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1 Appendix

1.1

Theorem 1. Assume a discrete-time MDP with an infinite time horizon. The Markovian movement
is deterministic, i.e., for arbitrary (s,a) € S X A, t > 0, there exists a s' € S such that P(S;11 =
s | Sy =s8,A;=a)=1forallt =0,1,... Assume a d-step delay exists in the observation, for an
arbitrary augmented state

It = (St7d7 Qt—dy " 7at71)7
the policy function of the SMBS method

1 (L) —argmaX—Zq St ,a (1)

is equivalent to the following optimal policy:
opt(Ly) = 7" (1, s &)y 2
Topr(1t) argmax g (1t,a) 2)
where §* denotes the optimal Q-function for the AMDP.

Proof. For the augmented state I;, if the movement is deterministic, there exists a sequence of
states (one trajectory) 7/ = (s}_,, 1, ,s;) € 8% such that P(Sy_aq; = s}_,,; | I;) = 1 for
i=1,2,---,d. Therefore, m; can be written as

M
1 ; .
mi(ly) = argmax - ;,1 q* (s, a) = arg max q” (s}, a)

We show the two policy functions are equivalent using mathematical induction. We denote the opti-

mal @-functions, the optimal value functions and the reward function for k-step delayed AMDP as

k)

gy, vj; and ry, respectively, denote the k-step augmented state as It( = (St—ds Qt—ds "+ 5 Qt—dik—1)

fork=1,2,---,d. Note §* = ¢j.

Using the connection between the optimal value function and the optimal @)-function in [1], for
k=1,2,---,d—1, we have

ae(IY, ararr) = Elre(I”, a)) + i3 | 117, arasi] 3)

Due to the deterministic movement, It(Jkr)1 is deterministic because P(It(i)1 =
(8)_gg1> Qt—di1s " > Qt—drk) | It(k),at,dJrk) = 1. Therefore, (3) can be simplified as
Gi (I ararn) = re(”, araen) + 1)) (4)

Because vk(It( +)1) = max, q;(It(_]ﬁ)17 a), we can further have

(L ararn) = (I ar—arn) + max ai (I}, a) (5)
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It can be seen from (5) that g;; satisfies the Bellman equation of the (k + 1)-step AMDP (equation
3.19in [1]):

v () = maxElrg s (17, 0) + o (155 | 1Y ),

where I;Sf;r Y denotes (It(_]ﬁ)17 a). Please note that we use the asynchronized reward function in [2],

hence rk(It(k), a) = rkH(It(_]ﬁ)l, a') = r(St—d,a:—q) where r is the reward function of the non-
delayed MDP.

Therefore, ¢;, is the solution of the optimal problem defined on the (k + 1)-step AMDP. Due to the
uniqueness of this solution, we have v, 1= q;,- Combining this conclusion with (4), we obtain

d—1

(T, ar) =Y 'r(si_ayjs ar-ary) + 77 (st ar) (6)
=0

Apply arg max operator on a; on both sides of (6), we have
Mope(I1) = arg max ¢ (I, ar) = arg max ¢*(s;, ar) = my ()

This concludes that two policy functions are equivalent.

1.2

Theorem 2. Assume a discrete-time MDP with a positive reward function and a finite discrete action
space A. For any a € A and augmented state I; € I, assume the random variable q*(s;,a) has

mean Q(a) and variance Q(a)?. Then, for § > 0, we have

P(mogQui(a) < BV () 1)

=0 nax Q(a)) < A

Proof. Denote Q(a) = E.[q*(s,a) | I, thus Qps(a) is the sample estimates of Q(a). For any
a € A, by Chebyshev inequality, we have

P (1Qurta) - Q@I > sy NarlQu @) < 5;

where Q /() is the standard deviation of Q;(a). We can replace the variance term as Q(a)2/M,
thus

P (1Qut0) - Qo) > 2=0(0)) <
We may further have, for any a € A,

P (1Qu0) - Q@I > o maxQ)) < 5.

Further, since the event sets have the following relationship,

{0 max|Qu (@) ~ Q)] >~ maxQ(a)}
{1 1Qur(e) ~ Qa)] > = mag Qla) Fa € A}
= U {11Qur(e) = Qla)] > —= maxQ(a)}

acA
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P (gl Qut@) - Qo) > 7 maxia)) < P (1@n(o) - Q1 > Fzmard) < 5.
Since

max |Q(a) — Q(a)| > |r{§1€aj<QM(a) — max Q(a)l,
we have

_ _ ) R
P (1my Qurt0) ~ max Q)] > - max Qi) )

_ _ s R
<p (ma;f Q) ~ Qo) >~ ma Q<a>)
|A|
<.
Using lemma 3 in [3],
1 *
l;nean( a) > |A|1E[V (s) ] 1],
‘We have
A _ ) R
2P (g Qu (@) - max Q) > T o))
_ _ K} N 1)
=P (r(?eaj(QM(a) <max@ — T I;lg@(a)) +P (max Qur(a) > maxQ + NiTi mea}Q( )>
> (e Quu(o) < BV () 1= e max Qo)

This concludes the proof.
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