
ADGym: Design Choices for Deep Anomaly Detection

Minqi Jiang1,∗, Chaochuan Hou1,∗, Ao Zheng1,∗, Songqiao Han1,†,
Hailiang Huang1,2,†, Qingsong Wen3, Xiyang Hu4,†, Yue Zhao4,†

1AI Lab, Shanghai University of Finance and Economics
2MoE Key Laboratory of Interdisciplinary Research of Computation and Economics

3DAMO Academy, Alibaba Group 4Carnegie Mellon University
jiangmq95@163.com, houchaochuan@foxmail.com, zheng-ao@outlook.com,

{han.songqiao,hlhuang}@shufe.edu.cn, qingsongedu@gmail.com,
{xiyanghu,zhaoy}@cmu.edu

Abstract

Deep learning (DL) techniques have recently found success in anomaly detection
(AD) across various fields such as finance, medical services, and cloud computing.
However, most of the current research tends to view deep AD algorithms as a whole,
without dissecting the contributions of individual design choices like loss functions
and network architectures. This view tends to diminish the value of preliminary
steps like data preprocessing, as more attention is given to newly designed loss
functions, network architectures, and learning paradigms. In this paper, we aim to
bridge this gap by asking two key questions: (i) Which design choices in deep AD
methods are crucial for detecting anomalies? (ii) How can we automatically select
the optimal design choices for a given AD dataset, instead of relying on generic, pre-
existing solutions? To address these questions, we introduce ADGym, a platform
specifically crafted for comprehensive evaluation and automatic selection of AD
design elements in deep methods. Our extensive experiments reveal that relying
solely on existing leading methods is not sufficient. In contrast, models developed
using ADGym significantly surpass current state-of-the-art techniques.

1 Introduction

Anomaly detection (AD) aims to identify data objects that significantly deviate from the majority of
samples, with numerous successful applications in intrusion detection [36, 44], fault detection [22, 85],
medical diagnosis [13, 38], fraud detection [2, 8, 9], social media analysis [81, 86], etc. Recently,
deep neural networks have become the primary techniques in AD due to their powerful representation
learning capacity [57]. Among all, weakly-supervised AD (WSAD) methods [56, 58, 59, 69, 83, 90],
which leverage imperfect ground truth anomaly labels (e.g., those that are incomplete, inaccurate,
or inexact) in deep neural networks for AD, have gained attention in this new frontier [29]. A
comprehensive study by [26] showcases WSAD’s superiority over unsupervised AD techniques,
especially for real-world conditions where the ground truth labels are never complete and accurate.
Thus, our work introduces ADGym, a platform for understanding and designing deep WSAD
methods2, with the potential to be extended to unsupervised and supervised deep AD methods.

Goal I: Understanding Design Choices of Deep AD. Many WSAD methods attribute their im-
provements to novel network architectures or loss functions, based on the authors’ understanding of
anomalies. However, these choices represent only a fraction of the design considerations, as there are
many other factors to consider, such as data preprocessing and model training techniques. In Table

∗Contribute equally. †Corresponding authors.
2For brevity, AD methods in this work refer to deep WSAD methods.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

Table 1: ADGym supports a comprehensive list of design choices for deep AD methods.
Pipeline Design Dimensions Design Choices

Data Handling Data Augmentation [Oversampling, SMOTE, Mixup, GAN]
Data Preprocessing [MinMax, Normalization]

Network Construction

Network Architecture [MLP, AutoEncoder, ResNet, FTTransformer]
Hidden Layers [[20], [100, 20], [100, 50, 20]]
Activation [Tanh, ReLU, LeakyReLU]
Dropout [0.0, 0.1, 0.3]
Initialization [default, Xavier (normal), Kaiming (normal)]

Network Training

Loss Function [BCE, Focal, Minus, Inverse, Hinge, Deviation, Ordinal]
Optimizer [SGD, Adam, RMSprop]
Epochs [20, 50, 100]
Batch Size [16, 64, 256]
Learning Rate [1e-2, 1e-3]
Weight Decay [1e-2, 1e-4]

Note: Bolded design dimensions are those of greater impact on the AD task (discussed in detail in §4).

1, we list specific design choices for deep AD models and group them as design dimensions. Our
experiments reveal that some of these dimensions (in bold) significantly impact the performance.

Many questions remain unanswered in current AD studies, such as the interaction between compo-
nents within an AD method, the relative importance of each component in performance, and the
potential of new data-centric techniques to improve AD model performance. Thus, in the first part
of the study (§3.2), we have evaluated various design combinations on large benchmark datasets.
Interestingly, the optimal model, comprising different design choices by combination, varies by
datasets and notably outperforms existing state-of-the-art (SOTA) AD models. This raises a key
question: how can we automatically design AD models for datasets other than using existing models?

Goal II: Constructing AD Algorithms Automatically via ADGym. Indeed, our prior research
[88, 53, 79] also shows there is no one-size-fits-all AD model for every dataset—we must select
AD models based on the underlying dataset. Our prior work focuses on model selection from a
pre-defined list, mainly for non-neural-network AD methods with limited design choices [88, 89]. In
today’s deep learning era, a pre-defined list is not sufficient, given the large number of design choices
in Table 1 and §3.2). There could be infinite deep AD models with different design combinations.

In the second part of this study, we develop a design-choice-level selection approach that utilizes
meta-learning, called ADGym (see §3.3). In a nutshell, our approach leverages the supervision
signals from historical datasets to guide selecting the best design choices for constructing AD models
tailored to a new dataset. We aim to enhance the existing AD model selection process, ensuring the
best combination of design choices for a given application or dataset. What sets ADGym apart from
prior works is our focus on granular design choice selection tailored for deep AD, which has a much
larger space than a pre-defined model list for existing methods only. See Fig. 1 for a comparison.

What Do We Learn from the Experiments (§4)? ADGym helps us better understand and design
deep AD methods, with key observations from our experiments: (1) No single design choice
consistently outperforms others across all datasets, justifying the need for an automated approach to
collectively select the most effective design choices. (2) Employing a meta-predictor to automate
design choice selection yields notable improvements over static SOTA methods. (3) We can make
meta-predictors better by using ensemble techniques or increasing the range of design choices.

To sum up, our work makes the following technical contributions:

1. Understanding AD Design Choices via Benchmarking. We present the first benchmark that
breaks down and compares diverse deep AD design choices across 29 real-world datasets and 4
groups of synthetic datasets1, which leads to a few interesting observations.

2. Design Choice Automation. We introduce ADGym, the first automated framework for selecting
design choices for weakly-supervised AD, which significantly outperforms SOTA AD methods.

3. Accessibility and Extensibility. We have made ADGym publicly available2 so that practitioners
can build better-than-SOTA AD methods. It is also easy to include new design choices.

1348 datasets generated with different seeds to simulate 4 types of anomalies. See Appx. D.2 for details.
2The code is available at https://github.com/Minqi824/ADGym

2

https://github.com/Minqi824/ADGym

2 Related Work

2.1 Weakly-supervised Anomaly Detection (WSAD)

Due to the cost and difficulties in data annotation, previous studies [42, 43, 47, 68, 91] mainly focus on
developing unsupervised AD methods with different assumptions of data distribution [1], while they
are shown to have no statistically significant difference from each other in a recent benchmark [26].
In practice, however, there could exist at least a handful of labeled instances that are either identified
by domain experts or the bad cases occurred during the deployment of AD methods. Therefore,
recent studies [56, 58, 59, 69, 90] propose weakly-supervised AD methods to effectively leverage the
valuable knowledge in labeled data and thus facilitate anomaly identification. Nevertheless, existing
WSAD methods are often used as it is, without detailed evaluation of each design choice like network
architectures and loss functions. A more granular analysis of specific components of WSAD methods
could be helpful for a deeper understanding of the AD methods.

2.2 Benchmarks for Anomaly Detection

Anomaly detection benchmarks mainly perform large comparisons and evaluations on the detection
performance of different AD methods under unified and controlled conditions. While previous
studies [12, 17, 23, 71, 72] focus on benchmarking classical machine learning AD methods, there
has been an increasing trend towards benchmarking deep learning AD methods as well. [67] reviews
both classic and deep AD models and points to the connections between classic shallow algorithms
and deep AD models. Our previous work [26] performs the largest-scale AD benchmark so far,
evaluating 30 shallow and deep AD algorithms across 57 benchmark datasets under different levels
of supervision. Besides, some benchmark works focus on AD tasks with different data modalities,
including time-series [46, 60, 35], graph [49, 48], CV [78] and NLP [63]. All of these benchmarks
focus on discovering which AD algorithms (as a whole) are more effective. Differently, we focus on
understanding the effectiveness of design choices in deep AD methods, complementing these works.

2.3 Automatic Model Selection for AD

2.3.1 Unsupervised Anomaly Model Selection

Developing automatic model selection schemes for unsupervised AD algorithms faces a major
challenge in lacking evaluation criteria. A recent survey [53] provides a comprehensive survey of
using internal model evaluation strategies that solely rely on input features and outlier scores for
model selection. Their extensive experiment shows that none of the existing and adapted evaluation
strategies would be practically useful for unsupervised AD model selection.

Another existing work stream leverages meta-learning, based on the similarity between the new
task and historical datasets where model performance is available. Some notable work [88, 89, 87]
assume that model performance can be generalized across similar datasets, thus selecting the model
for a new task based on similar historical tasks. Specifically, [89, 87] introduce the idea of building
a meta-predictor (which is a regressor) to predict the model performance on a new dataset by
training it on historical model performances. In ADGym, we take the idea of meta-learning to train
a specialized meta-predictor for deep AD methods, where existing works [88, 89] only focus on
non-neural-network-based AD models with a relatively small model pool, where we extend to more
complex deep AD design spaces. See §3.3 for details.

2.3.2 Supervised Anomaly Model Selection, HP Optimization, and Neural Arch. Search

Supervised AD model selection and HP optimization (HPO) aim to train a set of models, evaluate
their performance using ground truth labels, and ultimately select the best model. However, as
previously mentioned, ground truth labels in AD are scarce, which prevents supervised selection
from being widely explored. PyODDS [41] optimizes an AD pipeline, while TODS [34] creates a
selection system for time series data. Both, however, focus primarily on shallow models, excluding
most deep models. Recently, AutoOD [40] conducts neural architecture search (NAS) for deep AD
using labels. However, it only focuses on AutoEncoder models over image data. AutoPatch[31] and
[73] are another two NAS works for AD, but they still do not consider networks beyond CNNs.

3

Pre-defined

Model Pool

AutoML

Model

Model 2

Network Construction 2

Network Training 2

AutoML

Model

Network

Training

Flex. Model
Data Handling 1

Network Construction 3

Network Training 3

AD task

AD task

Network

Training 1

Network

Construction 1

Data Handling 1

Model 1

Data Handling 2

Data Augmentation

Data Preprocessing

Network Architecture

Hidden Layers

Neurons

Activation

Initialization

Dropout

Loss Function

Optimizer

Batch Resampling

Epochs
Batch Size

Learning Rate

Weight Decay

Network

Construction
Data Handling

Current Method Our Proposed Method

Design

Choices
Network

Training 2

Network

Construction 2

Data Handling 2

Model 2

Network

Training 3

Network

Construction 3

Data Handling 3

Model 3

+ +

Figure 1: The framework of ADGym. Existing AD model selection focuses on selecting the best
model from a small, fixed pool. Our proposed method is more flexible to build a good model by
choosing different parts, including data handling, network construction, and network training.

Here, we highlight the difference between ADGym and the above works. First, ADGym aims to
select from a large, comprehensive design pool, as opposed to existing model selection, which is
often restricted to a small pre-defined model pool; meanwhile, ADGym also brings more granularity
than general HPO and NAS, which only focus on a small set of HPs (given neural architectures can
also be considered as HPs). Second, ADGym supports more scenarios other than focusing on a single
family of AD methods, e.g., autoencoders, or just network architectures. Third, different from the
SOTA method AutoOD, ADGym is a zero-shot algorithm that does not require any model building
for a new dataset, thereby significantly reducing the online time; see §3.3 for details.

3 ADGym: Benchmarking and Automating Design Choices in Deep AD
3.1 Problem Definition

In this paper, we focus on the common weakly supervised AD scenario, where given a training
dataset D =

{
xu
1 , . . . ,x

u
k ,
(
xa
k+1, y

a
k+1

)
, . . . ,

(
xa
k+m, yak+m

)}
contains both unlabeled samples

Du = {xu
i }

k
i=1 and a handful of labeled anomalies Da =

{(
xa
j , y

a
j

)}m

j=1
, where x ∈ Rd represents

the input feature and yaj is the label of identified anomalies. Usually, we have m ≪ k, since only
limited prior knowledge of anomalies is available. Such data assumption is more practical for AD
problems, and has been studied in recent deep AD methods [56, 58, 59, 69, 90]. The goal of a
weakly-supervised AD model M is to assign higher anomaly scores to anomalies.

3.2 Goal I: Understanding Design Choices of Deep AD

The first primary goal of this study is to investigate the large design space of deep AD solutions, which
should cover as many design choices as possible, e.g., different data augmentation methods, network
architectures, etc. Following the taxonomy of the previous study [80] and practical experiences in
industrial applications [2, 22, 78], we decouple the standard process of deep AD methods, starting
from the input data and ending with model training. The Pipeline includes: data handling → network
construction → network training, as shown in Table 1. For each step of the pipeline, we further
categorize it as different Design Dimensions, where diverse Design Choices can be specified to
instantiate an AD method. More details are shown in Appx. C.1

With the comprehensive design space above, we not only evaluate the possible designs of weakly-
supervised AD methods, but also investigate several interesting design dimensions often overlooked
in previous AD research. For example, previous AD studies often perform model training on the raw
input data (instead of augmented data for mitigating class imbalance problems), and simple network
architectures like multi-layer perceptron (MLP) (instead of more recent network architectures like
ResNet [27] and Transformer [75]), where the other cutting-edge techniques have already been widely
used in other domains like NLP and CV. To sum up, we pair the combination of comprehensive
design choices in Table 1 with benchmark AD datasets to unlock new insights. See results in §4.2.

3.3 Goal II: Constructing AD Algorithms Automatically via ADGym

From Model Selection to Pipeline Selection. With the large AD design space illustrated in the last
section, we investigate how to construct effective AD methods given the downstream applications

4

automatically. Given a pre-defined model set M = {M1, ...,Mm} that includes m combinations of
applicable design choices, model selection picks a model M ∈ M to train on a dataset Dtest and
output the anomaly score O := M(Xtest) to achieve the highest detection performance. In our case,
we construct a pipeline P from our design space to generate each model M . As shown in Fig. 1, our
design (right) brings more flexibility by choosing from details than existing model selection works
that only choose from a fixed, small set of AD models.

Meta-learning for Pipeline Selection. Meta learning has been recently used in unsupervised AD
model selection [88, 89], where the core idea is to transfer knowledge from model performance
information on historical datasets to the selection on a new dataset. Intuitively, if two datasets are
similar, their best models should also resemble. Under the meta-learning framework, we assume there
are n historical AD datasets (i.e., detection tasks) Dtrain = {D1, . . . ,Dn}; each meta-train dataset
is accompanied with ground truth labels for performance evaluation. To leverage prior knowledge
for pipeline selection on a new dataset, we first conduct experiments on n historical datasets to
evaluate and collect the performance of m possible designed pipelines (as the combination of all
applicable design choices), by two widely used metrics: AUCROC (Area Under Receiver Operating
Characteristic Curve) and AUCPR (Area Under Precision-Recall Curve).

For each metric, we acquire the corresponding performance matrix P ∈ Rn×m, where Pi,j corre-
sponds to the j-th constructed AD model’s performance on the i-th historical dataset. Meanwhile,
historical datasets vary in task difficulty, resulting in variations in the numerical range of the con-
structed AD models’ performance. Therefore, we convert the value of the performance into their
relative/normalized ranking, where Pi,j = rank(Pi,j)/m ∈ [0, 1]. Smaller ranking values indicate
better performance on the corresponding dataset.

To predict the performance of a given pipeline on a new dataset, we propose to train a meta-predictor
as a regression problem: the input of meta-predictor is {Emeta

i ,Ecomp
j }, corresponding to the meta-

feature [88] (i.e., the unified representations of a dataset) of i-th dataset and the embedding of j-th
AD component (i.e., the representation of a pipeline/components). We defer the specific details into
Appx. C.2. Given the meta-predictor f(·), we train it to map dataset and pipeline characteristics to
their corresponding performance ranking across all historical datasets, as shown in Eq. (1). Refer to
our open-sourced code for details of embeddings and the choice of regression models.

f : Emeta
i

meta features

, Ecomp
j

component embed.

7→ Pi,j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (1)

For a newcoming dataset (i.e., test dataset Xtest), we acquire the predicted relative ranking of different
AD components using the trained f(·), and select top-1 (k) to construct AD model(s). Note this
procedure is zero-shot without needing any neural network training on Xtest but only extracting
meta-features and pipeline embeddings. We show the effectiveness of the meta-predictor in §4.3.

4 Experiments

4.1 Experiment Settings

AD Datasets and Baselines. In ADGym, we gather datasets from the previous AD studies and
benchmarks [12, 19, 26, 57, 64] for evaluating existing AD models and different AD designs. Datasets
with sample sizes smaller than 1000, as well as those with problematic model results, are removed,
resulting in a total of 29 remaining datasets. These datasets cover many diverse application domains,
such as healthcare, audio and language processing, image processing, finance, etc. 1 Furthermore,
based on our previous work[26], we categorize anomalies into four types, local, global, cluster and
dependency anomalies, and generate synthetic datasets for each individual anomaly type. For each
dataset, 70% data is split as the training set and the remaining 30% is used as the test set. We use
stratified sampling to keep the anomaly ratio consistent. For each experiment, we repeat 3 times and
report the average. Further details of datasets and baselines are presented in Appx. A and B.

Meta-predictor in ADGym. We introduce two types of meta-predictors in ADGym, namely DL-
based and ML-based. The DL-based meta-predictor is instantiated as a two-layer MLP and trained
for 100 epochs with early stopping. The training process utilizes the Adam optimizer [32] with a

1We analyze the results across domains and find no single set of best design choices. See Appx.D.3

5

learning rate of 0.001 and batch size of 512. For the ML-based meta-predictor, We instantiate the
meta-predictor with XGBoost and CatBoost and their default hyperparameter settings. Considering
the expensive computational cost of training meta-predictors on the entire design space, we randomly
sample 1,000 design choices for each experiment illustrated below. See details in Appx. C.2.

Evaluation Metrics. We perform evaluations with two widely used metrics: AUCROC (Area Under
Receiver Operating Characteristic Curve), AUCPR (Area Under Precision-Recall Curve) value, and
the relative rankings corresponding to these two metrics1.

4.2 Large Evaluation on AD Design Choices
In this work, we perform large evaluations on the decoupled pipelines according to the standard
procedure of AD methods. Such analysis is often overlooked in previous AD studies, and we investi-
gate each design dimension of decoupled pipelines by fixing its corresponding design choice (e.g.,
Focal loss), and randomly sampling other dimensional design choices to construct AD models, e.g.,
{DateAugmentation : Mixup,NetworkArchitecture : FTT,LossFunction : Focal, ...}, ...,
{DateAugmentation : GAN,NetworkArchitecture : MLP,LossFunction : Focal, ...}. In
other words, we investigate each design dimension by controlling other variables. Different design
choices are compared w.r.t. na = 5, 10, 20 and demonstrated with box plots, where the number of
comparisons in each box is ensured to be the same. In the following subsections, we analyze the
benchmark results on each of the design dimensions, namely data handling, network construction,
and network training.

4.2.1 Data Handling

For the design dimension of data augmentation methods (e.g., SMOTE2 and Mixup methods) shown
in Figure 2, we find that almost no method has brought significant performance improvements.
This could be explained by the fact that, unlike time series [76], NLP [70], or CV tasks [20], data
augmentation is rarely incorporated into the design of existing AD methods tailored for tabular
data [57]. Besides, our results indicate that GAN-based augmentation method is even worse than
simpler methods like oversampling, probably due to the difficulty of modeling and generating realistic
anomalies for the tabular data. The same trend is observed in the synthetic datasets with individual
anomalies. In the vast majority of cases, the results from data augmentation are inferior to those from
the original data. (See Appx.D.2.) For data preprocessing methods, We do not observe a significant
difference between the minmax scaling and normalizing methods.

None
Over

SMOTE
Mixup

GAN

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

None
Over

SMOTE
Mixup

GAN

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

None
Over

SMOTE
Mixup

GAN

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(a) Data augmentation

minmax

normalize

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

minmax

normalize

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

minmax

normalize

0.6

0.7

0.8

0.9

AU
C

R
O

C
na = 20

(b) Data preprocessing

Figure 2: AUCROC performance of data handling designs. There is no significant difference between
different design choices in both data augmentation and preprocessing dimensions.

4.2.2 Network Construction

We investigate various design dimensions of network construction, as is shown in Figure 3. For
network architectures, MLP is still a competitive baseline in AD tasks, and even outperforms other
more complex architecture designs like ResNet and FTTransformer w.r.t. na = 5, i.e., only a handful
of labeled anomalies are available in the training stage. Moreover, we suggest that the ResNet model
could also serve as both an effective and stable network architecture, especially when more labeled
anomalies can be acquired (e.g., na = 10 and na = 20). However, we do not find significant
advantages of the FTTransformer, where its AUCROC performance is generally worse than other
network architectures. This may be due to the reason that compared to the supervised tasks for tabular

1Due to page limit, we report the AUCPR and the relative ranking results in the Appx. D.1.2. We find similar
conclusions can be drawn between AUCROC and AUCPR metrics.

2For na = 5, SMOTE raises an error since the number of labeled anomalies is smaller than the neighbors.

6

data, very limited labeled data (corresponding to the noises in the unlabeled data) can be leveraged to
guide the training process of such a complicated model. Furthermore, compared to our earlier work
on ADBench[26] where the FTTransformer shows competitive performance, it can be reasonably
inferred that the FTTransformer has limited robustness to hyperparameter tuning, especially after we
dissected its parameters. We also identify the advantage of the AutoEncoder architecture on synthetic
datasets with individual anomaly types, particularly in the local and global anomaly datasets (see
Appx. D). A plausible explanation is that the normal data in these synthesized datasets follows a
specific distribution that can be more effectively reconstructed.

For the activation function, Tanh and LeakyReLU appear to be more effective than the ReLU function
in tabular AD tasks, where this conclusion holds true for different na. Besides, we do not observe
significant differences in the design dimensions of hidden layers, dropout, and network initialization.

MLP
AE ResNet

FTT

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

MLP
AE ResNet

FTT

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

MLP
AE ResNet

FTT

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(a) Network architecture

[20]
[100, 20]

[100, 50, 20]

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

[20]
[100, 20]

[100, 50, 20]

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

[20]
[100, 20]

[100, 50, 20]

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(b) Hidden layers

Tanh
ReLU

LeakyReLU

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

Tanh
ReLU

LeakyReLU

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

Tanh
ReLU

LeakyReLU

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(c) Activation function

0.0 0.1 0.2

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

0.0 0.1 0.2

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

0.0 0.1 0.2

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(d) Dropout

default
xavier

kaiming

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

default
xavier

kaiming

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

default
xavier

kaiming

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(e) Network initialization

Figure 3: AUCROC performance of network construction designs. MLP is still an effective architec-
ture for AD tasks, where Tanh and LeakyReLU activation functions are generally better than ReLU.

4.2.3 Network Training
In this subsection, we evaluate different design dimensions in the network training step, as shown
in Fig. 4. Based on the results, we surprisingly observe that the classical BCE loss could be a
competitive baseline when batch resampling method1 is applied in the training process. Moreover,
our results show the advantages of hinge loss [56, 59], which achieves better AUCROC performance
w.r.t. different na, and deviation loss [59] in all synthetic datasets with a significant similarity across
the anomalies. (details in Appx. D). For model optimization, we observe that Adam and RMSprop
optimizers are better than the classical SGD, where large training epochs (e.g., epochs=100) lead
to overfitting on limited labeled data, resulting in a relatively inferior performance. For the design
dimensions of batch size, learning rate, and weight decay, they do not show obvious differences in
terms of the AUCROC metric.

4.3 Automatic Component Construction via ADGym

In this subsection, we verify the effectiveness of the proposed meta-predictors by answering the
questions illustrated below. Beyond the fixed SOTA AD methods, we provide three model construction
plans for a thorough baseline comparison. The random selection plan (RS) randomly generates a
pipeline from all design choices. The supervised selection plan (SS) selects the pipeline according

1Batch resampling method [59] randomly samples a training batch with half of the samples from the unlabeled
data and another half from the labeled anomalies. We applied this method for each loss function in order to
mitigate the impact of the class imbalance problem, except for the inverse loss, as it significantly affects the
gradient update of the neural network. More descriptions of these methods can be found in the Appx. C.

7

bce focal
minus

inverse
hinge

deviation

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

bce focal
minus

inverse
hinge

deviation

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

bce focal
minus

inverse
hinge

deviation

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(a) Loss function

SGD
Adam

RMSprop

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

SGD
Adam

RMSprop

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

SGD
Adam

RMSprop

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(b) Optimizer

20 50 100

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

20 50 100

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

20 50 100

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(c) Epochs

16 64 256

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

16 64 256

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

16 64 256

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(d) Batch size

0.01
0.001

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

0.01
0.001

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

0.01
0.001

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(e) Learning rate

0.01
0.0001

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 5

0.01
0.0001

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 10

0.01
0.0001

0.6

0.7

0.8

0.9

AU
C

R
O

C

na = 20

(f) Weight decay

Figure 4: AUCROC performance of network training designs. Hinge loss is generally a better AD
loss function. Both Adam and RMSprop optimizers outperform classical SGD. Smaller epochs could
prevent overfitting on limited labeled data and thus achieve better performance.

to the evaluation of validation sets using labels. The ground truth plan (GT) is the best-performing
pipeline in a sample of 1000. We iteratively leave one dataset as the testing dataset, and leverage all
the remaining datasets to train the meta-predictor(s). The central experimental results of ADGym’s
performance are provided in Table 3. We report the average AUCROC performance across real-world
datasets and demonstrate the complete experimental results in the Appx. D.

In the subsequent paragraphs, we present a comparison between the AD models constructed by the
meta-predictor and the SOTA AD methods. Also, we discuss the impact of meta-predictors’ design
on their performance, including meta-features, the loss function of the predictors, and more.

1. Is the model constructed by meta-predictor better than existing SOTA methods?

Table 2: Performance of the baseline SOTA AD methods.
na GANomaly REPEN DeepSAD DevNet FEAWAD ResNet FTTransformer
5 0.605 0.784 0.718 0.761 0.745 0.617 0.782
10 0.616 0.787 0.750 0.792 0.789 0.673 0.816
20 0.615 0.801 0.780 0.828 0.829 0.735 0.843

Table 3: Performance of auto-selected pipelines by ADGym. RS, SS, and GT refer to the random
selection, supervised selection, and the best performance among all sampled 1000 pipelines, re-
spectively. DL or ML corresponds to the meta-predictor that is either instantiated with MLP or
tree-based methods like XGBoost. The suffix -ensemble refers to ensemble multiple predictions of
meta-predictors. "2-stage" and "end2end" correspond to the two-stage and end-to-end for extracting
meta-features.

na RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.735 0.613 0.902 0.800 0.811 0.813 0.813 0.802 0.804 0.815 0.821
10 0.757 0.696 0.912 0.836 0.833 0.843 0.837 0.836 0.839 0.849 0.847
20 0.777 0.747 0.921 0.859 0.850 0.865 0.857 0.857 0.861 0.869 0.872

Our results show that the automatic construction of AD models is indeed capable of surpassing
those SOTA methods, where they achieve better AUCROC performance in all settings, and this
conclusion holds true under various numbers of labeled anomalies na. Specifically, the average/best
AUCROC performance of meta-predictors shows a relative improvement over the best SOTA models
REPEN 2.6%/3.7% w.r.t. na=5, FTTransformer 2.4%/3.3% w.r.t. na=10 and 1.8%/2.9% w.r.t. na=20.

8

Moreover, the average AUCROC performance of meta-predictors is 9.4%, 9.4%, and 8.5% higher
than that of SOTA models w.r.t. na = 5, 10, and 20, respectively.

Moreover, the clear advantage of GT to the current SOTA methods indicates that existing AD
solutions could be further improved through exploring the design space or automatic selection
techniques, which also validates the value of ADGym. Besides, compared to random selection (RS)
and supervised selection (SS) which select design choices based on the performance of limited labeled
data, automatic selection via meta-predictor(s) is significantly more effective. However, we find that
the SS method is even inferior to the RS method. A reasonable explanation is that the scarcity of
labeled data makes it difficult for the selected design choices to generalize well on newcoming data.

2. Is it more helpful for meta-predictors to transfer knowledge across different datasets by
end-to-end trained meta-features or extraction-based meta-features?

Here, we explore the impact of different methods for extracting meta-features on meta-predictor
performance, as shown in Table 3. This includes: (i) Two-stage method, where the meta-features
of a specific dataset are first extracted by the method proposed in MetaOD [88], i.e., extracting
both statistical features like min, max, variance, skewness, covariance, etc., and landmarker features
that depend on the unsupervised AD algorithms to capture outlying characteristics of a dataset.
The extracted meta-features Emeta are then concatenated with na and Ecomp as inputs to the meta-
predictor. (ii) End-to-end method, where the meta-features are directly extracted by the meta-predictor
[30] and optimized with the learning process of the downstream task.

Generally, we observe close performances between the two-stage and end-to-end methods of extract-
ing meta-features in the meta-predictors. This conclusion holds valid not only for the default MSE
loss, but also for the Ranknet loss [11] used in the meta-predictors.

3. Is the tree-based ensemble meta-predictor effective in tabular AD? Can meta-predictors
further benefit from model ensembling?

Consistent with the findings in the previous studies [24, 25, 26], we still find that the tree-based
ensemble model(s) are better solutions for tabular-based AD tasks, where the performance of meta-
predictors are improved when the MLP trainer used in meta-predictor is replaced by the ensemble
models like XGBoost and CatBoost. Moreover, DL-based meta-predictor can also benefit from
the model ensembling strategy, as we observe that both two-stage and end-to-end meta-predictors
improve when we ensemble the anomaly scores of predicted top-k combinations of design choices.

4. Do advanced loss functions bring performance gains to the meta-predictor?

In addition to the default MSE loss function, we also investigate several other losses (as shown in
Table 4), including (i) Weighted MSE imposes a stronger penalty on errors in predicting the top and
bottom design choices. (ii) Pearson correlation between the predictions and ground-truth targets.
(iii) Ranknet [11] learns to rank different design choices, which is widely used in recommendation
systems. However, compared to the results of MSE loss shown in Table 3, we do not find significant
improvement when more complicated loss functions are implemented to train the meta-predictors.

Table 4: AUCROC performance of meta-predictors trained on other loss functions. Different loss
functions do not yield significant performance improvement for the meta-predictor.

na

Weighted MSE Pearson Ranknet

DL-single DL-ensemble DL-single DL-ensemble DL-single DL-ensemble

2-stage end2end 2-stage end2end 2-stage end2end 2-stage end2end 2-stage end2end 2-stage end2end
5 0.801 0.748 0.811 0.774 0.778 0.808 0.804 0.815 0.800 0.809 0.821 0.813
10 0.830 0.770 0.842 0.786 0.825 0.833 0.834 0.843 0.835 0.836 0.841 0.844
20 0.844 0.786 0.862 0.801 0.839 0.840 0.852 0.854 0.853 0.853 0.862 0.859

5. Does larger AD design space bring performance gains to the meta-predictors?

In order to explore whether the meta-predictors can uncover more promising AD design choices
beyond those bolded design dimensions highlighted in Table 1, we include more possible design
dimensions like hidden layers, dropout, and initialization methods in network construction, and
epochs, batch size, and weight decay in network training, while maintaining the scale of design space
(i.e., the number of Cartesian products of design choices) at 1,000. Table 5 shows that the meta-
predictors generally benefit from a larger design space, where the AUCROC performances of both
DL- and ML-based meta-predictors achieve improvements compared to that of small design space

9

shown in Table 3. It’s worth mentioning that DL meta-predictors seem to surpass ML meta-predictors
in a larger space. This may be due to a raised complexity and lower probability of over-fitting
in a larger selection pool, both benefiting DL meta-predictors. However, this performance gap is
still trivial (0.002-0.006 in absolute value). Considering a better efficiency, we still present the ML
meta-predictors as the formal recommendation.

Table 5: AUCROC performance of meta-predictors trained on large scale design space. Larger design
space provides potentially more effective design choices for newcoming datasets.

na RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.738 0.657 0.904 0.824 0.808 0.829 0.826 0.814 0.814 0.825 0.825
10 0.767 0.731 0.912 0.842 0.830 0.853 0.850 0.843 0.846 0.850 0.851
20 0.791 0.750 0.922 0.863 0.846 0.876 0.859 0.860 0.863 0.870 0.874

6. Does refining AD design space bring performance gains to the meta-predictor?

We further refined the design space in ADGym and excluded the design choices whose average
performances on the training datasets are below the median, resulting in better yet fewer design
choices that can be utilized for training meta-predictors. The refined results are reported in Table 6,
compared to Table 3, We have not found that refining the design space brings any gains to the meta-
predictor, possibly because such approach loses many potential design choices that could perform
well on newcoming dataset, or loses (half of) the training data of meta-predictors.

Table 6: AUCROC performance of meta-predictors trained on refined design space. No significant
improvement of meta-predictor is observed since not only potentially better design choices are
discarded, but also results in a reduction of training data in meta-predictors.

na RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.766 0.653 0.902 0.797 0.809 0.812 0.817 0.798 0.807 0.816 0.819
10 0.803 0.700 0.912 0.824 0.833 0.838 0.835 0.838 0.830 0.848 0.842
20 0.833 0.754 0.921 0.851 0.830 0.867 0.848 0.874 0.867 0.877 0.872

5 Conclusions, Limitations, and Future Directions
In this paper, we introduce ADGym, a novel platform designed for benchmarking and automating AD
design choices. We break down AD algorithms into granular components and systematically assess
each one’s effectiveness through extensive experiments. Furthermore, we develop an automated
method for selecting optimal design choices, enabling the creation of AD models that surpass current
SOTA algorithms. Our results highlight the crucial role design choices play and offer a structured
approach to optimizing them in model development. With the broader AD community in mind,
we have made ADGym openly available. We believe its comprehensive design choice evaluation
capabilities will significantly contribute to future advancements in automated AD model generation.

Looking ahead, we see several opportunities to enhance ADGym and broaden its application. Firstly,
we plan to incorporate time-series AD tasks that handle data with temporal variations. By automating
the design choice selection, AD models will be better equipped to adapt to these changing distributions,
thereby improving anomaly detection in dynamic time-series contexts. Currently, ADGym is geared
towards weakly supervised AD. In the future, we aim to include unsupervised neural network-based
AD algorithms as well. Additionally, it is worth noting that non-neural-network-based techniques,
such as ensemble-tree methods, have shown great promise in practical scenarios. Therefore, exploring
automatic pipeline formulation in these areas is an exciting and valuable direction for future research.

6 Acknowledgement
We thank anonymous reviewers for their insightful feedback and comments. M.J., C.H., A.Z.,
S.H., and H.H. are supported by the National Natural Science Foundation of China under Grant
No. 72271151, and the National Key Research and Development Program of China under Grant
No. 2022YFC3303301. M.J., C.H., A.Z., S.H., and H.H. thank the financial support provided by
FlagInfo-SHUFE Joint Laboratory. X.H. and Y.Z. are independently supported by CMU.

10

References
[1] C. C. Aggarwal and C. C. Aggarwal. An introduction to outlier analysis. Springer, 2017.

[2] M. Ahmed, A. N. Mahmood, and M. R. Islam. A survey of anomaly detection techniques in financial
domain. Future Generation Computer Systems, 55:278–288, 2016.

[3] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon. Ganomaly: Semi-supervised anomaly detection via
adversarial training. In ACCV, pages 622–637, 2018.

[4] F. Alimoglu and E. Alpaydin. Methods of combining multiple classifiers based on different representations
for pen-based handwritten digit recognition. In TAINN. Citeseer, 1996.

[5] E. Alpaydin and C. Kaynak. Cascading classifiers. Kybernetika, 34(4):369–374, 1998.

[6] I. Ashrapov. Tabular gans for uneven distribution, 2020.

[7] D. Ayres-de Campos, J. Bernardes, A. Garrido, J. Marques-de Sa, and L. Pereira-Leite. Sisporto 2.0: a
program for automated analysis of cardiotocograms. Journal of Maternal-Fetal Medicine, 2000.

[8] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland. Data mining for credit card fraud: A
comparative study. Decision support systems, 50(3):602–613, 2011.

[9] R. J. Bolton and D. J. Hand. Statistical fraud detection: A review. Statistical science, 17(3):235–255, 2002.

[10] N. Brümmer, S. Cumani, O. Glembek, M. Karafiát, P. Matějka, J. Pešán, O. Plchot, M. Soufifar, E. d.
Villiers, and J. H. Černockỳ. Description and analysis of the brno276 system for lre2011. In Odyssey
2012-the speaker and language recognition workshop, 2012.

[11] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank
using gradient descent. In Proceedings of the 22nd international conference on Machine learning, pages
89–96, 2005.

[12] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková, E. Schubert, I. Assent, and M. E.
Houle. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study.
Data mining and knowledge discovery, 30:891–927, 2016.

[13] S. Chauhan and L. Vig. Anomaly detection in ecg time signals via deep long short-term memory networks.
In 2015 IEEE international conference on data science and advanced analytics (DSAA), pages 1–7. IEEE,
2015.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research, 16:321–357, 2002.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[16] T. Dietterich, A. Jain, R. Lathrop, and T. Lozano-Perez. A comparison of dynamic reposing and tangent
distance for drug activity prediction. NeurIPS, 6, 1993.

[17] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A comparative evaluation of outlier detection
algorithms: Experiments and analyses. Pattern recognition, 74:406–421, 2018.

[18] M. Du, Z. Chen, C. Liu, R. Oak, and D. Song. Lifelong anomaly detection through unlearning. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages
1283–1297, 2019.

[19] A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong. A meta-analysis of the anomaly detection
problem. ArXiv, 1503.01158, 2015.

[20] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and E. Hovy. A survey of data
augmentation approaches for nlp. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 968–988, 2021.

[21] P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive classifiers. Machine learning,
6(2):161–182, 1991.

[22] J. Gao, X. Song, Q. Wen, P. Wang, L. Sun, and H. Xu. RobustTAD: Robust time series anomaly detection
via decomposition and convolutional neural networks. KDD Workshop on Mining and Learning from Time
Series (KDD-MileTS’20), 2020.

11

[23] M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly detection algorithms for
multivariate data. PloS one, 11(4):e0152173, 2016.

[24] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models for tabular data.
Advances in Neural Information Processing Systems, 34:18932–18943, 2021.

[25] L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep learning on
typical tabular data? In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

[26] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao. ADBench: Anomaly detection benchmark. Advances in
Neural Information Processing Systems (NeurIPS), 35:32142–32159, 2022.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, pages
770–778, 2016.

[28] P. Horton and K. Nakai. A probabilistic classification system for predicting the cellular localization sites of
proteins. In Ismb, volume 4, pages 109–115, 1996.

[29] M. Jiang, C. Hou, A. Zheng, X. Hu, S. Han, H. Huang, X. He, P. S. Yu, and Y. Zhao. Weakly supervised
anomaly detection: A survey. arXiv preprint arXiv:2302.04549, 2023.

[30] H. S. Jomaa, L. Schmidt-Thieme, and J. Grabocka. Dataset2vec: Learning dataset meta-features. Data
Mining and Knowledge Discovery, 35:964–985, 2021.

[31] T. Kerssies. Neural architecture search for visual anomaly segmentation. arXiv preprint arXiv:2304.08975,
2023.

[32] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[33] M. Kudo, J. Toyama, and M. Shimbo. Multidimensional curve classification using passing-through regions.
Pattern Recognition Letters, 20(11-13):1103–1111, 1999.

[34] K.-H. Lai, D. Zha, G. Wang, J. Xu, Y. Zhao, D. Kumar, Y. Chen, P. Zumkhawaka, M. Wan, D. Martinez,
et al. Tods: An automated time series outlier detection system. In Proceedings of the aaai conference on
artificial intelligence, volume 35, pages 16060–16062, 2021.

[35] K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, and X. Hu. Revisiting time series outlier detection: Definitions
and benchmarks. In Neural Information Processing Systems (NeurIPS), 2021.

[36] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative study of anomaly detection
schemes in network intrusion detection. In SDM, pages 25–36. SIAM, 2003.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[38] C. Leibig, V. Allken, M. S. Ayhan, P. Berens, and S. Wahl. Leveraging uncertainty information from deep
neural networks for disease detection. Scientific reports, 7(1):1–14, 2017.

[39] C. Li, X. Li, L. Feng, and J. Ouyang. Who is your right mixup partner in positive and unlabeled learning.
In International Conference on Learning Representations, 2022.

[40] Y. Li, Z. Chen, D. Zha, K. Zhou, H. Jin, H. Chen, and X. Hu. Autood: Neural architecture search for outlier
detection. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 2117–2122.
IEEE, 2021.

[41] Y. Li, D. Zha, P. Venugopal, N. Zou, and X. Hu. Pyodds: An end-to-end outlier detection system with
automated machine learning. In Companion Proceedings of the Web Conference 2020, pages 153–157,
2020.

[42] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu. Copod: copula-based outlier detection. In 2020 IEEE
international conference on data mining (ICDM), pages 1118–1123. IEEE, 2020.

[43] Z. Li, Y. Zhao, X. Hu, N. Botta, C. Ionescu, and G. Chen. Ecod: Unsupervised outlier detection using
empirical cumulative distribution functions. IEEE Transactions on Knowledge and Data Engineering,
2022.

[44] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications, 36(1):16–24, 2013.

12

[45] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In Proceedings
of the IEEE international conference on computer vision, pages 2980–2988, 2017.

[46] F. Liu, C. Zeng, L. Zhang, Y. Zhou, Q. Mu, Y. Zhang, L. Zhang, and C. Zhu. Fedtadbench: Federated
time-series anomaly detection benchmark. arXiv preprint arXiv:2212.09518, 2022.

[47] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 2008 eighth ieee international conference on
data mining, pages 413–422. IEEE, 2008.

[48] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K. Shu, et al. Bond:
Benchmarking unsupervised outlier node detection on static attributed graphs. Advances in Neural
Information Processing Systems, 35:27021–27035, 2022.

[49] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K. Shu, L. Sun, J. Li, G. H.
Chen, Z. Jia, and P. S. Yu. Bond: Benchmarking unsupervised outlier node detection on static attributed
graphs. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 27021–27035. Curran Associates, Inc., 2022.

[50] W.-Y. Loh. Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1, 2011.

[51] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. ArXiv, 1711.05101, 2017.

[52] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. Advances in neural information processing systems, 32, 2019.

[53] M. Q. Ma, Y. Zhao, X. Zhang, and L. Akoglu. The need for unsupervised outlier model selection: A review
and evaluation of internal evaluation strategies. ACM SIGKDD Explorations Newsletter, 25(1), 2023.

[54] D. Malerba, F. Esposito, and G. Semeraro. A further comparison of simplification methods for decision-tree
induction. In Learning from data, pages 365–374. Springer, 1996.

[55] N. Moustafa and J. Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems
(unsw-nb15 network data set). In 2015 military communications and information systems conference
(MilCIS), pages 1–6. IEEE, 2015.

[56] G. Pang, L. Cao, L. Chen, and H. Liu. Learning representations of ultrahigh-dimensional data for random
distance-based outlier detection. In KDD, pages 2041–2050, 2018.

[57] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. Deep learning for anomaly detection: A review. ACM
computing surveys (CSUR), 54(2):1–38, 2021.

[58] G. Pang, C. Shen, H. Jin, and A. v. d. Hengel. Deep weakly-supervised anomaly detection. ArXiv,
1910.13601, 2019.

[59] G. Pang, C. Shen, and A. van den Hengel. Deep anomaly detection with deviation networks. In KDD,
pages 353–362, 2019.

[60] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Palpanas, and M. J. Franklin. Tsb-uad: an end-to-end
benchmark suite for univariate time-series anomaly detection. Proceedings of the VLDB Endowment,
15(8):1697–1711, 2022.

[61] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[62] J. R. Quinlan, P. J. Compton, K. Horn, and L. Lazarus. Inductive knowledge acquisition: a case study. In
Australian Conference on Applications of expert systems, pages 137–156, 1987.

[63] M. M. Rahman, D. Balakrishnan, D. Murthy, M. Kutlu, and M. Lease. An information retrieval approach
to building datasets for hate speech detection. arXiv preprint arXiv:2106.09775, 2021.

[64] S. Rayana. ODDS library, 2016.

[65] A. Rivolli, L. P. Garcia, C. Soares, J. Vanschoren, and A. C. de Carvalho. Meta-features for meta-learning.
Knowledge-Based Systems, 240:108101, 2022.

[66] S. Ruder. An overview of gradient descent optimization algorithms. ArXiv, 1609.04747, 2016.

[67] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich,
and K.-R. Müller. A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE,
109(5):756–795, 2021.

13

[68] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and M. Kloft.
Deep one-class classification. In ICML, pages 4393–4402, 2018.

[69] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K. Müller, and M. Kloft. Deep semi-
supervised anomaly detection. In ICLR. OpenReview.net, 2020.

[70] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of
big data, 6(1):1–48, 2019.

[71] J. Soenen, E. Van Wolputte, L. Perini, V. Vercruyssen, W. Meert, J. Davis, and H. Blockeel. The effect
of hyperparameter tuning on the comparative evaluation of unsupervised anomaly detection methods. In
Proceedings of the KDD’21 Workshop on Outlier Detection and Description, pages 1–9. Outlier Detection
and Description Organising Committee, 2021.

[72] G. Steinbuss and K. Böhm. Benchmarking unsupervised outlier detection with realistic synthetic data.
ACM Transactions on Knowledge Discovery from Data (TKDD), 15(4):1–20, 2021.

[73] C. Termritthikun, L. Xu, Y. Liu, and I. Lee. Neural architecture search and multi-objective evolutionary
algorithms for anomaly detection. In 2021 International Conference on Data Mining Workshops (ICDMW),
pages 1001–1008. IEEE, 2021.

[74] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, and S. Michalak. On mixup training:
Improved calibration and predictive uncertainty for deep neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

[75] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

[76] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu. Time series data augmentation for deep
learning: A survey. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
(IJCAI), pages 4653–4660, 8 2021.

[77] K. S. Woods, J. L. Solka, C. E. Priebe, W. P. Kegelmeyer Jr, C. C. Doss, and K. W. Bowyer. Comparative
evaluation of pattern recognition techniques for detection of microcalcifications in mammography. In State
of The Art in Digital Mammographic Image Analysis, pages 213–231. World Scientific, 1994.

[78] G. Xie, J. Wang, J. Liu, J. Lyu, Y. Liu, C. Wang, F. Zheng, and Y. Jin. Im-iad: Industrial image anomaly
detection benchmark in manufacturing. arXiv preprint arXiv:2301.13359, 2023.

[79] P. Xu, L. Zhang, X. Liu, J. Sun, Y. Zhao, H. Yang, and B. Yu. Do not train it: A linear neural architecture
search of graph neural networks. In International Conference on Machine Learning, pages 38826–38847.
PMLR, 2023.

[80] J. You, Z. Ying, and J. Leskovec. Design space for graph neural networks. Advances in Neural Information
Processing Systems, 33:17009–17021, 2020.

[81] W. Yu, J. Li, M. Z. A. Bhuiyan, R. Zhang, and J. Huai. Ring: Real-time emerging anomaly monitoring
system over text streams. IEEE Transactions on Big Data, 5(4):506–519, 2017.

[82] M. D. Zeiler. Adadelta: an adaptive learning rate method. ArXiv, 1212.5701, 2012.

[83] C. Zhang, T. Zhou, Q. Wen, and L. Sun. TFAD: A decomposition time series anomaly detection architecture
with time-frequency analysis. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pages 2497–2507, 2022.

[84] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

[85] Y. Zhang, Z. Guan, H. Qian, L. Xu, H. Liu, Q. Wen, L. Sun, J. Jiang, L. Fan, and M. Ke. Cloudrca: a root
cause analysis framework for cloud computing platforms. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 4373–4382, 2021.

[86] J. Zhao, X. Liu, Q. Yan, B. Li, M. Shao, and H. Peng. Multi-attributed heterogeneous graph convolutional
network for bot detection. Information Sciences, 537:380–393, 2020.

[87] Y. Zhao and L. Akoglu. Towards unsupervised hpo for outlier detection. arXiv preprint arXiv:2208.11727,
2022.

[88] Y. Zhao, R. Rossi, and L. Akoglu. Automatic unsupervised outlier model selection. Advances in Neural
Information Processing Systems, 34:4489–4502, 2021.

14

[89] Y. Zhao, S. Zhang, and L. Akoglu. Toward unsupervised outlier model selection. In IEEE International
Conference on Data Mining (ICDM). IEEE, 2022.

[90] Y. Zhou, X. Song, Y. Zhang, F. Liu, C. Zhu, and L. Liu. Feature encoding with autoencoders for weakly
supervised anomaly detection. TNNLS, 2021.

[91] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen. Deep autoencoding gaussian
mixture model for unsupervised anomaly detection. In ICLR, 2018.

15

Appendix

We provide more details of the evaluated 29 datasets (§A), compared baselines (§B), the proposed ADGym (§C),
and additional experimental results (§D).

A Dataset List

Most of the datasets used for model evaluation are derived from our previous work [26], and we drop those
datasets smaller than 1,000, and use the subsets of 3,000 for those datasets greater than 3,000 due to the
computational cost. We also remove those datasets that cause errors for the compared baseline models. This
results in a total of 29 datasets, as is described in Table A1. These datasets cover many application domains,
including healthcare (e.g., disease diagnosis), audio and language processing (e.g., speech recognition), image
processing (e.g., object identification), finance (e.g., financial fraud detection), and more, where we show this
information in the last column.

Table A1: Data description of the 29 datasets included in ADGym.
Data # Samples # Features # Anomaly % Anomaly Category Reference

ALOI 49534 27 1508 3.04 Image [19]
annthyroid 7200 6 534 7.42 Healthcare [61]
backdoor 95329 196 2329 2.44 Network [55]
campaign 41188 62 4640 11.27 Finance [59]
Cardiotocography 2114 21 466 22.04 Healthcare [7]
celeba 202599 39 4547 2.24 Image [59]
census 299285 500 18568 6.20 Sociology [59]
donors 619326 10 36710 5.93 Sociology [59]
fault 1941 27 673 34.67 Physical [19]
landsat 6435 36 1333 20.71 Astronautics [19]
letter 1600 32 100 6.25 Image [21]
magic.gamma 19020 10 6688 35.16 Physical [19]
mammography 11183 6 260 2.32 Healthcare [77]
mnist 7603 100 700 9.21 Image [37]
musk 3062 166 97 3.17 Chemistry [16]
optdigits 5216 64 150 2.88 Image [5]
PageBlocks 5393 10 510 9.46 Document [54]
pendigits 6870 16 156 2.27 Image [4]
satellite 6435 36 2036 31.64 Astronautics [64]
satimage-2 5803 36 71 1.22 Astronautics [64]
shuttle 49097 9 3511 7.15 Astronautics [64]
skin 245057 3 50859 20.75 Image [19]
SpamBase 4207 57 1679 39.91 Document [12]
speech 3686 400 61 1.65 Linguistics [10]
thyroid 3772 6 93 2.47 Healthcare [62]
vowels 1456 12 50 3.43 Linguistics [33]
Waveform 3443 21 100 2.90 Physics [50]
Wilt 4819 5 257 5.33 Botany [12]
yeast 1484 8 507 34.16 Biology [28]

local synthesis [26]
global synthesis [26]
cluster synthesis [26]
dependency synthesis [26]

B Compared Baselines

We compare the automatically selected AD models via ADGym with the following weakly- and fully-supervised
baselines, which are considered as effective AD solutions in the previous work [26].

1. Semi-Supervised Anomaly Detection via Adversarial Training (GANomaly) [3]. A GAN-based method
defines the reconstruction error of the input data as the anomaly score. We replace the convolutional layer
in its original version with the dense layer for the tabular AD task, where the hidden size of the encoder-
decoder-encoder structure of GANomaly is set to half of the input dimension. We train the GANomaly for
50 epochs with 64 batch size, where the SGD [66] optimizer with 0.01 learning rate and 0.7 momentum is
applied for both the generator and discriminator.

16

2. REPresentations for a random nEarest Neighbor distance-based method (REPEN) [56]. A neural
network-based model that leverages transformed low-dimensional embedding for random distance-based
detectors. The hidden size of REPEN is set to 20, and the margin of triplet loss is set to 1000. REPEN is
trained for 1000 epochs with early stopping. The batch size is set to 256, where the total number of steps
(batches of samples) is set to 50. Adadelta [82] optimizer with 0.001 learning rate and 0.95 ρ is applied to
update network parameters.

3. Deep Semi-supervised Anomaly Detection (DeepSAD) [69]. DeepSAD is a deep one-class method that
improves its unsupervised version DeepSVDD [68] by penalizing the inverse distances of anomaly represen-
tation such that anomalies must be mapped further away from the hypersphere center. The hyperparameter
η in the loss function is set to 1.0, where DeepSAD is trained for 50 epochs with 128 batch size. Adam
optimizer with 0.001 learning rate and 10−6 weight decay is applied for updating the network parameters.
DeepSAD additionally employs an autoencoder for calculating the initial center of the hypersphere, where the
autoencoder is trained for 100 epochs with 128 batch size, and optimized by Adam optimizer with learning
rate 0.001 and 10−6 weight decay.

4. Deviation Networks (DevNet) [59]. A neural network-based model uses a prior Gaussian distribution to
enforce a statistical deviation score of input instances. The margin hyperparameter a in the deviation loss is
set to 5. DevNet is trained for 50 epochs with 512 batch size, where the total number of steps is set to 20.
RMSprop [66] optimizer with 0.001 learning rate and 0.95 ρ is applied to update network parameters.

5. Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection (FEAWAD) [90]. A
neural network-based model that integrates the network architecture of DAGMM [91] with the deviation loss
in DevNet [59]. FEAWAD is trained for 30 epochs with 512 batch size, where the total number of steps is set
to 20. Adam optimizer with 0.0001 learning rate is applied to update network parameters.

6. Residual Nets (ResNet) [24]. This method introduces a ResNet-like architecture [27] for tabular data.
ResNet is trained for 100 epochs with 64 batch size. AdamW [51] optimizer with 0.001 learning rate is
applied to update network parameters.

7. Feature Tokenizer + Transformer (FTTransformer) [24]. FTTransformer is an effective adaptation of the
Transformer architecture [75] for tabular data. FTTransformer is trained for 100 epochs with 64 batch size.
AdamW optimizer with 0.0001 learning rate and 10−5 weight decay is applied to update network parameters.

C Details of ADGym

In this section, we provide more details of the design space in ADGym, including the pipelines of Data Handling,
Network Construction, and Network Training. Besides, we also introduce detailed descriptions of the extracted
meta-features and the trained meta-predictors.

C.1 Design Choices Specification

Data Handling

Data augmentation aims to enhance the quality of training data by generating synthetic anomalies, mit-
igating the class-imbalance problem in AD tasks. For a dataset D = {xu

1 , . . . ,x
u
k , (x

a
k+1, y

a
k+1) , . . . ,

(xa
k+m, ya

k+m)} defined in the main paper, the output after a specific data augmentation method
is D′ =

{
xu

1 , ...,x
u
k ,

(
xa

k+1, y
a
k+1

)
, ...,

(
xa

k+m, ya
k+m

)
,
(
xa

k+m+1, y
a
k+m+1

)
, ...,

(
xa

k+m+j , y
a
k+m+j

)}
,

where m ≪ k and m+ j ≈ k. This will exhibit a more balanced distribution between the normal and abnormal
ones. Except for the default setting (maintaining the original class distribution of the dataset), we present four
additional choices in this dimension: Oversampling, SMOTE [14], Mixup [39, 74, 84], and GAN [6].

Data preprocessing includes two commonly used methods, MinMaxScaler and Normalization. Given the input
data D ∈ Rn×d, for each feature vector F ∈ Rn, MinMax scales F to the range [a, b]: F ′ = (F − Fmin) ∗
(b − a)/(Fmax − Fmin) + a, where Fmin and Fmax represent the minimum and maximum of F . For each
sample vector S ∈ Rd, Normalization compute its L2 norm and scale S to S′ = S/||S||2 if ||S|| ̸= 0.

Network Construction

Network Construction is often regarded as an important part in the CV or NLP domain, while it is often neglected
in the AD problem. In fact, some design choices like AutoEncoder [90] and Transformer [24] could facilitate
the detection performance of downstream tabular AD tasks. We comprehensively present the entire network
construction process from various aspects, such as network architecture, hidden layers, activation functions,
dropout rate, and parameter initialization, and provide numerous design choices.

Network Training

Many researchers regard the loss function as the key component of AD models. Binary cross entropy (BCE)
loss is the conventionally accepted choice for classification tasks but is often considered inappropriate for AD.
However, its value as a robust baseline may be overlooked by the AD community, as we have pointed out in the

17

main part §4.2.3. In ADGym, we explore the potential of diverse loss functions under different combinations of
design choices.

As an overview of these loss functions, Focal loss [45] increases the weighting of abnormal data in cross-entropy
loss, enabling the model to focus more on the classification of anomalies. Minus loss [18] offers divergent update
directions for anomaly scores amidst normal and abnormal data, and circumvents the issue of loss explosion with
an upper bound. Resembling minus loss in approach, Inverse loss [69] is inherently self-limiting. Hinge loss
[56, 59] leverages a pre-established hyperparameter, M , to maintain an anomaly score margin of a minimum
of M . Deviation loss [59] mandates that the anomaly scores of normal data align with a standard Gaussian
distribution, simultaneously ensuring a minimal M margin for anomaly scores. Other dimensions here are
consistent with common DL.

C.2 Meta-features and Meta-predictors

Details and the selected list of meta-features

Data characterization measures which represent task information are fundamental for meta-learning [65]. We
extract multiple categories of them as meta-features in the reference of [88], including: (1) Statistical features
depict the dataset from multiple statistical indicators, including but not limited to characteristics such as the
minimum value, maximum value, mean, and variance, as well as combinations of these features. These
characteristics are widely used in the previous AutoML studies, demonstrating their feasibility for application.
(2) Landmarker features are constructed by a series of AD models, including iForest, HBOS, LODA, and PCA
(anomalies are reconstructed harder), which represent more AD task-specific information. For each of the
four different unsupervised AD models trained by a given dataset, we extract their characteristics to engineer
a series of meta-features (See Table C3 for complete landmaker features). Overall, the experiment on the
proposed two-stage method has proven that we can construct similar models for datasets with similar landmarker
meta-features.

Table C2: Selected meta-features for characterizing an arbitrary dataset.

Name Formula Rationale Variants

Nr instances n Speed, Scalability p
n

, log(n), log(n
p
)

Nr features p Curse of dimensionality log(p), % categorical
Sample mean µ Concentration
Sample median X̃ Concentration
Sample var σ2 Dispersion
Sample min maxX Data range
Sample max minX Data range
Sample std σ Dispersion
Percentile Pi Dispersion q1, q25, q75, q99
Interquartile Range (IQR) q75− q25 Dispersion
Normalized mean µ

maxX
Data range

Normalized median X̃
maxX

Data range
Sample range maxX −minX Data range
Sample Gini Dispersion
Median absolute deviation median(X − X̃) Variability and dispersion
Average absolute deviation avg(X − X̃) Variability and dispersion
Quantile Coefficient Dispersion (q75−q25)

(q75+q25)
Dispersion

Coefficient of variance Dispersion
Outlier outside 1 & 99 % samples outside 1% or 99% Basic outlying patterns
Outlier 3 STD % samples outside 3σ Basic outlying patterns

Normal test If a sample differs from a normal dist. Feature normality
kth moments 5th to 10th moments
Skewness Feature skewness Feature normality min, max, µ, σ, skewness, kurtosis
Kurtosis µ4

σ4 Feature normality min, max, µ, σ, skewness, kurtosis
Correlation ρ Feature interdependence min, max, µ, σ, skewness, kurtosis
Covariance Cov Feature interdependence min, max, µ, σ, skewness, kurtosis
Sparsity #Unique values

n
Degree of discreteness min, max, µ, σ, skewness, kurtosis

ANOVA p-value pANOVA Feature redundancy min, max, µ, σ, skewness, kurtosis
Coeff of variation σx

µx
Dispersion

Norm. entropy H(X)
log2n

Feature informativeness min,max, σ, µ

Landmarker (HBOS) See Table C3 Outlying patterns Histogram density
Landmarker (LODA) See Table C3 Outlying patterns Histogram density
Landmarker (PCA) See Table C3 Outlying patterns Explained variance ratio, singular values
Landmarker (iForest) See See Table C3 Outlying patterns # of leaves, tree depth, feature importance

Detailed and Complete List of Meta-predictors We represent each design choice with LabelEncoder class
from the scikit-learn library. These encoded data, together with the meta-features and the number of labeled
anomalies na, are considered as the input data of the following three kinds of meta-predictors.

Two-stage meta-predictor. This meta-predictor uses the meta-features described above. It firstly extracts meta-
features Emeta

i from the given training datasets as an essential input, and then combines these meta-features
with design choice embeddings and na, learning to predict the relative performance rank.

18

Table C3: Landmarker features. An example of feature is the minimization of tree depth from the
model iForest.

Model Perspective Variants

iForest

Tree depth

min,max,mean,std,skewness,kurtosisNumber of leaves
Mean of base tree feature importance
Max of base tess feature importance

HBOS Mean of each histogram(per feature) min,max,mean,std,skewness,kurtosisMax of each histogram(per feature)

LODA

Mean of each random projection(per feature)

min,max,mean,std,skewness,kurtosisMax of each random projection(per feature)
Mean of each histogram(per feature)
Max of each histogram(per feature)

PCA Explained variance ratio on the first three principal components The percentage of variance it captures for the top 3
principal components

Singular values The top 3 singular values generated during SVD
process

End-to-end meta-predictor. This meta-predictor learns meta-features implicitly through an end-to-end fashion
that is inspired by Dataset2Vec[30].

Ensembled version of the above two types of meta-predictors. It has been proved that ensemble models, such
as XGBoost and CatBoost, perform well in AD tasks, which motivates us to explore whether the ensemble
meta-predictor exhibits superior performance in experiments. From another perspective, this is also a validation
of whether our proposed meta-predictor possesses high robustness. Specifically speaking, for each AD task
(dataset), we select the top-k (default k = 5 in our experiments) best-performance design pipelines predicted by
meta-predictor, and utilize the average voting strategy to output the anomaly scores.

Details on training strategies of meta-predictors

We experimented with different loss functions to better guide the meta-predictor in selecting the top-k design
pipelines. During the training process of meta-predictors, weighted MSE loss assigns greater weights for
those design choices with both higher real and predicted performance. The former aims to help the model
focus on accurately predicting high-performing design pipelines, while the latter avoids mistakenly predicting
poor-performing pipelines as part of the top-k. Pearson loss emphasizes the linear correlation between the
predicted performances of different design choices and their actual ones. Ranknet loss [11], a commonly used
pairwise algorithm in Learning to Rank, aims to model the probability that one design pipeline is superior to
another in a probabilistic manner.

D Additional Experimental Results

D.1 Additional Results of Large Evaluations on AD Design Choices

D.1.1 Using AUCPR as Metrics

For AUCPR performances, we evaluate different design dimensions via the box plots, as shown in Figure D1,
D2, and D3, respectively. Overall, we find that the conclusions drawn based on either AUCROC (shown in the
main paper) or AUCPR are consistent.

None
Over

SMOTE
Mixup

GAN

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

None
Over

SMOTE
Mixup

GAN

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

None
Over

SMOTE
Mixup

GAN

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(a) Data augmentation

minmax

normalize

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

minmax

normalize

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

minmax

normalize

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(b) Data preprocessing

Figure D1: AUCPR performance of data handling designs. There is no significant difference between
different design choices in both data augmentation and preprocessing dimensions.

19

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(a) Network architecture

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(b) Hidden layers

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(c) Activation function

0.0 0.1 0.2

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

0.0 0.1 0.2

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

0.0 0.1 0.2

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(d) Dropout

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(e) Network initialization

Figure D2: AUCPR performance of network construction designs. MLP is still an effective architec-
ture for AD tasks, where Tanh and LeakyReLU activation functions are generally better than ReLU.

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(a) Loss function

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(b) Optimizer

20 50 100

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

20 50 100

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

20 50 100

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(c) Epochs

16 64 256

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 5

16 64 256

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 10

16 64 256

0.0

0.2

0.4

0.6

0.8

AU
C

PR

na = 20

(d) Batch size

0.01
0.001

0.00

0.25

0.50

0.75

AU
C

PR

na = 5

0.01
0.001

0.00

0.25

0.50

0.75

AU
C

PR

na = 10

0.01
0.001

0.00

0.25

0.50

0.75

AU
C

PR

na = 20

(e) Learning rate

0.01
0.0001

0.00

0.25

0.50

0.75

AU
C

PR

na = 5

0.01
0.0001

0.00

0.25

0.50

0.75

AU
C

PR

na = 10

0.01
0.0001

0.00

0.25

0.50

0.75

AU
C

PR

na = 20

(f) Weight decay

Figure D3: AUCPR performance of network training designs. Hinge loss is generally a better AD
loss function. Both Adam and RMSprop optimizers outperform classical SGD. Smaller epochs could
prevent overfitting on limited labeled data and thus achieve better performance.

20

D.1.2 Using Relative Rank as Metrics

Considering the varying degrees of difficulty across different datasets, we also demonstrate the relative rankings
of both AUCROC (as shown in figure D4~D6) and AUCPR (as shown in figure D7~D9) to measure the
performance of different design choices. Specifically, we rank 1000 sampled design choices on each dataset. For
a more intuitive comparison with our previous results, we calculate 1− normalized(rank(design choice)),
i.e., the inverse of the normalized rank value, as the metric, where higher values indicate better performance. We
found that such a metric further amplifies the differences between various design choices and generally aligns
with the previous experimental findings. Notably, under the metric of relative ranking, we observe a significant
decline in the performance of ResNet, which is inferior to AE. Drawing from our previous experiments, it
becomes evident that ResNet’s stability across various design pipelines did not manifest under this metric, which,
however, is a crucial advantage in practical scenarios.

None
Over

SMOTE
Mixup

GAN
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

None
Over

SMOTE
Mixup

GAN
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

None
Over

SMOTE
Mixup

GAN
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(a) Data augmentation

minmax
normalize

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

minmax
normalize

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

minmax
normalize

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(b) Data preprocessing

Figure D4: AUCROC relative rank performance of data handling designs.

MLP AE ResNet
FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

MLP AE ResNet
FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

MLP AE ResNet
FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(a) Network architecture

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(b) Hidden layers

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(c) Activation function

0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(d) Dropout

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(e) Network initialization

Figure D5: AUCROC relative rank performance of network construction designs.

21

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(a) Loss function

SGD Adam
RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

SGD Adam
RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

SGD Adam
RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(b) Optimizer

20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(c) Epochs

16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(d) Batch size

0.01
0.001

0.0

0.5

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

0.01
0.001

0.0

0.5

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

0.01
0.001

0.0

0.5

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(e) Learning rate

0.01
0.0001

0.0

0.5

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 5

0.01
0.0001

0.0

0.5

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 10

0.01
0.0001

0.0

0.5

1.0

AU
CR

OC
 re

la
tiv

e
ra

nk

na = 20

(f) Weight decay

Figure D6: AUCROC relative rank performance of network training designs. Hinge loss is generally
a better AD loss function.

None
Over

SMOTE
Mixup

GAN
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

None
Over

SMOTE
Mixup

GAN
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

None
Over

SMOTE
Mixup

GAN
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(a) Data augmentation

minmax
normalize

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk
na = 5

minmax
normalize

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

minmax
normalize

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(b) Data preprocessing

Figure D7: AUCPR relative rank performance of data handling designs.

MLP AE ResNet
FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

MLP AE ResNet
FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

MLP AE ResNet
FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(a) Network architecture

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

[20]
[100, 20]

[100, 50, 20]

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(b) Hidden layers

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(c) Activation function

0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(d) Dropout

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

default
xavier

kaiming

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(e) Network initialization

Figure D8: AUCPR relative rank performance of network construction designs.

22

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(a) Loss function

SGD Adam
RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

SGD Adam
RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

SGD Adam
RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(b) Optimizer

20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

20 50 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(c) Epochs

16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(d) Batch size

0.01
0.001

0.0

0.5

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

0.01
0.001

0.0

0.5

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

0.01
0.001

0.0

0.5

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(e) Learning rate

0.01
0.0001

0.0

0.5

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 5

0.01
0.0001

0.0

0.5

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 10

0.01
0.0001

0.0

0.5

1.0

AU
CP

R
re

la
tiv

e
ra

nk

na = 20

(f) Weight decay

Figure D9: AUCPR relative rank performance of network training designs.

D.1.3 Unsupervised Network Pre-training

In addition to the existing network initialization methods introduced in Table 1, we also investigate whether deep
learning based AD models can benefit from unsupervised pre-training tasks. For tabular AD problems, we follow
[68, 69] to first train an AutoEncoder that has an encoder with the same architecture as the corresponding network,
e.g., constructing encoder-decoder transformer block in FTTransformer, and then utilize the reconstruction loss
(mean squared error between the input data and its reconstructed ones) to perform model training. After that,
we initialize corresponding models with the converged parameters of the encoder and fine-tune them on the
downstream tasks, which contain only limited labeled data.

Pre-training has been widely used for NLP [15] and CV [52] tasks and verified to significantly enhance the
performance of downstream tasks. However, for tabular AD problems, we did not observe a significant advantage
of pre-training over other network initialization methods, as shown in Figure D10. This may be due to the reason
that compared to the NLP and CV tasks that contain rich textual semantics and visual patterns, the inherent
structure of tabular data is more rigid and constrained, resulting in the model struggling to learn general features
without label guidance.

default
pretrained

xavier
kaiming

0.00

0.25

0.50

0.75

1.00

AU
C

R
O

C

na = 10

default
pretrained

xavier
kaiming

0.00

0.25

0.50

0.75

1.00

AU
C

PR

na = 10

Figure D10: AUCROC and AUCPR performance of network pre-training.

D.2 Additional Results for Different Anomalies of Synthetic Datasets

Based on 29 real-world scenario datasets, we generated synthetic datasets using three random seeds with four
specific anomaly types: local, global, dependency, and cluster. These types were defined in our previous work
[26]. After excluding datasets that could not be generated properly, we conducted two experiments on remaining
synthetic datasets (totaling over 300): a large benchmark for design choices and a performance experiment for
ADGym using global anomaly types as an example.

D.2.1 Large Evaluation on Design Choices over Synthetic Anomalies

This evaluation is conducted to expose the correlation between the effectiveness of different design choices
and the characteristics of the datasets. To more intuitively display our experimental results, we selected three

23

representative design dimensions: data augmentation, network architecture, and loss function. As shown in figure
D11, data augmentation techniques tend to have counterproductive effects on single-anomaly datasets in the
vast majority of cases. Figure D12 shows the performance over different network architectures, where ResNet
consistently excels over other architectures when dealing with dependency anomalies. However, its performance
diminishes with datasets that have a global anomalies context and fewer anomalies. Compared to the two
dimensions mentioned above, the variance between different loss functions is significantly greater, making
the selection of an appropriate loss function crucial, as shown in figure D13. The deviation loss consistently
demonstrates competitive results across various anomaly types and numbers of anomalies, and the performance
of hinge loss also improves rapidly as the number of anomalies increases.

0.04 0.03 0.02 0.01 0.00 0.01 0.02
AUCROC

0.06

0.04

0.02

0.00

0.02

0.04

AU
CP

R

C

D

G

L C
D

G

L

C

D

G

L

C

D

G

L

GAN
Mixup
Origin
Oversampling

(a) la=5

0.06 0.04 0.02 0.00 0.02 0.04
AUCROC

0.125

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

AU
CP

R

C

D

G

L C

D

G

L

C D

G

L

C
D

G
L

C

D

G

L

GAN
Mixup
Origin
Oversampling
SMOTE

(b) la=10

0.08 0.06 0.04 0.02 0.00 0.02 0.04
AUCROC

0.15

0.10

0.05

0.00

0.05

0.10

AU
CP

R

C

D

G

L
C

D

G

L

C

D
G

L

C

D
G
L

C

D

G

L

GAN
Mixup
Origin
Oversampling
SMOTE

(c) la=20

Figure D11: Performance of data augmentation designs across various anomalies. Each point
indicates the average performance across three random seeds. Anomalies: global (G), local (L),
cluster (C), and dependency (D). The x-axis and y-axis show improvement ratios in AUC-ROC and
AUC-PR, respectively

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075
AUCROC

0.1

0.0

0.1

0.2

0.3

AU
CP

R

C

D

GL

C

D
G

L

CD

G

L

C

D

G

L

AE
FTT
MLP
ResNet

(a) la=5

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08 0.10
AUCROC

0.2

0.1

0.0

0.1

0.2

0.3

0.4

AU
CP

R

C

D

G

L

C

DG
L

C

D G

L

C

D

G

L

AE
FTT
MLP
ResNet

(b) la=10

0.05 0.00 0.05 0.10 0.15
AUCROC

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5
AU

CP
R

C

D

G

L

C

D
G L

C

D
G

L

C

D

G

L

AE
FTT
MLP
ResNet

(c) la=20

Figure D12: performance of network architecture designs over different type of anomalies.

0.20 0.15 0.10 0.05 0.00 0.05 0.10
AUCROC

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

AU
CP

R

C

D

G
L

C

D

G

L

C

D

G

L

C

D

G
L

C

D

G

L
C

D

G
L

bce
deviation
focal
hinge
inverse
minus

(a) la=5

0.15 0.10 0.05 0.00 0.05 0.10
AUCROC

0.3

0.2

0.1

0.0

0.1

0.2

AU
CP

R

C

D

GL
C

D

G

L

C

D

G

L

C

D

G
L

C

D

G

L
C

D

G
L

bce
deviation
focal
hinge
inverse
minus

(b) la=10

0.20 0.15 0.10 0.05 0.00 0.05 0.10
AUCROC

0.3

0.2

0.1

0.0

0.1

0.2

AU
CP

R

C

D

GL C

D

G

L

C

D

G

L

C

D

G
L

C

D

G

L

C

D

G
L

bce
deviation
focal
hinge
inverse
minus

(c) la=20

Figure D13: performance of loss function designs over different type of anomalies.

24

D.2.2 Additional Results of ADGym over datasets with global anomalies

In this section, we investigate whether meta-predictor can select the best design choices based on dataset
meta-features. We chose the meta-predictor trained with two shallow model methods and focused on datasets
with global anomalies. These datasets have previously been shown to favor competitive design choices, such as
the AE architecture and deviation loss function. Figures D14 and D15 respectively display our results concerning
the network architecture and loss function design dimensions, both of which have been shown to significantly
impact model performance in earlier experiments. We represent the results using scatter plots, where all results
are averaged over three seeds and the number of anomalies; the closer to the top-right corner indicates better
performance of the design choice. Empirical evidence shows that the meta-predictor can effectively select
the best design choice (AE and deviation loss) in both dimensions, with the prediction results for network
architecture almost perfectly aligning with the actual results.

0.46 0.48 0.50 0.52 0.54

1-AUCROC RANK

0.44

0.46

0.48

0.50

0.52

0.54

1-
AU

CP
R

RA
NK

AE

FTT

MLPResNet

(a) CatBoost

0.46 0.48 0.50 0.52 0.54

1-AUCROC RANK

0.44

0.46

0.48

0.50

0.52

0.54

1-
AU

CP
R

RA
NK

AE

FTT

MLPResNet

(b) XGBoost

0.72 0.74 0.76 0.78

AUCROC

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

AU
CP

R

AE

FTT

MLP

ResNet

(c) Ground Truth

Figure D14: performance of meta-predictors on network architecture over global anomalies. Figures
(a) and (b) show meta-predictors output trained by CatBoost and XGBoost, and (c) shows result of
previous benchmark experiments on global anomalies (as ground truth baseline). For a more intuitive
comparison, we subtract the output from 1 to ensure that the best design choices are positioned closer
to the top-right corner.

0.44 0.46 0.48 0.50 0.52 0.54 0.56

1-AUCROC RANK

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

1-
AU

CP
R

RA
NK

deviation

bce

focal

minus

inverse

hinge

(a) CatBoost

0.44 0.46 0.48 0.50 0.52 0.54 0.56

1-AUCROC RANK

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

1-
AU

CP
R

RA
NK

deviation

bce

focal

minus

inverse

hinge

(b) XGBoost

0.68 0.70 0.72 0.74 0.76 0.78 0.80

AUCROC

0.550

0.575

0.600

0.625

0.650

0.675

0.700

AU
CP

R

bce

deviation

focal

hinge

inverse

minus

(c) Ground Truth

Figure D15: performance of meta-predictors on loss function over global anomalies.

D.3 Additional Results for Different Domains of Datasets

In order to investigate the performance of the AD design choices across different domains, we categorize 29
datasets into 14 distinct domains and aggregate the experimental results based on the domain of each dataset. In
Table D4 and D5, each data point represents the average performance rank of the design choices (as indicated by
the rows) on the datasets within a specific domain (as indicated by the columns). We observe that no design
choices are universally superior or inferior. A case in point is the GAN-based data augmentation method,
which generally underperforms on most datasets but shows a clear advantage in the financial domain. A similar
situation also occurs with the performance of FTTransformer on datasets in the Sociology domain. Meanwhile,
some designs that have performed well in past experiments, such as the deviation loss function, rank last on
datasets in the financial domain. These results underscore the necessity of automated selection of AD designs
and align with our previous conclusions.

25

Table D4: AUCROC performance rank of design choices across different domains. First column
show different design dimensions, where aug, na, af, ls are abbreviations for data augmentation,
network architecture, activate function, and loss function, respectively

design method Astronautics Biology Botany Chemistry Document Finance Healthcare Image Linguistics Network Physical Physics Sociology Web
aug GAN 5 5 5 5 5 2 5 5 5 5 5 5 4 5
aug Mixup 2 2 1 3 4 4 4 2 1 4 3 4 2 2
aug Origin 4 3 3 4 3 5 3 4 2 3 2 2 5 3
aug Oversampling 3 4 2 2 2 3 2 3 3 2 4 3 3 4
aug SMOTE 1 1 4 1 1 1 1 1 4 1 1 1 1 1
na AE 2 3 2 2 1 2 2 3 4 2 2 2 3 3
na FTT 4 4 4 4 4 4 4 4 1 4 4 4 1 4
na MLP 1 1 3 1 2 1 1 1 3 1 1 1 2 2
na ResNet 3 2 1 3 3 3 3 2 2 3 3 3 4 1
af LeakyReLU 1 2 1 1 2 1 2 2 3 1 2 1 3 3
af ReLU 3 3 2 3 3 3 3 3 1 3 3 3 2 2
af Tanh 2 1 3 2 1 2 1 1 2 2 1 2 1 1
ls bce 3 4 3 1 2 4 4 1 4 1 1 2 1 3
ls deviation 4 3 2 2 4 6 3 3 2 3 3 4 4 1
ls focal 5 6 5 4 6 2 5 5 6 5 6 5 5 5
ls hinge 2 1 1 5 3 3 1 2 1 2 4 1 2 2
ls inverse 6 5 6 6 5 5 6 6 5 6 5 6 6 6
ls minus 1 2 4 3 1 1 2 4 3 4 2 3 3 4

Table D5: AUCPR performance rank of design choices across different domains.
design method Astronautics Biology Botany Chemistry Document Finance Healthcare Image Linguistics Network Physical Physics Sociology Web

aug GAN 4 4 4 4 4 1 4 4 4 4 4 4 4 4
aug Mixup 1 1 1 2 3 3 3 1 1 1 2 1 1 1
aug Origin 3 2 2 3 2 4 2 3 3 3 1 2 3 2
aug Oversampling 2 3 3 1 1 2 1 2 2 2 3 3 2 3
aug SMOTE 5 5 5 5 5 5 5 5 5 5 5 5 5 5
na AE 3 3 2 2 1 2 2 3 4 3 2 3 4 3
na FTT 4 4 4 4 4 4 4 4 2 4 4 4 1 4
na MLP 1 2 3 1 2 1 1 1 3 1 1 1 2 2
na ResNet 2 1 1 3 3 3 3 2 1 2 3 2 3 1
af LeakyReLU 2 3 2 2 2 1 2 2 3 2 2 1 2 2
af ReLU 3 2 1 3 3 3 3 3 1 3 3 3 1 3
af Tanh 1 1 3 1 1 2 1 1 2 1 1 2 3 1
lf bce 4 4 3 3 2 5 4 3 3 5 1 2 3 3
lf deviation 1 3 2 1 4 6 2 1 1 3 2 3 2 2
lf focal 5 6 5 5 6 2 5 5 6 4 6 5 5 5
lf hinge 2 1 1 4 3 3 1 2 2 2 3 1 1 1
lf inverse 6 5 6 6 5 4 6 6 5 6 5 6 6 6
lf minus 3 2 4 2 1 1 3 4 4 1 4 4 4 4

D.4 Additional Results of Automatic Component Construction via ADGym

D.4.1 Using AUCPR as Metrics

In this subsection, we show the AUCPR performance of compared baseline AD methods, as well as different
versions of meta-predictors proposed in our ADGym, as is shown in Table D6~D10. We still observe similar
results to those illustrated in the main paper, where: (1) the AUCPR performances of automatically constructed
AD methods via meta-predictors are better than current state-of-the-art AD solutions. (2) Meta-predictors benefit
from either the instantiation of the ensembled tree-based model or an ensembling strategy. (3) Large design
space generally improves the performance of meta-predictors.

Table D6: Baseline of SOTA AD methods.
na GANomaly REPEN DeepSAD DevNet FEAWAD ResNet FTTransformer
5 0.235 0.480 0.333 0.484 0.470 0.363 0.489
10 0.240 0.476 0.417 0.530 0.530 0.433 0.561
20 0.250 0.517 0.491 0.584 0.579 0.528 0.623

Table D7: Performance of auto-selected pipelines by ADGym. RS, SS, and GT refer to the random
selection, supervised selection, and the best performance among all design choices, respectively. DL
or ML corresponds to the meta-predictor that is either instantiated with MLP or tree-based method
like XGBoost. The suffix -ensemble refers to ensemble multiple predictions of meta-predictors.
"2-stage" and "end2end" corresponds to the two-stage and end-to-end for extracting meta-features.

na RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.447 0.365 0.706 0.531 0.533 0.538 0.534 0.532 0.539 0.553 0.547
10 0.478 0.459 0.737 0.589 0.592 0.600 0.597 0.600 0.603 0.617 0.614
20 0.509 0.550 0.759 0.622 0.616 0.639 0.623 0.642 0.657 0.662 0.669

26

Table D8: AUCPR performance of meta-predictors trained on other loss functions. Different loss
functions do not yield significant performance improvement for the meta-predictor.

na

Weighted MSE Pearson Ranknet

DL-single DL-ensemble DL-single DL-ensemble DL-single DL-ensemble

2-stage end2end 2-stage end2end 2-stage end2end 2-stage end2end 2-stage end2end 2-stage end2end
5 0.495 0.500 0.502 0.501 0.524 0.525 0.527 0.533 0.525 0.527 0.529 0.553
10 0.558 0.533 0.571 0.543 0.585 0.581 0.603 0.599 0.583 0.581 0.592 0.599
20 0.592 0.573 0.614 0.560 0.631 0.602 0.640 0.609 0.635 0.624 0.642 0.623

Table D9: AUCPR performance of meta-predictors trained on large scale design space. Larger design
space provides potentially more effective design choices for newcoming datasets.

na RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.449 0.373 0.716 0.539 0.537 0.547 0.556 0.554 0.544 0.558 0.551
10 0.491 0.455 0.742 0.590 0.583 0.613 0.604 0.593 0.588 0.609 0.622
20 0.528 0.557 0.762 0.641 0.617 0.656 0.630 0.624 0.641 0.660 0.662

Table D10: AUCPR performance of meta-predictors trained on refined design space. No significant
improvement of meta-predictor is observed since not only potentially better design choices are
discarded, but also results in a reduction of training data in meta-predictors.

na RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.467 0.370 0.706 0.528 0.509 0.531 0.523 0.522 0.536 0.541 0.540
10 0.532 0.458 0.737 0.573 0.550 0.593 0.563 0.597 0.612 0.607 0.620
20 0.564 0.540 0.759 0.614 0.580 0.656 0.582 0.635 0.647 0.659 0.671

D.4.2 Using Relative Rank as Metrics

In this subsection, we present results using the relative rankings based on AUCROC and AUCPR as metrics to
mitigate the impact of variations in dataset difficulty. Specifically, we compute the relative rankings for each
datasets across all models, including design pipelines generated by various versions of ADGym meta-predictor.
We then subtract these normalized results from 1, ensuring that larger values indicate better performance. Table
D11 and Table D12 depict the relative rankings of various SOTA models for AUCROC and AUCPR, respectively,
while Table D13 and Table D14 compare the performance of different meta-predictor versions. It’s important to
note that performance cannot be compared across tables using this relative ranking metric, so we include the
average result of the SOTA models as a baseline for ranking purposes. Our findings are consistent with previous
conclusions, indicating that the performance of design pipelines from the meta predictor surpasses that of the
existing SOTA models.

Table D11: Baseline of SOTA AD methods with AUCROC relative rank.
na GANomaly REPEN DeepSAD DevNet FEAWAD ResNet FTTransformer
5 0.383 0.738 0.557 0.665 0.609 0.349 0.663
10 0.331 0.662 0.575 0.685 0.641 0.375 0.699
20 0.301 0.612 0.577 0.672 0.676 0.394 0.736

Table D12: Baseline of SOTA AD methods with AUCPR relative rank.
na GANomaly REPEN DeepSAD DevNet FEAWAD ResNet FTTransformer
5 0.370 0.672 0.450 0.690 0.661 0.474 0.652
10 0.310 0.605 0.490 0.710 0.686 0.484 0.686
20 0.271 0.586 0.503 0.691 0.698 0.503 0.719

27

Table D13: Relative Rank AUCROC of auto-selected pipelines by ADGym.

na SOTA RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.289 0.275 0.231 0.986 0.598 0.551 0.609 0.573 0.582 0.562 0.605 0.633
10 0.243 0.216 0.202 0.982 0.594 0.530 0.635 0.588 0.610 0.588 0.659 0.645
20 0.225 0.215 0.244 0.978 0.601 0.530 0.621 0.581 0.586 0.587 0.640 0.685

Table D14: Relative Rank AUCPR of auto-selected pipelines by ADGym.

na SOTA RS SS GT DL-single DL-ensemble ML-single ML-ensemble

2-stage end2end 2-stage end2end XGB CatB XGB CatB
5 0.353 0.284 0.276 0.984 0.572 0.545 0.600 0.552 0.557 0.566 0.608 0.596
10 0.275 0.297 0.270 0.982 0.563 0.527 0.599 0.569 0.547 0.569 0.628 0.668
20 0.260 0.319 0.313 0.973 0.549 0.514 0.614 0.539 0.536 0.600 0.617 0.659

D.5 Additional Results of Evaluations under Real-world Issues

In real-world applications, AD tasks frequently encounter complex scenarios characterized by noisy and corrupted
input data. In this section, we assess the performance and robustness of various AD design choices under three
prevalent but imperfect real-world conditions. All experiments are conducted within a weakly-supervised
framework, wherein only a sparse set of ten anomaly samples are labeled.

• Duplicated Anomalies. Abnormal data are likely to recur multiple times due to various factors. These
repeated anomalies often impact many density-based AD algorithms. To simulate this scenario, we duplicated
each abnormal samples three times in all datasets for our experiments.

• Irrelevant Features. In real-world tabular data, there often exist irrelevant features (columns). Even when
feature selection techniques such as Random Forests or Logistic Regression are employed, their efficacy in
AD applications is not guaranteed. Therefore, assessing the robustness of AD design choices in the presence
of such irrelevant features is crucial. To examine this, we add an additional 30% irrelevant features to all
datasets by generating uniform noise.

• Annotation Errors. Annotation errors are among the most common forms of noise encountered in real-world
scenarios, especially in AD tasks where the data is extremely imbalanced. To assess the robustness of the
design choices against label noise, we inverted 10% of the labels in each dataset, limiting this modification to
the training sets.

We present the experimental results in Figure D16 and Figure D17 employing both AUCROC and AUCPR
metrics. It is evident from the figures that the performance of various design choices is significantly impacted by
Irrelevant Features and Annotation Errors, manifesting as a noticeable decline in both metrics. The conclusion
variances among different design choices are small under the influence of Irrelevant Features, trending towards
convergence. Surprisingly, we find that when Duplicated Anomalies are present, the performance of all design
choices tends to improve, and the variance also increases, possibly mitigating the issue of data imbalance. What
is particularly encouraging in our experiments is that the ResNet architecture not only shows a substantial and
stable advantage in scenarios with Duplicated Anomalies but also exhibits less impact in the other two settings.
We also conduct experiments with an Irrelevant Features noisy ratio of 0.1 and an Annotation Errors ratio of
0.05, where only a slight mitigation in the impact on design choices, and the conclusions remained consistent
with our current findings.

28

None
Over

SMOTE
Mixup

0.4

0.6

0.8

1.0

AU
C

R
O

C

Origin

None
Over

SMOTE
Mixup

0.4

0.6

0.8

1.0

AU
C

R
O

C

Duplicated Anomalies

None
Over

SMOTE
Mixup

0.4

0.6

0.8

1.0

AU
C

R
O

C

Irrelevant Features

None
Over

SMOTE
Mixup

0.4

0.6

0.8

1.0

AU
C

R
O

C

Annotation Errors

(a) Data augmentation

MLP
AE ResNet

FTT

0.4

0.6

0.8

1.0

AU
C

R
O

C

Origin

MLP
AE ResNet

FTT

0.4

0.6

0.8

1.0

AU
C

R
O

C

Duplicated Anomalies

MLP
AE ResNet

FTT

0.4

0.6

0.8

1.0

AU
C

R
O

C

Irrelevant Features

MLP
AE ResNet

FTT

0.4

0.6

0.8

1.0

AU
C

R
O

C

Annotation Errors

(b) Network architecture

Tanh
ReLU

LeakyReLU

0.4

0.6

0.8

1.0

AU
C

R
O

C

Origin

Tanh
ReLU

LeakyReLU

0.4

0.6

0.8

1.0

AU
C

R
O

C

Duplicated Anomalies

Tanh
ReLU

LeakyReLU

0.4

0.6

0.8

1.0

AU
C

R
O

C

Irrelevant Features

Tanh
ReLU

LeakyReLU

0.4

0.6

0.8

1.0

AU
C

R
O

C

Annotation Errors

(c) Activation function

bce focal
minus

inverse
hinge

deviation

0.4

0.6

0.8

1.0

AU
C

R
O

C

Origin

bce focal
minus

inverse
hinge

deviation

0.4

0.6

0.8

1.0

AU
C

R
O

C

Duplicated Anomalies

bce focal
minus

inverse
hinge

deviation

0.4

0.6

0.8

1.0

AU
C

R
O

C

Irrelevant Features

bce focal
minus

inverse
hinge

deviation

0.4

0.6

0.8

1.0

AU
C

R
O

C

Annotation Errors

(d) Loss function

SGD
Adam

RMSprop

0.4

0.6

0.8

1.0

AU
C

R
O

C

Origin

SGD
Adam

RMSprop

0.4

0.6

0.8

1.0

AU
C

R
O

C

Duplicated Anomalies

SGD
Adam

RMSprop

0.4

0.6

0.8

1.0

AU
C

R
O

C

Irrelevant Features

SGD
Adam

RMSprop

0.4

0.6

0.8

1.0

AU
C

R
O

C

Annotation Errors

(e) Optimizer

Figure D16: AUCROC performance of design choices under real-world issues, excluding GAN-based
methods due to high computational time.

None
Over

SMOTE
Mixup

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Origin

None
Over

SMOTE
Mixup

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Duplicated Anomalies

None
Over

SMOTE
Mixup

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Irrelevant Features

None
Over

SMOTE
Mixup

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Annotation Errors

(a) Data augmentation

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Origin

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Duplicated Anomalies

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Irrelevant Features

MLP
AE ResNet

FTT

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Annotation Errors

(b) Network architecture

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Origin

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Duplicated Anomalies

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Irrelevant Features

Tanh
ReLU

LeakyReLU

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Annotation Errors

(c) Activation function

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Origin

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Duplicated Anomalies

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Irrelevant Features

bce focal
minus

inverse
hinge

deviation

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Annotation Errors

(d) Loss function

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Origin

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Duplicated Anomalies

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Irrelevant Features

SGD
Adam

RMSprop

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

PR

Annotation Errors

(e) Optimizer

Figure D17: AUCPR performance of design choices under real-world issues.

29

	Introduction
	Related Work
	Weakly-supervised Anomaly Detection (WSAD)
	Benchmarks for Anomaly Detection
	Automatic Model Selection for AD
	Unsupervised Anomaly Model Selection
	Supervised Anomaly Model Selection, HP Optimization, and Neural Arch. Search

	ADGym: Benchmarking and Automating Design Choices in Deep AD
	Problem Definition
	Goal I: Understanding Design Choices of Deep AD
	Goal II: Constructing AD Algorithms Automatically via ADGym

	Experiments
	Experiment Settings
	Large Evaluation on AD Design Choices
	Data Handling
	Network Construction
	Network Training

	Automatic Component Construction via ADGym

	Conclusions, Limitations, and Future Directions
	Acknowledgement
	Dataset List
	Compared Baselines
	Details of ADGym
	Design Choices Specification
	Meta-features and Meta-predictors

	Additional Experimental Results
	Additional Results of Large Evaluations on AD Design Choices
	Using AUCPR as Metrics
	Using Relative Rank as Metrics
	Unsupervised Network Pre-training

	Additional Results for Different Anomalies of Synthetic Datasets
	Large Evaluation on Design Choices over Synthetic Anomalies
	Additional Results of ADGym over datasets with global anomalies

	Additional Results for Different Domains of Datasets
	Additional Results of Automatic Component Construction via ADGym
	Using AUCPR as Metrics
	Using Relative Rank as Metrics

	Additional Results of Evaluations under Real-world Issues

