥p̄∥∞
ℓqω

∫
∥v∥2≤1

K2(v)dv =
M∥p̄∥∞∥K∥22

h2
. (11)

Bounding the covering number of G. For any probability measure Q on Zq
L,M and any η ∈333

(0, ∥K∥∞M
h2 ), we aim to bound the covering number of G with respect to L2(Q) distance. This334

requires relating the L2(Q) distance in G and the ℓ2 distance in R2. Specifically, for any ω,ω′ ∈ Ω2h335

and µ ∈ Zq
L,M , we can assume without loss of generality that ℓω ≤ ℓω′ . In this case, we firstly336

observe that337 ∣∣∣∣ℓqω ∫ K

(
x− ω

h

)
dµ− ℓqω′

∫
K

(
x− ω′

h

)
dµ

∣∣∣∣
≤
∣∣∣∣∫ ℓqω

[
K

(
x− ω

h

)
−K

(
x− ω′

h

)]
dµ

∣∣∣∣+ ∣∣∣∣∫ (ℓqω − ℓqω′)K

(
x− ω′

h

)
dµ

∣∣∣∣
≤ ℓqω

∫
Ωℓω

Lk

h
∥ω − ω′∥2dµ+

∫
Ωℓ

ω′

(ℓqω′ − ℓqω)∥K∥∞dµ

≤ ℓqω
Lk

h
∥ω − ω′∥2µ(Ωℓω ) + ∥K∥∞(ℓqω′ − ℓqω)µ(Ωℓω′ )

≤ MLk

h
∥ω − ω′∥2 +M∥K∥∞

[
1−

(
ℓω
ℓω′

)q]
. (12)
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Since ℓω ≥ ℓω′ − ∥ω − ω′∥2, the last term of (12) can be bounded by using Claim D.2 and338

ℓω ≥ ℓω′ − ∥ω − ω′∥2 as339

1−
(
ℓω
ℓ′ω

)q

≤ (q ∨ 1)

(
1− ℓω

ℓ′ω

)
≤ q ∨ 1

ℓ′ω
∥ω − ω′∥2

≤ q ∨ 1

h
∥ω − ω′∥2. (13)

Notice that in the last line, we applied the fact that since ω′ ∈ Ω2h, ℓω′ = ∥ω − ∂Ω∥2 − h ≥ h.340

From now on, we use q′ to denote q ∨ 1 for simplicity. Equations (12) and (13) imply that341

∣∣∣∣ℓqω ∫ K

(
x− ω

h

)
dµ− ℓqω′

∫
K

(
x− ω′

h

)
dµ

∣∣∣∣ ≤ M(Lk + q′∥K∥∞)

h
∥ω − ω′∥2.

Therefore, the difference between gω(µ) and gω′(µ) can be bounded by342

|gω(µ)− gω′(µ)| ≤
∣∣∣∣ℓqω ∫ 1

h2
K

(
x− ω

h

)
dµ− ℓqω′

∫
1

h2
K

(
x− ω′

h

)
dµ

∣∣∣∣
+

∣∣∣∣ℓqω ∫ 1

h2
K

(
x− ω

h

)
dE[µ]− ℓqω′

∫
1

h2
K

(
x− ω′

h

)
dE[µ]

∣∣∣∣
≤ 2M(Lk + q′∥K∥∞)

h3
∥ω − ω′∥2.

In this way, we have related the distance between gω and gω′ to the distance between ω and ω′. Now,343

for any η ∈ (0, ∥K∥∞M
h2 ), we can set ϵ = ηh3

2M(LK+q′∥K∥∞) . It is easy to verify that344

ϵ <
h3

2M(LK + q′∥K∥∞)

∥K∥∞M
h2

=
∥K∥∞

2(LK + q′∥K∥∞)
h < h.

Hence, we can construct a ϵ-covering of Ω2h in the ℓ2 distance, denoted as S. It is easy to show that345

the covering number346

N (Ω2h, ∥ · ∥2, ϵ) ≤
2L2

ϵ2
.

By definition, for any ω ∈ Ω2h, there exists ω′ ∈ S, such that ∥ω−ω′∥2 ≤ ϵ < h < ℓω′ . Therefore,347

for any measure Q on Zq
L,M ,348

∥gω(µ)− gω′(µ)∥L2(Q) ≤ sup
µ∈Zq

L,M

|gω(µ)− gω′(µ)|

≤ 2M(LK + q′∥K∥∞)

h3
∥ω − ω′∥2 ≤ 2M(LK + q′∥K∥∞)

h3
ϵ = η.

In conclusion,349

N (G, L2(Q), η) ≤ N
(
Ω2h, ∥ · ∥2,

ηh3

2M(LK + q′∥K∥∞)

)
<

(
4LM(LK + q′∥K∥∞)

ηh3

)2

. (14)

Completing the proof. With ∥gω(µ)∥∞, E[gω(µ)2] and the covering number of G bounded as in350

(9), (10) and (14), we can apply Theorems C.6 and C.7 with351 
AB = 4LM(LK+q′∥K∥∞)

h3 ;

B = ∥K∥∞M
h2 ;

σ2 = M∥p̄∥∞
h2 ∥K∥22;

ν = 2.
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This gives us the conclusion that with probability at least 1− δ,352

sup
ω∈Ω2h

∣∣∣∣∣ 1n
n∑

i=1

gω(µ)

∣∣∣∣∣ ≲ 2∥K∥∞M
nh2

log

(
4L(LK + q′∥K∥∞)

δh2∥K∥2

√
M

∥p̄∥∞

)
+

√
2M∥p̄∥∞

n

∥K∥2
h

√√√√log

(
4L(LK + q′∥K∥∞)

δh2∥K∥2

√
M

∥p̄∥∞

)
.

■353

D.4 Proof of Theorem 3.6(b)354

Part (b) of Theorem 3.6 can be proved in a similar, though slightly easier, fashion to part (a). We355

therefore provide a sketch of the proof and omit the details.356

Defining an auxiliary function class. For every µ̃ and ω ∈ Ω, define357

gω(µ̃) =

∫
Ω

1

h2
K

(
x− ω

h

)
dµ̃−

∫
Ω

1

h2
K

(
x− ω

h

)
dE[µ̃],

and let G = {gω : ω ∈ Ω}. It is easy to verify that E[g] ≡ 0 for all ω ∈ Ω, and that358

∥p̌h(ω)− p̃(ω)∥ = sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(µi)

∣∣∣∣∣ .
Bounding ∥g∥∞ and E[g2]. Since µ̃ and E[µ̃] are normalized measures with a total mass of 1,359

∥g∥∞ can be bounded by360

∥g∥∞ ≤ ∥K∥∞
h2

;

in the mean time, Assumption 3.3 (b) guarantees that E[gω(µ̃)2] can be bounded by361

E[gω(µ̃)2] ≤
∥p̃∥∞∥K∥22

h2
.

Bounding the covering number of G. We again apply the Lipchitz property of the kernel function362

K(·) to conclude that for any ω,ω′ ∈ Ω,363

|gω(µ̃)− gω′(µ̃)| ≤ 2LK

h3
∥ω − ω′∥2.

Hence, using a similar reasoning to the proof of part (a), we can bound the covering number of G by364

N (G, L2(Q), η) <

(
4LLK

ηh3

)2

.

Completing the proof. Theorem 3.6 (b) is a direct corollary of Theorems C.6 and C.7 with the365

following choice of parameters:366 
AB = 4LLK

h3 ;

B = ∥K∥∞
h2 ;

σ2 = ∥p̃∥∞
h2 ∥K∥22;

ν = 2.

D.5 Proof of Theorems 3.7 and B.4367

In this section, we provide the proof of Theorem B.4, which gives a minimax lower bound for368

estimating the weighted persistence intensity function. Theorem 3.7, which gives the minimax lower369
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bound for estimating the persistence density function, can be proved in a similar while simpler370

fashion, so we omit its proof for brevity.371

The main idea of this proof is to build a connection of weighted intensity function p̄(·) and a372

probability density function. First of all, we can observe the conclusion of Theorem C.10 holds true373

also when the support for the density function is Ω instead of [0, 1]2. Now, notice that for any x ∈ Ω,374

we can define the following measure:375

µx =Mδx||x− ∂Ω||−q
2 . (15)

It is easy to verify that Persq(µx) = M , so µx ∈ Zq
L,M . Therefore, for any estimator p̂n :376

(Zq
L,M )n → F , we can construct the following estimator f̂n:377

f̂n(x1,x2, ...,xn) = p̂n(µx1
, µx2

, ..., µxn
).

Theorem C.10 states that there exists a probability density function f : Ω → R with ||f ||r∞,∞ ≤ B378

such that when X1, X2, ..., Xn ∼ i.i.d. f ,379

E||f̂n(X1, X2, ..., Xn)− f ||∞ ≥ O
(
n−

r
2r+2

)
.

We can apply the probability density function f to construct a probability measure on Zq
L,M . First,380

define a map Φ : Ω → Zq
L,M by Φ(x) = µx in (15). Impose a measure structure on Zq

L,M by381

pushforwarding the measure structure on Ω, i.e. Y ⊂ Zq
L,M is measurable if and only if Φ−1(Y) is382

measurable in Ω. Define a probability measure P on Zq
L,M as a pushforward measure, i.e., for any383

measurable set Y ⊂ Zq
L,M ,384

P (Y) =

∫
Φ−1(Y)

f(x)dx.

Then from the change of variables,385 ∫
Y
g(µ)dP (µ) =

∫
Φ−1(Y)

g(Φ(x))f(x)dx.

Now, the intensity for P can be represented as follows: let p(·) be the intensity function for E[µ]386

when µ ∼ P , then for all u ∈ Ω,387

p̄(u) := ∥u− ∂Ω∥q2p(u) =Mf(u). (16)

To see this fact, consider any Borel set A ⊂ Ω. By definition, the expected measure E[µ] satisfies388

E[µ](A) = E[µ(A)] =

∫
Zq

L,M

µ(A)dP (µ)

=

∫
Φ−1(Zq

L,M )

Φ(x)(A)f(x)dx

=

∫
Ω

µx(A)f(x)dx

=

∫
Ω

M ||x− ∂Ω||−q
2 1{x ∈ A}f(x)dx

=

∫
A
M ||x− ∂Ω||−q

2 f(x)dx.

Since A can be any Borel set, we get p(u) = M ||u − ∂Ω||−q
2 by definition, and Equation (16)389

follows naturally. Since the ℓ∞ difference between f̂nand f is lower bounded, we can obtain390

EP sup
ω∈Ω

∥ω − ∂Ω∥q2|p̂n(ω)− p(ω)| =MEf∥f̂n − f∥∞ ≥ O
(
n−

r
2r+2

)
.

■391
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D.6 Proof of Theorems and Corollaries regarding linear representations of the persistence392

measure393

The theoretical results regarding linear representations of the persistence measure in Section 3.3 are394

rather direct applications of the theoretical results on estimating the persistence intensity and density395

functions. We therefore combine their proofs in this section.396

Proof of Theorem 3.8. Theorem 3.5 directly implies that under Assumption 3.2, for any Ψ ∈397

F2h,R, the bias of Ψ̂ is bounded by398 ∣∣∣E[Ψ̂]−Ψ
∣∣∣ = ∣∣∣∣∫

ω∈Ω

f(ω)(E[p̂h(ω)]− p(ω))dω

∣∣∣∣
≤
∫
ω∈Ω

f(ω)|E[p̂h(ω)]− p(ω)|dω

≤ sup
ω∈Ω

|E[p̂(ω)]− p(ω)|
∫
ω∈Ω

f(ω)dω

≤ Lph
sR

∫
∥v∥2≤1

|K(v)|∥v∥22dv,

where in the last line we applied Theorem 3.5 and the definition of F2h,R. The upper bound for the399

bias of Ψ̌ follows similarly.400

Proof of Theorem 3.9. The upper bound for the variation of Ψ̂ is a direct corollary of Theorem 3.6401

(a) and the fact that402

sup
Ψ∈F2h,R

∣∣∣Ψ̂− E[Ψ̂]
∣∣∣ = sup

Ψ∈F2h,R

∣∣∣∣∫
ω∈Ω

f(ω)[p̂h(ω)− E[p̂h](ω)]dω

∣∣∣∣
≤
∫
ω∈Ω

ℓ−q
ω f(ω)dω · sup

ω∈Ω
ℓqω |p̂h(ω)− E[p̂h](ω)|

≤ R · sup
ω∈Ω

ℓqω |p̂h(ω)− E[p̂h](ω)| ;

The upper bound for the variation of Ψ̌ follows from Theorem 3.6 (b) and a similar relation:403

sup
Ψ̃∈FR

∣∣Ψ̌− E[Ψ̌]
∣∣ ≤ R · sup

ω∈Ω
|p̌h(ω)− E[p̌h(ω)]|.

Proof of Corollaries 3.10 and 3.11. For every x ∈ Ω2h, define404

fx(ω) = 1 {ω ∈ Bx} ,

and let405

F2h,R =

{
Ψ =

∫
Ω2h

fx(ω)dE[µ]
∣∣∣∣x ∈ Ω2h

}
.

Corollary 3.10 follows from Theorem 3.8 and the fact that406 ∫
ω∈Ω2h

fx(ω)dω ≤ L2

4

for every x ∈ Ω2h. Similarly, Corollary 3.11 follows from Theorem 3.9 and the fact that407 ∫
ω∈Ω2h

ℓ−q
ω fx(ω)dω ≤ Cℓ2−q

x ,

for a constant C.408
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Proof of Corollary 3.12. For every x ∈ Ω, we define409

fx(ω) = 1 {ω ∈ Bx} ,

and let410

F̃R =

{
Ψ̃ =

∫
Ω

fxωdE[µ̃]
∣∣∣∣x ∈ Ω

}
.

Corollary 3.12 follows directly from Theorem 3.9 and the fact that for every x ∈ Ω,411 ∫
ω∈Ω

fx(ω)dω ≤ L2

4
.

D.7 Proof of Theorem B.5412

This proof again involves the Talagrand’s inequality, and therefore takes a similar shape to the proof413

of Theorem 3.6. We begin by defining an auxiliary function class.414

Defining the auxiliary function class G. Recall that we choose the weight function as f(ω) =415

∥ω− ∂Ω∥q2. Therefore, for any persistence measure µ ∈ Zq
L,M , its corresponding persistence surface416

is characterized by417

ρh(µ)(u) =

∫
Ω

∥ω − ∂Ω∥q2
1

h2
K

(
u− ω

h

)
dµ(ω);

hence, by defining418

gu(µ) =

∫
Ω

∥ω − ∂Ω∥q2
1

h2
K

(
u− ω

h

)
d (µ− E[µ]) (ω)

and letting G = {gu(µ) : u ∈ Ω}, we observe that E[g] = 0 for all g ∈ G and419

∥ρh(µn)− E[ρh(µ)]∥∞ = sup
g∈G

∥∥∥∥∥ 1n
n∑

i=1

g(µi)

∥∥∥∥∥ .
Bounding ∥g∥∞ and E[g2]. Assumptions 3.4 and B.3 directly implies that for any g ∈ G and any420

u ∈ Ω,421

|gu(µ)| ≤
∥K∥∞
h2

max

{∫
Ω

∥ω − ∂Ω∥q2dµ,
∫
Ω

∥ω − ∂Ω∥q2dE[µ]
}

=
∥K∥∞
h2

max {Persq(µ),Persq(E[µ])} ≤ M∥K∥∞
h2

.

Regarding the variance of g, Assumption 3.3 implies that422

E[gu(µ)2] ≤ ∥g∥∞ ·
∫
Ω

∥ω − ∂Ω∥q2
1

h2

∣∣∣∣K (u− ω

h

)∣∣∣∣ dE[µ]
≤ M∥K∥∞

h2

∫
Ω

1

h2

∣∣∣∣K (u− ω

h

)∣∣∣∣ ∥ω − ∂Ω∥q2p(ω)dω

≤ M∥K∥∞
h2

∫
∥v∥2≤1

|K(v)|dv · sup
ω∈Ω

∥ω − ∂Ω∥q2p(ω)

≤ M∥K∥1∥K∥∞∥p̄∥∞
h2

,

where in the third line we applied the change of variable v = (u− ω)/h, and let423

∥K∥1 :=

∫
∥v∥2≤1

|K(v)|dv.
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Covering number of G. Similar to the proof of Theorem 3.6, we bound the covering number of G424

by the Lipchitz property of the kernel function K. For any two points u,u′ ∈ Ω, Assumption B.3425

guarantees that426

∣∣∣∣K (u− ω

h

)
−K

(
u′ − ω

h

)∣∣∣∣ ≤ LK∥u− u′∥2
h

.

Therefore, it is easy to verify that427

|gu(µ)− gu′(µ)| ≤ MLK∥u− u′∥2
h3

.

A similar reasoning to the proof of Theorem 3.6 yields that the covering number of G is upper428

bounded by429

N (G, L2(Q), η) ≤ N
(
Ω, ∥ · ∥2,

ηh3

MLK

)
≤ 2

(
LMLK

ηh3

)2

.

Completing the proof. Theorem B.5 is a direct application of Theorems C.6 and C.7 with the430

following choice of parameters:431


AB = 2LMLk

h3 ;

B = M∥K∥∞
h2 ;

σ2 = M∥K∥1∥K∥∞∥p̄∥∞
h2 ;

ν = 2.

D.8 Proof of Theorems B.1 and B.2432

Observe that the persistence diagram of the Vietoris-Rips filtration of X = (X1,X2, ...,XN ) is433

decided purely by {φ[J ](X)}J⊂[N ],|J|=2, in which434

φ[J ](X) = ∥Xi −Xj∥2,

for J = {i, j}. In what follows, we firstly focus on the proof of Theorem B.1, and apply the435

techniques to that of Theorem B.2 in a similar manner.436

Proof of Theorem B.1. Propositions C.4 and C.3 imply that for any Borel set B ⊆ Ω,437

E[µ](B) =

R∑
r=1

Nr∑
i=1

∑
s∈S

∫
Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir,J

2
ir]

−1(B)

κ(X)dX

=

R∑
r=1

Nr∑
i=1

∑
s∈S∫

Ψs

J1
ir

,J2
ir

(Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir,J

2
ir]

−1(B))

κ((Ψs
J1
ir,J

2
ir
)−1(u, y))J [Ψs

J1
ir,J

2
ir
]−1(u,Y )dY du,
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where in the second line we change the variable from X ∈ [0, 1]d×n to (Y ,u) with Y ∈ [0, 1]nd−2438

and u ∈ Ω. Now, a change of order of summation gives439

E[µ](B) =
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

R∑
r=1

Nr∑
i=1

I(J1
ir = J1, J

2
ir = J2)

×
∫
Ψs

J1,J2
(Vr∩W s

J1,J2
∩Φ[J1,J2]−1(B))

κ((Ψs
J1,J2

)−1(u,Y ))J [Ψs
J1
ir,J

2
ir
]−1(u, y)dY du

≤
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

R∑
r=1

Nr∑
i=1

I(J1
ir = J1, J

2
ir = J2)

×
∫
Ψs

J1,J2
(Vr∩W s

J1,J2
∩Φ[J1,J2]−1(B))

d supκdY du

≤
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

N(B)

∫
Ψs

J1,J2
(W s

J1,J2
∩Φ[J1,J2]−1(B))

d supκdY du, (17)

where N(B) is the number of persistent homology points in B, and in the second line we use the440

facts that {Vr}Rr=1 are disjoint, κ ≤ supκ and J [Ψs
J1
ir,J

2
ir
]−1 ≤ d. Hence, bounding E[µ](B) boils441

down to characterizing the domain of integration on the right hand side of (17). For this, notice that442

by definition,443

(Y ,u) ∈ Ψs
J1,J2

(W s
J1,J2

∩ Φ[J1, J2]
−1(B))

↔ ∃X ∈W s
J1,J2

, such that Φ[J1, J2](X) ∈ B,Ψs
J1,J2

(X) = (Y ,u)

→ ∃X ∈W s
J1,J2

, such that Φ[J1, J2](X) ∈ B,Φ[J1, J2](X) = u, and Y ∈ [0, 1]Nd−2

→ u ∈ B, and Y ∈ [0, 1]Nd−2.

Hence, E[µ](B) is upper bounded by444

E[µ](B) ≤ N(B)
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

∫
u∈B,Y ∈[0,1]Nd−2

d supκdY du

= d supκN(B)
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

∫
[0,1]Nd−2

dY

∫
B

du

= d supκN(B)
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

∫
B

du.

This effectively means that the intensity function p(u) is upper bounded by445

p(u) ≤ E [N({u})] d supκ
∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

1

< E [N({u})] card(S)|{(J1, J2) : |J1| = |J2| = 2, J1 ̸= J2, J1 ⊂ [N ], J2 ⊂ [N ]}|d supκ.
Now, N({u}) ≤ Nℓ, so Lemma C.5 implies E [N({u})] ≤ CN . And card(S) ≤ 4d2 and446

|{(J1, J2) : |J1| = |J2| = 2, J1 ̸= J2, J1 ⊂ [N ], J2 ⊂ [N ]}| ≤ N4

4 , so447

p(u) ≤ (CN) · (4d2) ·
(
N4

4

)
· d supκ

= C ′N5d3 supκ.
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Theorem B.1 follows with the choice of448

poly(N, d) = N5d3.

Proof of Theorem B.2. Propositions C.4 and C.3 imply that for any Borel set B ⊆ Ω, the449

normalized persistence measure of B is expressed by450

E[µ̃](B) =

R∑
r=1

1

Nr

Nr∑
i=1

∑
s∈S

∫
Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir,J

2
ir]

−1(B)

κ(X)dX

≤
R∑

r=1

max
1≤i≤Nr

∑
s∈S

∫
Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir,J

2
ir]

−1(B)

κ(X)dX.

Hence, same techniques can be applied to show that the persistence density function is upper bounded451

by452

p̃(u) ≤ d supκE
[
N({u})
N({u})

]∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

1

≤ d supκ max
1≤i≤N(u)

∑
s∈S

∑
J1,J2⊂[N ]
|J1|=|J2|=2

J1 ̸=J2

1

≤ card(S)|{(J1, J2) : |J1| = |J2| = 2, J1 ̸= J2, J1 ⊂ [N ], J2 ⊂ [N ]}|d supκ

≤ (4d2) ·
(
N4

4

)
· d supκ.

Theorem B.2 follows from choosing453

poly(N, d) = N4d3.

D.9 Proof of Theorem B.6454

In this proof, we firstly define an auxiliary family of functions, and then verify the conditions in455

Theorem C.8.456

Defining the auxiliary function class. For every x ∈ Ωℓ and µ ∈ Zq
L,M , define457

gx(µ) = µ(Bx)− E[µ](Bx), (18)

and let G = {gx : x ∈ Ωℓ}. It is easy to verify that E[gx(µ)] = 0 for all x ∈ Ωℓ, and that458

sup
x∈Ωℓ

∣∣∣β̂x − E[β̂x]
∣∣∣ = ∣∣∣∣∣supg∈G

1

n

n∑
i=1

g(µi)

∣∣∣∣∣ .
Bounding ||gx||∞ and E[gx(µ)2]. For any x ∈ Ωℓ , the set Bx is contained in Ωℓ. Hence for any459

µ ∈ Zq
L,M , µ(Bx) and E[µ](Bx) can be bounded as460

µ(Bx) ≤ µ(Ωℓ) ≤ ℓ−qPersq(µ) ≤Mℓ−q,

E[µ](Bx) ≤ E[µ](Ωℓ) ≤ ℓ−qPersq(E[µ]) ≤Mℓ−q. (19)

Hence ∥gx∥∞ can be bounded as461

∥gx∥∞ ≤ sup
µ∈Zq

L,M

max {µ(Bx),E[µ](Bx)} ≤Mℓ−q. (20)

As for the variance of gx(µ), we firstly observe that462

E[gx(µ)2] ≤ ||gx||∞E[µ](Bx) (21)
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Now, apart from using the bound E[µ](Bx) ≤Mℓ−q from (19), we can also have tighter bound with463

respect to ℓ when q > 1. To do this, we again take the coordinate transformation464 {
y1 = x2−x1√

2
= ∥x− ∂Ω∥2,

y2 = x2+x1√
2
.

It can be easily verified that the determinant of the Jacobian matrix between x and y coordinates is 1,465

and that the Ωℓ can be represented using y coordinates by466

Ωℓ =

{
(y1, y2) : ℓ < y1 ≤ L√

2
, y1 ≤ y2 ≤

√
2L− y1

}
.

Then, we have a tighter bound with respect to ℓ of E[µ](Bx) when q > 1 as467

E[µ](Bx) ≤ E[µ](Ωℓ) =

∫
Ωℓ

p(u)du

=

∫
Ωℓ

∥u− ∂Ω∥−q
2 p̄(u)du

≤ ∥p̄∥∞
∫ L√

2

ℓ

(∫ √
2L−y1

y1

dy2

)
y−q
1 dy1

≤ ∥p̄∥∞
∫ L√

2

ℓ

√
2Ly−q

1 dy1

≤
√
2Lℓ1−q ∥p̄∥∞
q − 1

.

Hence when we let (q − 1)+ = max{q − 1, 0},468

E[µ](Bx) ≤ min

{
Mℓ−q,

√
2Lℓ1−q ∥p̄∥∞
(q − 1)+

}
. (22)

And hence by applying (22) to (21), the variance of gx(µ) can be upper bounded as469

E[gx(µ)2] ≤ ∥gx∥∞ E[µ](Bx)

≤ min

{
M2ℓ−2q,

√
2MLℓ1−2q ∥p̄∥∞

(q − 1)+

}
(23)

Polynomial discrimination of G. By definition, the empirical persistent measure µi can be repre-470

sented as471

µi =
∑
j

δrij
,

in which rij = (bij , dij) represents the j-th point in the corresponding persistent diagram, with bij472

and dij being its birth and death weight respectively . Without loss of generality, we can sort the473

points in descending order of their distance to the diagonal ∂Ω. Let Ni = µi(Ωℓ), then we have474

Ni ≤Mℓ−q . Hence, for every x with ||x− ∂Ω||2 = ℓ, µi(Bx) can be represented as475

µi(Bx) =

Ni∑
j=1

1(bij < x1)1(dij > x2). (24)

With this expression, we are ready to bound the cardinality of G(µn
1 ). Notice that for any fixed x, the476

value of the tuple (gx(µ1), ..., gx(µn)) is completely decided by the Cartesian product of indicator477

functions478

{1(bij < x1)}i∈[n],j∈[Ni] × {1(dij > x2)}i∈[n],j∈[Ni] := Sb × Sd.

It is easy to see that with the variation of x = (x1, x2), the number of different values taken by Sb479

and Sd can be bounded by480

1 +

n∑
i=1

Ni ≤ 1 + n ·Mℓ−q.

Hence, the cardinality of G(µn
1 ) is bounded by481

Card(G(µ)) ≤
(
Mℓ−qn+ 1

)2
. (25)
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Figure 1: Top row: sample orbits from the ORBIT5K data set with r = 2.5 (left) and r = 4.0 (right).
Bottom row: sample persistent diagrams.

Completing the proof. The theorem is a direct result for applying Theorem C.8 with the following482

parameters:483 
A =Mℓ−q;

B =M ;

σ2 = min
{
M2ℓ−2q,

√
2MLℓ1−2q∥p̄∥∞

(q−1)+

}
;

ν = 2.

E Experimental details484

Figure 1 shows two ORBIT5K simulations with different values of r (2.5 and 4) and the corresponding485

persistent diagrams. Figure 2 displays the kernel intensity functions for the ORBIT5K simulations set486

with r = 2.5 and r = 4 for varying sample sizes, while Figure 3 shows persistence density functions.487

Figures 4 and 5 show the Betti curves and estimated Betti curves using the kernel density function for488

the ORBIT5K simulations for r = 2.5 and r = 4.489

Finally, Figure 6 displays the estimated persistence density functions computed over random draws490

of varying size of the digits “4" and “8" from the MNIST dataset.491
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Figure 2: Kernel estimators for the persistence intensity function from the ORBIT5K data set with
r = 2.5 (left) and r = 4.0 (right) and sample sizes 1, 10, 100 and 1000 (top to bottom).
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Figure 3: Kernel estimators for the persistence density function from the ORBIT5K data set with
r = 2.5 (left) and r = 4.0 (right) and sample size n = 1000.

Figure 4: Empirical betti curves (left) and normalized betti curves (right) from the ORBIT5K data
set with r = 2.5 and r = 4.0. Solid lines show sample average and the shades depict the lower and
upper 2.5 percentiles.

Figure 5: Kernel-based betti curves (left) and normalized betti curves (right) from the ORBIT5K data
set with r = 2.5 and r = 4.0. Solid lines show sample average and the shades depict the lower and
upper 2.5 percentiles.
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Figure 6: Kernel estimators for the persistence density function from the MNIST data set for the
digits 4 (left column) and 8 (right column) based on random draws of sample sizes 100, 1000 and
5000 (top to bottom).
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