
A Minimum-fuel cost (MF) derivation

When c(a(t)) = |a(t)|, from Pontryagin’s maximum principle [27, Sec. 5.5], the necessary optimality
condition for action a?(t) ∈ A and 0 ≤ t ≤ T is

H(s?(t), a?(t), p?(t)) ≥ H(s?(t), a(t), p?(t)), ∀a(t) ∈ A,
therefore, − |a?(t)|+ p?(t)T g(s?(t))a?(t) ≥ −|a(t)|+ p?(t)T g(s?(t))a(t), ∀a(t) ∈ A.

To maximize the right-hand side, a(t) must solve the following linear optimization problem

maximize z + p?(t)T g(s?(t))a(t)
subject to z ≤ a(t) ≤ −z

−1 ≤ a(t) ≤ 1,
(1)

where a(t) and z are the optimization variables. Figure 1 on the right shows the feasible region
of (1) and the corresponding cost function gradient (p?(t)T g(s?(t)), 1). If p?(t)T g(s?(t)) < −1, the
solution corresponds to vertex (a?(t), z?) = (−1,−1), while, if p?(t)T g(s?(t)) > 1, the solution
ends up at vertex (a?(t), z?) = (1,−1). In case −1 < p?(t)T g(s?(t)) < 1, the maximum is attained
at (a?(t), z?) = (0, 0). Finally, if p?(t)T g(s?(t)) = 1, any 0 ≤ a(t) ≤ 1 and z = −a(t) achieve
the maximum. Similarly, if p?(t)T g(s?(t)) = −1, any −1 ≤ a(t) ≤ 0 and z = a(t) achieve the
maximum. The last two cases correspond to cost function gradients perpendicular to the faces of the
feasible region. In linear optimization, these cases give is an infinite number of optimal solutions
between two adjacent vertices.

B Baseline Algorithms and Gradient Estimation

B.1 Baseline Algorithms

We provide a brief discussion of the baseline algorithms below. The libraries our implementations are
based off for PPO, SAC, and DreamerV2 are available under the MIT License, and the base MPO
implementation under the Apache License 2.0. For MuJoCo [52], we used a Pro Lab license.

PPO Proximal Policy Optimization [43] is a model-free on-policy algorithm. It aims to maximize
expected improvement while guarding against policy collapse by limiting the policy update magnitude.
Here, we consider PPO with a clipped surrogate objective and early stopping based on the mean
KL-divergence from the previous policy. Our implementation is based on the Tonic library [42].

SAC Soft Actor Critic [16] is a model-free off-policy algorithm. It aims to maximize expected
improvement on an entropy-regularized objective and implicitly trades off exploration with exploita-
tion. Here, we optimize the entropy coefficient α and leverage the clipped double-Q trick to stabilize
learning. We build on the SAC implementation provided by the Softlearning library [17].

MPO Maximum a Posteriori Policy Optimization [1] is a model-free off-policy algorithm. It
alternates between a KL-regularized optimization of a non-parametric policy on samples from the
state-action value function and fitting a parametric policy to this non-parametric target. We leverage
decoupled KL-constraints in optimizing the parametric policy and employ Retrace [40] for learning
the state-action value function. We extend the implementation provided by the Acme library [20].

DreamerV2 DreamerV2 [18] is a model-based off-policy algorithm. It learns a recurrent latent
variable model based on visual inputs and optimizes the policy on entropy-regularized λ-returns from
model rollouts. We follow the original authors in parameterizing the baseline policy as a diagonal
truncated Gaussian for continuous control. Our implementation builds on the DreamerV2 codebase.

Bijectors The underlying distributions are mapped to the environments’ action spaces via a bijector.
This consist of a shift and scale operations for Categorical and Gaussian policies, while the latter may
additionally leverage a tanh bijector.
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Algorithm 1 Reparameterization gradient for Gaussian
1 mean, scale = network(inputs) # conditional moments
2 sample = gaussian(0.0, 1.0) # sample without gradient
3 sample = mean + scale * sample # sample with moments gradient
4 action = bijector(sample) # transform to action space

Algorithm 2 Straight-through gradient for Categorical
1 probs = network(inputs) # conditional probabilities
2 sample = one_hot(probs) # sample without gradient
3 sample = sample + probs - no_gradient(probs) # sample with probs gradient
4 action = bijector(sample) # transform to action space

B.2 Gradient Estimation for Stochastic Computation Graphs

Random sampling operations are generally not differentiable. To enable backpropagation through
stochastic policies, we leverage the common reparameteriztion trick for Gaussian policies in Al-
gorithm 1. For Categorical policies, we apply the biased straight-through gradient estimator [5] in
Algorithm 2. We also tried the Gumbel-Softmax estimator [22, 36], but did not find this to improve
performance. The optimization procedure employed by MPO bypasses the need for gradient estima-
tion via reparameterization, which particularly reduces bias when optimizing Categorical policies.

C Training Details

Experiments were each conducted on 4 CPU cores in combination with 1 GPU (NVIDIA V100).
All reported means and standard deviations are based on 4 runs differing in their random seeds. To
estimate transfer performance, we computed mean and standard deviation across 5 runs per seed for
a total of 20 trajectories as disturbances are probabilistic. Throughout, we consider episodes with
the standard length of 1000 timesteps. For the experiments that down-sample the control frequency,
we kept the episode duration constant and adapted the number of steps per episode accordingly.
Throughout, we use the default parameters from each algorithm codebase. For MPO, we bound the
non-Gaussian policy parameters in the decoupled KL constraint by ε = 0.1. For PPO, we found that
learning distinct scale parameters per action dimension improves performance for Gaussian policies.
The environments considered here operate at a default control frequency of 40Hz to 100Hz, while
real-world systems may even run the control loop at frequencies above 100Hz [24, 33].

D Sparse environments

Cartpole The two sparse versions use the original Cartpole Swigup Sparse task. The dense version
is constructed by taking the original Cartpole Swingup task and removing both action and velocity
penalties from the reward function to create a dense version of the sparse task.

Walker The dense version uses the original Walker Walk task. The sparse versions are created by
thresholding step rewards at rth = 0.5, setting all rewards below to 0 and re-mapping rewards above
to [0, 1], as in [44]. The sparse reward is given by rsparse = clip(rdense− rth, 0, 1− rth)/(1− rth).

Quadruped The dense and sparse task versions follow the procedure outlined for Walker Walk. For
the Gaussian policy on the Sparse + Penalty version we consider only 3 seeds as one run terminated.

Action Penalty We use a quadratic action cost (ME type) to generate the reward r̂ = r−0.5a2/|A|.
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Disturbance Control Frequency Obs. Stuck Obs. Drop Obs. Delay Obs. Noise
Parameters Cart. ; Walk. ; Quad. Prob. ; Steps Prob. ; Steps Steps Std. Dev.
Value ×0.1 ; ×0.2 ; ×0.25 0.05 ; 5 0.05 ; 5 6 0.3

Table 3: Disturbances considered to evaluate transfer robustness in Sections 5.3 & 5.4.2.

E Disturbance Parameters

The experiments on transfer robustness in Sections 5.3 & 5.4.2 use the disturbance parameters in
Table 3. The control frequency disturbance down-samples the control by the value indicated for the
Cartpole, Walker, and Quadruped domains. For the observation disturbances, we selected the medium
disturbances from the Real-World RL Challenge framework [13]. The Stuck sensor disturbance does
not update a sensor reading for several timesteps, while the Dropped sensor disturbance zeros a sensor
reading for several timesteps. Both disturbances are probabilistic, taking effect with probability 0.05
and lasting for 5 timesteps. The observation delay shifts all observation by 6 timesteps, while the
observation noise applies additive white Gaussian noise with standard deviation 0.3.

F Additional Experiments

We provide additional empirical insights into how the reward structure, in conjunction with action
costs, affects both optimal policy parameterization and exploration. Additionally, we evaluate
benchmark performance of Bang-Off-Bang policies for MPO and show the distribution of actions for
converged Gaussian policies along trajectories on additional seeds.

F.1 Optimal Policy under Varying Action Cost

We expand our study of optimal policy design for the pendulum swing-up task in Figure 8. In
addition to the minimum state (MS) and minimum energy (ME) reward structures, we further
consider minimum fuel (MF) type rewards through introduction of an absolute value action penalty.
Figure 10 provides learned policy mappings and performance curves for Bang-Bang, Bang-Off-Bang,
and Gaussian policies. The action cost differs by row, where the corresponding optimal policy
parameterization is highlighted in green. While the Gaussian can represent the optimal policy in
each scenario, its increased expressiveness can require more samples for convergence. This can be
observed for the MS reward structure, where Bang-Bang control is optimal (top row, right). Similarly,
Bang-Off-Bang policies can suffer from slower exploration due to the high probability of choosing 0
actions (see also Section 5.4, Figure 6). This can be observed for the MF reward structure, where the
Gaussian policy converges much faster than the Bang-Off-Bang policy (middle row, right). Generally,
the Bang-Bang policy enables fast convergence due to its passive exploration (Section 5.4, Figure 6),
but incurs steady-state cost when the objective includes action penalties.

F.2 Benchmarking Bang-Off-Bang Control

We provide additional benchmarking results for Bang-Off-Bang policy heads on MPO in Figure 11.
Bang-Bang, Bang-Off-Bang, and Gaussian policies perform similarly across most tasks considered.
Bang-Bang policies converge faster than Bang-Off-Bang policies due to their exclusion of 0 actions
which forces stronger passive exploration (e.g. Cartpole Sparse, Walker Walk). However, Bang-Off-
Bang policies can leverage 0 actions to avoid steady-state action cost (e.g. Cartpole Swingup).

F.3 Additional Action Distribution Data

We provide distributions of aggregated actions along trajectories for additional seeds in Figure 12.
On tasks without action penalties, the Gaussian policies tend to exhibit strong bang-bang behavior
sampling actions close to the minimum or maximum bounds (Finger, Walker, Quadruped). Inclusion
of action penalties can reduce emergence of bang-bang solutions, while introducing additional trade-
offs with respect to performance on the original objective and exploration capabilities (Sections 5.4.2
& 5.4.1). On Cartpole Swingup, which includes action cost, the Gaussian agent still uses bang-bang
action selection during swing-up and only switches to low-magnitude actions for stabilization at the
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Figure 10: Learning to swing-up a pendulum under varying action cost. Top to bottom: dense
reward function without action cost, with absolute value action cost, and with squared action cost.
Columns 1-4 provide the policy mapping computed via Value Iteration and learned via Bang-Bang,
Bang-Off-Bang and Gaussian policies, respectively. Column 5 compares performance. The optimal
policy parameterization for each action cost (row) is highlighted (green). In RL problems, the ideal
parameterization might not yield the best learning dynamics (Bang-Off-Bang vs. Gaussian, row 2).

Figure 11: Comparison of Bang-Bang, Bang-Off-Bang, and Gaussian policy heads for MPO on
continuous control tasks. The policies perform similarly on most tasks, while the Bang-Bang policy
can incur steady-state action cost (e.g. Cartpole Swingup). The Bang-Off-Bang policy leverages the
0 action to avoid this steady-state penalty at the risk of reducing convergence speed (Cartpole tasks).

top. On Humanoid Walk, emergence of bang-bang behavior differs both across action dimensions
and seeds. This further underlines that static action penalties do not necessarily guard against local
optima that can solve a task sufficiently well by relying, at least in part, on large control switches.

F.4 Action Penalties

Figure 13 provides an enlarged version of Figure 9 for improved readability.
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Figure 12: Distribution of actions for MPO on additional seeds. We consider 11 bins per action
dimension and aggregate over 1000 steps. The Gaussian policy exhibits bang-bang behavior in several
domains, while presence of action penalties on Cartpole and Humanoid reduces this to some extent.

Figure 13: Training and transfer performance on Walker (top) and Quadruped (bottom). While action
penalties help to mitigate bang-bang behavior, the resulting gaits only slightly increase robustness
and may reduce performance as measured by the nominal reward function (Quadruped).
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discussed our assumptions in

the theoretical discussion (Sec. 3) and open questions with potential for further research
(Sec. 6).

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
discussed societal implications within Sec. 6 mentioning potential negative impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We discussed

our assumptions in the theoretical discussion (Sec. 3)
(b) Did you include complete proofs of all theoretical results? [N/A] Our discussion adapts

existing theory from optimal control for RL and does not involve new proofs.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] Our code will
be made publicly available upon publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Training details can be found in Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All our benchmarking results include standard deviation
over seeds with details provided in Appendix C.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The underlying compute resources
are provided in Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Authors of RL

libraries used here were cited in Section 5 and Appendix B.
(b) Did you mention the license of the assets? [Yes] Licenses are mentioned in Appendix B
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

Our code will be made publicly available upon publication.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The data used in this project was generated by us.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We did not process personal data for this
project.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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