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ABSTRACT

Recent advances in internet-scale video data pretraining have led to the development
of text-to-video generative models that can create high-quality videos across a
broad range of visual concepts, synthesize realistic motions and render complex
objects. Hence, these generative models have the potential to become general-
purpose simulators of the physical world. However, it is unclear how far we are
from this goal with the existing text-to-video generative models. To this end, we
present VIDEOPHY, a benchmark designed to assess whether the generated videos
follow physical commonsense for real-world activities (e.g. marbles will roll
down when placed on a slanted surface). Specifically, we curate diverse prompts
that involve interactions between various material types in the physical world
(e.g., solid-solid, solid-fluid, fluid-fluid). We then generate videos conditioned
on these captions from diverse state-of-the-art text-to-video generative models,
including open models (e.g., CogVideoX) and closed models (e.g., Lumiere, Dream
Machine). Our human evaluation reveals that the existing models severely lack
the ability to generate videos adhering to the given text prompts, while also lack
physical commonsense. Specifically, the best performing model, CogVideoX-5B,
generates videos that adhere to the caption and physical laws for 39.6% of the
instances. VIDEOPHY thus highlights that the video generative models are far from
accurately simulating the physical world. Finally, we propose an auto-evaluator,
VIDEOCON-PHYSICS, to assess the performance reliably for the newly released
models. Code: https://github.com/Hritikbansal/videophy.
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Figure 1: Model performance on the
VIDEOPHY dataset using human evalua-
tion. We assess the physical commonsense
and semantic adherence to the conditioning
caption in the generated videos. We find that
CogVideoX-5B can generate videos that fol-
low the caption and physics commonsense for
39.6% of the prompts, while the other mod-
els are far behind (< 20%). This indicates
that the existing models severely lack the abil-
ity of being general-purpose physical world
simulators.

1 INTRODUCTION

Recent advancements in pretraining on internet-scale video data [3, 122, 113, 111, 24] have led
to the development of various text-to-video (T2V) generative models such as Sora [68] that can
generate photo-realistic videos conditioned on a text prompt [8, 110, 22, 80, 98, 15, 49]. Specifically,
these models can generate complex scenes (e.g., ‘busy street in Japan’) and realistic motions (e.g.,
‘running’, ‘pouring’), making them amenable for understanding and simulating the physical world.
As humans, we develop an intuitive understanding of the object interactions through our experience
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Conversation of Mass Violation:
The level of the milk in the cup does

not increase. 

Prompt: Pouring milk into a cup.

Newton's First Law Violation: The
sand in the front shifted without any

force by shovel.

Prompt: Shoveling sand into a
bucket.

Solid Constitutive Law Violation:
Rigid objects (wood) should not
deform under small force load.

Prompt: Wood floats down a canal.
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Figure 2: Illustration of poor physical commonsense by various T2V generative models. Here, we show
that the generated videos can violate a diverse range of laws pf physics such as conversation of mass, Newton’s
first law, and solid constitutive laws. In VIDEOPHY, we curate a wide range of prompts that would be used to
assess the physical commonsense of the T2V models.

with the real-world, without any formal education in physics (also termed as intuitive physics) [27].
For instance, we can predict the trajectories of the billiard balls after an application of force. Recent
efforts [26, 19, 1] have further utilized text-guided video generation to train agents that can act, plan,
and solve goals in the real world. In spite of the strong physical motivations of these works, it remains
unclear how well the generated videos from T2V models adhere to the laws of physics.

One might be tempted to assess the physical commonsense of generated videos by comparing them
with physical simulations as a ground truth. However, this is non-trivial, and no similar approaches
have been proposed yet. The main challenges include the lack of mature methods to accurately
generate 3D geometries from single-view images or video, which is essential for physical simulations.
Further, physical simulations usually require precise tuning of material parameters based on the
expertise of graphics researchers to match real-world dynamics. Recently, some efforts have been
made to tune simulation parameters from generated videos (e.g., [40, 64, 130, 75]). Nevertheless,
they depend on the physical plausibility of the generated videos themselves, which is again the
open question we want to address. Finally, the accurate lighting and rendering are also necessary to
convert physically simulated results into images and videos, yet these parameters are also unknown.
Most importantly, it should be noted that physical simulations are not equivalent to ground truth.
They are merely numerical solvers of differential equations that attempt to approximate and describe
real-world dynamics based on models proposed by researchers. Prior work such as VBench [42, 67]
introduced a comprehensive benchmark to evaluate various qualities of generated videos (e.g., motion
smoothness, background consistency) using existing models, but it does not specifically address the
generated videos’ adherence to physical laws. Therefore, existing benchmarks and metrics are either
unreliable or lack coverage for holistic evaluation of the physical commonsense capabilities.

To this end, we propose VIDEOPHY, a dataset designed to evaluate the adherence of generated
videos to physical commonsense in real-world scenarios. Specifically, we focus on the intuitive
understanding of the behavior and dynamics of various states of matter (solids, fluids) in the physical
world [84, 126, 11]. For instance, ‘water pouring into a glass’ will intuitively result in the water level
in the glass rising over time. As a result, we rely on human perception and experience in the physical
world to assess the adherence of the generated videos to physical laws instead of precise dynamical
equations, which are harder to assess. In Figure 2, we provide qualitative examples to illustrate
physical commonsense violations in the videos. Our dataset is constructed through a three-stage
pipeline that involves (a) prompting a large language model [78] to generate candidate captions that
depict interactions between diverse states of matter (e.g., solid-solid, solid-fluid, fluid-fluid), (b)
human verification of the generated captions, and (c) annotating the complexity in rendering objects
or synthesizing motions described in the captions based on physics simulation.

In total, VIDEOPHY comprises 688 high-quality, human-verified captions that will be used to generate
videos from T2V models. In addition, the dataset consists human-labeled annotations for physi-
cal commonsense of the generated videos. Specifically, we acquire generated videos from twelve
diverse T2V models including open models (e.g., OpenSora [80], SVD [13], VideoCrafter2 [22],
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CogVideoX [123]) and closed models (e.g., Pika [83], Lumiere [8], Gen-2 [29], Dream Machine
[2]). Subsequently, we perform human evaluation on the generated videos for semantic adherence to
the conditioning text (e.g., do the videos follow the caption?) and physical commonsense (e.g., do
the videos follow physical laws intuitively?). Interestingly, we find that the existing T2V generative
models severely lack the capability to follow caption accurately and generate videos with physical
commonsense. Specifically, the best performing model, CogVideoX-5B, follows the text and gener-
ates physically accurate videos for 39.6% of the instances (§5). Our fine-grained analysis reveals that
current T2V models are particularly poor at generating physically plausible videos for prompts that
require solid-solid interaction (e.g., ball bouncing on the floor, hammer hits a nail). In Figure 1, we
compare the performance (i.e., accurate semantic adherence and physical commonsense) of various
T2V generative models on the VIDEOPHY dataset. In addition, we perform a detailed qualitative
analysis to study the modes of the failures for different models in detail (§5.2). In particular, we
observe that the models often struggle to accurately identify individual objects and comprehend their
material properties, which is essential for generating physically plausible dynamics. For instance, an
object recognized as a rigid body in the physical world should not deform over time.

Although human evaluation of semantic adherence and physical commonsense is reliable, it is both
expensive and difficult to scale. To address this challenge, we introduce VIDEOCON-PHYSICS, an
open video-language model designed to assess the semantic adherence and physical commonsense of
generated videos using user queries grounded in text (§6). Specifically, we finetune VIDEOCON [5],
a robust semantic adherence evaluator for real videos, on generated videos and human annotations
collected as a part of our dataset. Our results demonstrate that VIDEOCON-PHYSICS outperforms
Gemini-Pro-Vision-1.5 [90], showing a 9 points improvement in semantic adherence and a 15 points
improvement in physical commonsense on unseen prompts. Further, we show that VIDEOCON-
PHYSICS generalizes to unseen generative models, which established its reliability for evaluating
future generative models. Overall, the VIDEOPHY dataset aims to bridge the gap in understanding
physical commonsense in generated videos and enables scalable testing for upcoming T2V models.

2 VIDEOPHY DATASET

Our dataset, VIDEOPHY, aims to offer a robust evaluation benchmark for physical commonsense in
video generative models. Specifically, the dataset is curated with guidelines to cover (a) a wide range
of daily activities and objects in the physical world (e.g., rolling objects, pouring liquid into a glass),
(b) physical interactions between various material types (e.g., solid-solid or solid-fluid interactions),
and (c) the perceived complexity of rendering objects and motions under graphic simulation. For
instance, ketchup, which follows non-newtonian fluid dynamics [114], is harder to model and simulate
than water, which follows newtonian fluid dynamics, using traditional fluid simulators [16]. Under
the collection guidelines, we curate a list of text prompts that will be used for conditioning the
text-to-video generative models. Specifically, we follow the 3-stage pipeline to create the dataset.

Category Difficulty Example Captions

Solid-Solid Easy Bottle topples off the table. ( rigid bodies )

Hard Scrubber scrubs a dirty dish. ( complex contacts )

Solid-Fluid Easy Water flows down a circular drain. ( contacts with rigid bodies )

Hard A swimmer splashing in the sea water. ( contacts with high-speed )

Fluid-Fluid Easy Rain splashing on a pond. ( mixing of same fluids )

Hard Ink spreading in still water. ( mixing of different fluids )

Table 1: Example captions in the VIDEOPHY dataset. Specifically, we design them to depict the interactions
between two states of matter (solid-solid, solid-fluid, fluid-fluid). We further classify the captions as easy or hard
based on the modeling and simulation complexity in the computer graphics. We highlight the reasoning behind
the easy and hard annotations by our expert annotators in the () .

LLM-Generated Captions (Stage 1). Here, we query a large language model, in our case GPT-4
[78], to generate a list of 1000 candidate captions depicting real-world dynamics. As the majority of
real-world dynamics involve solids or fluids, we broadly classify those dynamics into three categories:
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Table 2: Statistics of the VIDEOPHY dataset.

Statistic Number
Total captions 688
Unique actions 138

Total T2V models 12
Total generated videos 11330

Human annotations 36500
Category (Interacting materials) 3

Solid-Solid 289
Solid-Fluid 291
Fluid-Fluid 108

Category (Interaction complexity) 2
Easy 366
Hard 322

Figure 3: Top-20 most frequently occurring verbs (in-
ner) and their top-4 direct nouns (outer) in captions.

solid-solid interactions, solid-fluid interactions, and fluid-fluid interactions. Specifically, we consider
fluid dynamics involving in-viscid and viscous flows—representative examples being water and
honey, respectively. On the other hand, we find that solids exhibit more diverse constitutive models,
including but not limited to rigid bodies, elastic materials, sands, metals, and snow. In total, we
prompt GPT-4 to generate 500 candidate captions for solid-solid and solid-fluid interactions, and 200
candidate captions for fluid-fluid interactions. We present the GPT-4 prompts in Appendix G.

Human Verification (Stage 2). Since LLM-generated captions may not adhere to our input query,
we perform a human verification step to filter bad generations. Specifically, the authors perform
human verification to ensure the quality and relevance of the captions, adhering to these criteria: (1)
the caption must be clear and understandable; (2) the caption should avoid excessive complexity, such
as overly varied objects or too intricate dynamics; and (3) the captions must accurately reflect the
intended interaction categories (e.g., that fluids are mentioned in solid-fluid or fluid-fluid dynamics).
Finally, we have 688 captions where 289 captions for solid-solid interactions, 291 for solid-fluid
interactions, and 108 for fluid-fluid interactions, respectively. We highlight that our prompts include
a wide range of material types and physical interactions that are common in both real life and the
graphics community. Material types include simple rigid bodies [60], deformable bodies [41], think
shells [23], metal [59], fracture [115], cream [129], sand [47] and so on. The contact handling is also
diverse as it is based on the interactions of all aforementioned materials [35, 56, 36, 133]. We provide
more discussion on categorization in Appendix B. We highlight that the data quality is paramount for
evaluating foundation models. For instance, Winoground (400 examples) [105], Visit-Bench (500
examples) [12], LLaVA-Bench (90 examples) [65], and Vibe-Eval (269 examples) [81] are commonly
employed to assess vision-language models due to their high-quality despite their limited size. Given
that human verification demands significant expert hours and is not scalable within our budget, we
prioritize data quality for evaluating T2V models.

Difficulty Annotation (Stage 3). To acquire fine-grained insights into the quality of the video
generation, we further annotate our each instance in the dataset with perceived difficulty. Specifically,
we ask two experienced graphics researchers (senior Ph.D. students in physics-based simulation)
to independently classify each caption as easy (0) or hard (1) based on their perception of the
complexity in simulating the objects and motions in the captions using state-of-the-art physics
engines [56, 25, 118, 132, 87, 32]. Subsequently, the disagreements were discussed to reach a
unanimous judgment for less than 5% of the instances. The difficulty of a simulation is primarily
influenced by the complexity of the model, which varies depending on the type of material. For
example, deformable bodies pose a greater modeling challenge than rigid bodies because they change
shape under external forces, leading to more complex partial differential equations (PDEs). In
contrast, rigid bodies maintain their shape, resulting in simpler models. Another key factor is the
numerical difficulty in solving these equations, which increases with the material’s velocity, especially
when high-order terms are involved in the PDEs. As a result, slower-moving materials are generally
easier to simulate than faster-moving ones. We note that the level of difficulty is evaluated within
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each category (e.g., solid-solid, solid-fluid, fluid-fluid), and cannot be compared across different
categories. We present the examples for generated captions in Table 1.

Data Analysis. A fine-grained metadata facilitates a comprehensive understanding of the bench-
mark. Specifically, we present the main statistics of the VIDEOPHY dataset in Table 2. Notably, we
generate 11330 videos for the prompts in the dataset using a diverse range of generative models. In
addition, the average caption length is 8.5 words, indicating that most captions are straightforward
and do not complicate our analysis with complex phrasing that could be excessively challenging the
generative models. 1 The dataset includes 138 unique actions grounded in our captions. Figure 3
visualizes the root verbs and direct nouns used in the VIDEOPHY captions, highlighting the diversity
of actions and entities. Hence, our dataset encompasses a wide range of visual concepts and actions.
We perform fine-grained diversity analysis in Appendix J.

3 EVALUATION

3.1 METRICS

The ability to assess the quality of the generated videos is a challenging task. While humans can
evaluate videos across various visual dimensions [42, 20], we focus primarily on the models’ adher-
ence to the provided text and the incorporation of physical commonsense. These are key objectives
that conditional generative models must maximize. We note that several video characteristics such
as object motion, video quality, text adherence, physical commonsense, temporal consistency of
subject and object etc. are usually intertwined with each other. It is non-trivial to disentangle
their effect when humans make decisions. However, focusing on each aspect at a time provides a
comprehensive picture of the model capabilities along a specific dimension. In this work, we focus
on physical commonsense and semantic adherence. Further, there are diverse ways to acquire human
judgments such as dense and sparse feedback. While a dense feedback provides detailed information
about the model mistakes, it is hard to acquire and miscalibrated [69, 55]. Due to the simplicity
of binary judgment and its widespread use in text-to-image generative models [58, 54], we employ
binary feedback (0/1) to evaluate the generated videos in this work (more discussion in Appendix C).
Further, our experiments will demonstrate that binary feedback effectively highlights differences in
the model’s quality across various object interactions and levels of task complexity.

Semantic Adherence (SA). This metric assesses whether the text caption is semantically grounded
in the frames of the generated videos, measuring video-text alignment. Specifically, it assesses if the
actions, events, entities, and their relationships are perceived to be correctly depicted in the video
frames (e.g., water is flowing into the glass in the generated video for the caption ‘water pouring
into the glass’). In this work, we annotate the generated videos for semantic adherence, denoted as
SA = {0, 1}. Here, SA = 1 indicates that the caption is grounded in the generated video.

Physical Commonsense (PC). This metric evaluates whether the depicted actions, and object’s
state follow the physics laws in the real-world. For instance, the level of water should increase
in the glass as water flows into it, following conversation of mass. In this work, we annotate the
physical commonsense of the generated videos, denoted as PC = {0, 1}. Here, PC = 1 indicates
that the generated movements and interactions align with intuitive physics that humans acquire with
their experience in the real-world. As physical commonsense is entirely grounded in the video, it is
independent of the semantic adherence capability of the generated video. In this work, we compute
the fraction of the videos for which semantic adherence is high (SA = 1), physical commonsense is
high (PC = 1), and joint performance of these metrics is high (SA = 1,PC = 1).

3.2 HUMAN EVALUATION

We conducted a human evaluation to assess the performance of the generated videos in terms of
semantic adherence and physical commonsense using our dataset. The annotations were obtained from
a group of qualified Amazon Mechanical Turk (AMT) workers who were provided with the detailed
task description (and clarifications) on a shared slack channel. Subsequently, 14 workers who have

1We use GPT-4 to enhance and generate longer versions of the original captions. However, we found that
most of the T2V models are poor at following long/enhanced captions most of the time.
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studied high-school physics were chosen to perform the annotations after passing a qualification test.
In this task, annotators were presented with a caption and the corresponding generated video without
any information about the generative model. They were asked to provide a semantic adherence score
(0 or 1) and a physical commonsense score (0 or 1) for each instance. Annotators were instructed to
treat semantic adherence and physical commonsense as independent metrics and were shown several
solved examples by the authors before starting the main annotation task. In some cases, we find
that generative models create static scenes instead of video frames with high motion. Here, we ask
annotators to judge the physical plausibility of the static scene in the real world (e.g., a static scene of
a folded brick does not follow physical commonsense). If the static scenes are noisy (e.g., unwanted
grainy or speckled patterns), we instruct them to consider it as poor physical commonsense. 2

The human annotators were not asked to list the violation of the physics laws since it would make
the annotations more time-consuming and expensive. Additionally, the current annotations can be
performed by annotators experience in the physical world (e.g., workers know that water flows
down from a tap, shape of a wood log will not change while floating on water) instead of advanced
education in physics. A screenshot of the human annotation interface is presented in Appendix H.

3.3 AUTOMATIC EVALUATION

While the human evaluation is more accurate for benchmarking, it is time-consuming and expensive
to acquire at scale. In addition, we want the model developers with limited resources for human
evaluation to use our benchmark. To this end, we design VIDEOCON-PHYSICS, a reliable auto-rater
for our evaluation dataset. Specifically, we use VIDEOCON, an open video-text language model with
7B parameters, that is trained on real videos for robust semantic adherence evaluation [5]. Specifically,
we prompt VIDEOCON to generate a text response (Yes/No) conditioned on the multimodal template.
We provide details about the templates and score computation using VIDEOCON in Appendix I.

Since VIDEOCON is not trained on the generated video distribution or equipped to judge physical
commonsense, it is not expected to perform well in our setup in a zero-shot manner. Prior work
[74] has shown that data-driven approaches can outperform rule-based physics simulators for more
complicated systems like weather and climate. Hence, we take a data-driven approach in this work.
To this end, we propose VIDEOCON-PHYSICS, an open-source generative video-text model, that can
assess the semantic adherence and physical commonsense of the generated videos. Specifically, we
finetune VIDEOCON by combining the human annotations acquired for the semantic adherence and
physical commonsense tasks over the generated videos. We present the GPT-4V [79] and Gemini-
1.5-Pro-Vision [90] baselines in Appendix M.3 We assess auto-rater effectiveness by computing the
ROC-AUC between humans and its judgments for videos generated with testing prompts.

4 SETUP

Video Generative Models. We evaluate a diverse range of twelve closed and open text-to-video
generative models on VIDEOPHY dataset. The list of the models includes ZeroScope [21], LaVIE
[112], VideoCrafter2 [22], OpenSora [80], CogVideoX-2B and 5B [123], StableVideoDiffusion (SVD)-
T2I2V [13], Gen-2 (Runway) [29], Lumiere-T2V, Lumiere-T2I2V (Google) [8], Dream Machine
(Luma AI) [2], and Pika [83]. We provide more model and inference details in Appendix F and N. 4

Dataset setup. As described earlier, we train VIDEOCON-PHYSICS to enable cheaper and scalable
testing of the generated videos on our dataset (§ 3.3). To facilitate this, we split the prompts in the
VIDEOPHY dataset equally into train and test sets. Specifically, we utilize the human annotations
on the generated videos for the 344 prompts in the test set for benchmarking, while the human
annotations on the generated videos for the 344 prompts in the train set are used for training the
automatic evaluation model. We ensure that the distribution of the state of matter (solid-solid,
solid-fluid, fluid-fluid) and complexity (easy, hard) is similar in the training and testing.

2The workers were compensated at a rate of $18 per hour.
3We note that finetuning separate classifier for semantic adherence and physical commonsense did not provide

any additional benefits over a single classifier (VIDEOCON-PHYSICS) trained in a multi-task manner.
4While there are various closed models such as Sora [68], Kling AI [48], and Genmo [34], we could not get

access through their videos due to the lack of API support.
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Table 3: Human evaluation results on the VIDEOPHY dataset. We report the percentage of testing prompts for
which the T2V models generate videos that adhere to the conditioning caption and exhibit physical commonsense.
We abbreviate semantic adherence as SA, and physical commonsense as PC. SA, PC indicates the percentage of
the instances for which SA=1 and PC=1. Ideally, we want the generative models to maximize the performance
on this metric. In the first column, we highlight the overall performance, and the later columns are dedicated to
fine-grained performance for the interaction between different states of matter in the prompts.

Overall (%) Solid-Solid (%) Solid-Fluid (%) Fluid-Fluid (%)
Model SA, PC SA PC SA, PC SA PC SA, PC SA PC SA, PC SA PC
Open Models
CogVideoX-5B [123] 39.6 63.3 53 24.4 50.3 43.3 53.1 76.5 59.3 43.6 61.8 61.8
VideoCrafter2 [22] 19.0 48.5 34.6 4.9 31.5 23.8 27.4 57.5 41.8 32.7 69.1 43.6
CogVideoX-2B [123] 18.6 47.2 34.1 12.7 42.9 28.1 21.9 56.1 34.9 25.4 34.5 47.2
LaVIE [112] 15.7 48.7 28.0 8.5 37.3 19.0 15.8 52.1 30.8 34.5 69.1 43.6
SVD-T2I2V [14] 11.9 42.4 30.8 4.2 25.9 27.3 17.1 52.7 32.9 18.2 58.2 34.5
ZeroScope [21] 11.9 30.2 32.6 6.3 17.5 22.4 14.4 40.4 37.0 20.0 36.4 47.3
OpenSora [80] 4.9 18.0 23.5 1.4 7.7 23.8 7.5 30.1 21.9 7.3 12.7 27.3
Closed Models
Pika [83] 19.7 41.1 36.5 13.6 24.8 36.8 16.3 46.5 27.9 44.0 68.0 58.0
Dream Machine [2] 13.6 61.9 21.8 12.1 50.0 24.3 16.6 68.1 23.6 9.0 76.3 11.0
Lumiere-T2I2V [8] 12.5 48.5 25.0 8.4 37.1 25.2 17.1 59.6 26.0 10.9 49.1 21.8
Lumiere-T2V [8] 9.0 38.4 27.9 8.4 26.6 27.3 9.6 47.3 26.0 9.1 45.5 34.5
Gen-2 [29] 7.6 26.6 27.2 4.0 8.9 37.1 8.1 38.5 18.5 15.1 37.7 26.4

Benchmarking. Here, we generate one video per test prompt for each T2V generative model in
our testbed. Subsequently, we ask three human annotators to judge the semantic adherence and
physical commonsense of the generated videos. In our experiments, we report the majority-voted
scores from the human annotators. We find that the inter-annotator agreement for semantic adherence
and physical commonsense judgment is 75% and 70%, respectively. This indicates that the human
annotators find the task of judging physical commonsense more subjective than semantic adherence.
5 In total, we collect 24500 human annotations across the testing prompts and T2V models.

Training set for VIDEOCON-PHYSICS. Here, we sample two videos per training prompt for
nine T2V models.6 We choose two videos to obtain more data instances for training the automatic
evaluation model. Subsequently, we ask one human annotator to judge the semantic adherence
and physical commonsense of the generated videos. In total, we collect 12000 human annotations,
half of them for semantic adherence and the other half for physical commonsense. Specifically,
we finetune VIDEOCON to maximize the log likelihood of Yes/No conditioned on the multimodal
template for semantic adherence and physical commonsense tasks (Appendix I). We do not collect
three annotations per video as it is financially expensive. In total, we spent $3500 on collecting
human annotations for benchmarking and training.

5 RESULTS

5.1 PERFORMANCE ON VIDEOPHY DATASET

We compare the performance of the T2V generative models on the VIDEOPHY dataset using human
evaluation in Table 3. We find that CogVideoX-5B generates videos that adhere to the caption and
follow physics laws (SA = 1, PC = 1) in 39.6% of the cases. The success of CogVideoX can be
attributed to its high-quality data curation including inclusion of detailed captions, and filtering videos
with less motion and poor quality. In addition, we find that the rest of the video models achieve
a score below 20%. This highlights that the existing video models severely lack the capability to
generate videos which follow intuitive physics, and establishes VIDEOPHY as a challenging dataset.7

More specifically, CogVideoX-5B stands out as the best model for generating videos that demonstrate
physical commonsense, achieving a performance of 53%, while CogVideoX-2B is the second best

5Variations in annotations arise from differing tolerance for commonsense violations in imperfect videos. As
generative models improve, human annotations will align more closely.

6Since the CogVideoX and Dream Machine models were released very recently, they could not be included
in the training set of the automatic evaluator.

7We compared pairwise model predictions using the paired t-test at a 95% confidence interval. We find that
the difference between CogVideoX-5B and other video models is statistically significant (p<0.0001).
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open model at 34.1%. Further, this highlights that scaling the network capacity improves its ability
to capture the underlying physical constraints of the internet-scale video data. In addition, we find
that OpenSora performs the worst on the VIDEOPHY dataset, indicating significant potential for
the community to improve open-source implementations of Sora. Amongst the closed models, Pika
achieves generates videos that achieve positive judgement for semantic adherence and physical
commonsense for 19.7% of the cases. Interestingly, we observe that Dream Machine achieves a high
semantic adherence score (61.9%) but a poor physical commonsense score (21.8%) which highlights
that a optimizing for semantic adherence does not necessarily lead to good physical commonsense.

Variation with the states of matter. We study the variation in the performance of T2V models
with the interaction between the diverse states of matter grounded in the captions (e.g., solid-solid) in
Table 5.1. Interestingly, we find that all the existing T2V models perform the worst on the captions
that depict interactions between solid materials (e.g., bottle topples off the table), with the best
performing model, CogVideoX-5B, achieving 24.4% on accurate semantic adherence and physical
commonsense. Furthermore, we observe that Pika achieves the highest performance in the captions
that depict interaction between fluid and fluid material types (e.g., rain splashing on a pond). This
indicates that the T2V model performance is greatly influenced by the states of matter involved in a
scene, and highlights that model developers can focus on enhancing semantic adherence and physical
commonsense for solid-solid interactions.

Variation with the complexity. We analyze the variation in the video model performance with the
complexity in rendering objects or synthesizing interactions grounded in the caption under physical
simulation in Appendix Table 6. We find that the semantic adherence and physical commonsense
performance of all the video models decreases as the complexity of the captions increases. This
indicates that the captions that are harder to simulate physically are also harder to control via
conditioning for the video generative models. Our analysis thus highlights that the future T2V model
development should focus on reducing the gap between the easy and the hard captions from our
VIDEOPHY dataset. We provide qualitative generated examples from captions of varying complexity
and material states in Appendix V. Further, we present results for additional metrics in Appendix L.

Correlation analysis. To understand the connection between various performance metrics, we
examine the correlation between semantic adherence (SA) and physical commonsense (PC) with
video quality and motion (Appendix §S). Our empirical results show a positive correlation between
video quality and both PC and SA, while motion exhibits a negative correlation with PC and SA. This
indicates that the video models tend to make more mistakes in the SA and PC when more motions
are depicted in them. The closed models (Dream Machine/Pika) contribute to the higher end of the
video quality while open models (Zeroscope/OpenSora) contribute to the lower end of video quality.
While the high quality is ‘correlated’ with the better PC, we note that the absolute performance of the
models is quite poor on our benchmark.

5.2 QUALITATIVE ANALYSIS

(c) v. Gen-2. A tire rolls through 
a deep puddle, splashing water.

(a) v. Pika. Water spraying from 
a garden hose onto plants.

(b) v. Dream Machine. The sharp 
knife severs the fresh loaf of bread.

Figure 4: Comparison of CogVideoX-5B with other models. The top row shows the videos generated by
CogVideoX-5B. (a) For Pika, the water streams on the left and right have drastically different speed. (b) For
DM, a part of the bread suddenly changes its shape. (c) For Gen-2, the water droplets remain still in the air.

Here, we provide a qualitative analysis of the generated videos to assess the common failure modes.
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(a) Dominoes toppling one after another on the table (b) Leather glove catching a hard baseball

Figure 5: Illustration of CogVideoX-5B’s limitations in understanding material properties. Even the
best-performing model, CogVideoX-5B, may struggle to correctly capture the material properties, leading to
unnatural dynamics that do not align with the object characteristics. Artifacts in the examples: (a) the dominoes,
which should behave as rigid bodies, show inconsistent changes in geometry and texture over time, (b) the
leather glove exhibits unnatural deformations.

Comparison between CogVideoX-5B with other models. We analyze some qualitative examples
to understand the gap between the best-performing model (CogVideoX-5B) and the other models
in our testbed. We present some examples in Figure 4. Specifically, we find that SVD-T2I2V is
likely to underperform in scenes involving vibrant fluid dynamics. Lumiere-T2I2V and Dream
Machine (Luma) perform better than Lumiere-T2V in terms of visual quality, but they lack profound
understanding of rigid geometries (e.g. in Figure 4(b)). Further, we notice that Gen-2 sometimes
generates static objects in the air with slow camera motion, instead of meaningful physical dynamics
(e.g. in Figure 4(c)). In contrast, CogVideoX-5B shows decent capability of identifying distinct
objects, as deformation from its results seldom mingles multiple objects. Further, it tends to use
simpler backgrounds, avoiding complex patterns where flaws are easier to be spotted. Nevertheless,
even the best-performing model, CogVideoX-5B, may struggle to understand the material properties
of the underlying objects, resulting in unnatural or inconsistent deformations, as shown in Figure
5. This phenomenon is also observed in results from other video generative models. Our analysis
highlights the lack of fine-grained physical commonsense that future research should aim to address.

Table 4: Comparison of ROC-AUC for au-
tomatic evaluation methods. We find that
VIDEOCON-PHYSICS outperforms diverse base-
lines, including GPT-4Vision and Gemini-1.5-Pro,
for semantic adherence (SA) and physical com-
monsense (PC) judgments on the testing prompts.

Method(↓)/RUC-AOC(→) SA PC
Random 50 50
GPT-4-Vision [79] 53 53
Gemini-1.5-Pro-Vision [90] 73 58
VIDEOCON [5] 65 54
VIDEOCON-PHYSICS (Ours) 82 73

Failure mode analysis. We present some qual-
itative examples to understand the common fail-
ure modes in the generated video regarding poor
physical commonsense. Qualitative examples
from various T2V generative models are pro-
vided in Figure 15 - 26 in Appendix U. The
common failure modes include – (a) Conserva-
tion of mass violation: the volume or texture of
an object is not consistent over time, (b) New-
ton’s First Law violation: an object changes its
velocity in a balanced state without any exter-
nal force, (c) Newton’s Second Law violation:
an object violates the conversation of momen-
tum, (d) Solid Constitutive Law violation: solids
deform in ways that contradict their material
properties, e.g., a rigid object deforming over
time, (e) Fluid Constitutive Law violation: fluids exhibit unnatural flow motions, and (f) Non-physical
penetration: objects unnaturally penetrate each other.

6 VIDEOCON-PHYSICS: AUTOMATIC EVALUATOR FOR VIDEOPHY DATASET

We supplement our dataset with VIDEOCON-PHYSICS, an automatic rater for scalable and reliable
evaluation of semantic adherence and physical commonsense in the generated videos.

VIDEOCON-PHYSICS generalizes to unseen prompts. We compare the ROC-AUC of different
automatic evaluators with the human predictions on the testing prompts in Table 4. Here, the videos
are generated by the models that are used to train the VIDEOCON-PHYSICS model. We find that
the VIDEOCON-PHYSICS outperforms the zero-shot VIDEOCON by 17 points and 19 points on the
semantic adherence and physical commonsense judgment, respectively. This highlights that finetuning
with the generated video distribution and human annotations aids in improving the model judgment on
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the unseen prompts. Further, we notice that the model’s agreement are higher for semantic adherence
as compared to the physical commonsense. This indicates that judging physical commonsense is a
harder task than judging semantic adherence for VIDEOCON-PHYSICS. Interestingly, we observe that
the GPT-4-Vision’s judgments are close to random for semantic adherence and physical commonsense
on our dataset. This implies that faithful evaluations are hard to obtain from the multi-image reasoning
capabilities of the GPT-4-Vision in a zero-shot manner. To address this, we test Gemini-Pro-Vision-
1.5 and find that it achieves a good semantic adherence score (73 points), however, it is close to
random in physical commonsense evaluation (54 points). This highlights that the existing multimodal
foundation models lack the capability to judge physical commonsense.

Table 5: Performance of VIDEOCON-PHYSICS on
unseen generative model. We train an ablated version
of VIDEOCON-PHYSICS and find that it outperforms
the baseline in the semantic adherence (SA) and phys-
ical commonsense (PC) judgment averaged over three
unseen video models on the testing prompts.

Method SA PC
VIDEOCON [5] 64 57
VIDEOCON-PHYSICS (Ours) 79 72

VIDEOCON-PHYSICS generalizes to unseen
generative models. To assess performance on
an unseen video distribution, we train an ab-
lated version of VIDEOCON-PHYSICS on a re-
stricted set of video data. Specifically, we train
VIDEOCON-PHYSICS on human annotations ac-
quired from VideoCrafter2, ZeroScope, LaVIE,
OpenSora, SVD-T2I2V and Gen-2, and eval-
uate it on unseen videos from the remaining
T2V models in our testbed generated for the test-
ing captions. We present the results in Table 5.
We find that VIDEOCON-PHYSICS outperforms
VIDEOCON by 15 points and 15 points on semantic adherence and physical commonsense judgement,
respectively. This highlights that VIDEOCON-PHYSICS can judge semantic adherence and physical
commonsense as new T2V generative models are released.

Automatic leaderboard reliably tracks human leaderboard. We create an automatic leaderboard
by averaging the semantic adherence and physical commonsense scores of the open and closed
video models on the test set. Subsequently, we align these rankings with the human leaderboard
based on the joint performance metrics (SA = 1,PC = 1). We present the human and automatic
leaderboard for the open and closed model in Appendix P. We observe that the relative rankings
of the models in the automatic leaderboard (CogVideoX-5B>VideoCrafter2>LaVIE>CogVideoX-
2B>SVD-T2I2V>ZeroScope>OpenSora) strongly matches with the relative rankings of the mod-
els in the human leaderboard (CogVideoX-5B>VideoCrafter2>CogVideoX-2B>LaVIE>SVD-
T2I2V>ZeroScope>OpenSora). We observe similar trends for the closed models. But, we find that
Pika achieves a relatively low score on the automatic leaderboard, a limitation that can be improved
by acquiring more data for VIDEOCON-PHYSICS. Overall, we find that the rankings of most of
the models are similar under both the leaderboards, establishing its reliability for future model
development. Further discussion on the usefulness of VIDEOCON-PHYSICS in Appendix §R.

Finetuning video models. While VIDEOPHY data is used for model evaluation and building
automatic evaluator, we assess whether this dataset can be used to finetune video models in Ap-
pendix T. Post-finetuning, we observe a significant decrease in semantic adherence, while physical
commonsense remains unchanged. This is likely due to limited training samples, optimization
challenges, and the nascency of the video finetuning field. Future work will focus on enhancing
physical commonsense in generative models based on these findings.

7 CONCLUSION

In this work, we introduce VIDEOPHY, a first of its kind dataset to assess the physical commonsense
in the generated videos. Further, we evaluate a diverse set of video models (open and closed
models) and found that they significantly lack in the physical commonsense and semantic adherence
capabilities. Our dataset unveils that the existing methods are far being general-purpose world
simulators. Further, we introduce VIDEOCON-PHYSICS, an auto-evaluation model that enables cheap
and scalable evaluation on our dataset. We believe that our work will serve as the cornerstone in
studying physical commonsense for video generative modeling.
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REPRODUCIBILITY STATEMENT

In this work, we provide a detailed description about the dataset construction in §4. Specifically,
we mention the prompts used for initial caption generation in Appendix G. Further, we provide the
details about all the video generative models in §4, along with the inference details in Appendix N. In
addition, we provide the details about finetuning VIDEOCON-PHYSICS in Appendix O. Finally, we
commit to releasing the data, generated videos, and trained VIDEOCON-PHYSICS in the camera-ready
version.
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A RELATED WORK

Video Generation Models. Recent advancements in video generation models have emerged
from two primary architectures: diffusion-based models [29, 14, 68, 15, 112, 110, 22, 45, 62] and
autoregressive modeling-based approaches [127, 49, 38, 107]. Among these, diffusion models have
garnered significant attention. The model known as SVD [14], built on a Latent Diffusion Model
(LDM) [91], proposes a three-stage training process for video LDMs: text-to-image pretraining,
video pretraining, and video finetuning. Sora [68] represents a state-of-the-art in video generation,
utilizing a diffusion-transformer architecture with unified training recipes and enhancements in
language description processing for video generation. ModelScope [110] is also a diffusion-based
text-to-video model which combines a VQGAN [28], a text-encoder, and a denoising UNet. Another
diffusion model, VideoCrafter2 [22], leverages low-quality videos and high-quality videos to generate
high-quality videos. LaVIE [112] is composed of a base text-to-video model, a temporal interpolation
model, and a video super-resolution model, indicating that joint image and video training and temporal
self-attention with rotary positional embeddings are key components to boost performance. Given the
rapid development of video generation technology, an effective evaluation method for the generated
videos becomes crucial. Our paper focuses on evaluating text-to-video generation models for their
physical commonsense capabilities.

Evaluating Video Generation Models. To evaluate the quality of a T2V generative model, Fréchet
video distance (FVD) is traditionally used to measure the similarity between real and generated video
distributions [106, 20]. However, FVD has several limitations for assessing physical commonsense
including the requirement for a reference video that is difficult to obtain for novel scenes, bias
towards video quality, and failure to detect unrealistic motions [17, 99]. Similarly, CLIPScore [88]
measures semantic similarity between generated video frames and the conditioning text in a shared
representation space, making it unsuitable for evaluating physical commonsense in generated videos.

However, there is a growing consensus on the need for more comprehensive metrics to assess the
performance of video generation models [42, 67, 51, 61]. V-Bench [42] offers a detailed benchmark
suite that introduces a hierarchical evaluation protocol, breaking down ‘video generation quality’ into
various granular perspectives. Another framework, EvalCrafter [67], proposes 17 objective metrics.
Despite these advancements, existing methods largely overlook the fundamental aspect of physical
commonsense. Unlike static images, videos incorporate a temporal dimension, embedding physical
commonsense information across frames. Our research dives into the measurement of physical
commonsense [11] in videos. Additionally, we introduce a VIDEOCON-PHYSICS auto-evaluator and
analyze specific physical laws that are violated in the generated videos through qualitative analysis.

Physics Modeling. Simulating physical behaviors of solids and fluids has always been an important
and popular topic in computer graphics. For solid materials, the simplest physical model is the
long-established rigid body simulation [9], where solids are assumed not to deform. Simulation of
deformable solids [97], on the other hand, takes into account the strain and stress during deformation.
To capture more complicated materials, researchers have been proposing increasingly intricate
models for different materials, such as metal [77], sand [47], and snow [101]. In contrast, most of
the common fluids [16] in daily life can be broadly categorized as inviscid [50], e.g., water and air,
and viscous fluids [103, 53], e.g., honey and oil. Additionally, an orthogonal research direction is to
accurately, efficiently, and robustly model contact and interaction between different materials. These
include solid-solid [56, 57], solid-fluid [10, 118], and fluid-fluid interactions [73]. Further, recent
advancements in computer vision have started exploring incorporating physics priors into various
3D-aware generation tasks to enhance physical plausibility, such as human animation [128, 95, 121]
and 3D/4D generation [71, 119, 130]. However, these approaches often depend on high-quality
3D reconstructions from multi-view images. Some efforts [66] have also integrated physics-based
simulations into video generative models, but the simulations are performed in 2D space due to the
lack of 3D information, resulting in limited dynamics. In this work, instead of generating, we focus
on identifying whether the generated video adheres to physical laws.
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B DISCUSSION ON CATEGORIZATION

In this work, group various types of solids into a single, unified ‘solid’ category. In theory, all
solids can be prescribed as a universal constitutive model governed by the conservation of mass and
momentum. Nevertheless, graphics researchers typically model certain materials using simplified
constitutive models to lower computational costs. For instance, a rigid body, in reality, is a deformable
body with a very high stiffness. In fact, exact rigidity does not exist in the real world. Similarly,
researchers propose other solid constitutive models (e.g. fabrics, granular materials) to simplify
computation for some specific material behaviors. Our choice of solid, as a broad categorization,
serves as a basis for generalization beyond specific simulation techniques used in graphics research.
Our benchmark is designed to capture a wide spectrum of physically plausible behaviors, rather than
isolating specific graphics sub-domains.

The interactions between solid-solid pairs primarily focus on resolving contact constraints to prevent
penetration. In contrast, solid-fluid interactions exhibit more diversity. For example, water can
be repelled by an umbrella but can be absorbed by a sponge. Such behaviors, including perme-
ability, adhesion, and absorption, are not available in solid-solid interactions. Given the diversity
of solid-fluid interactions, we choose to balance the sample counts for solid-solid and solid-fluid
interactions to ensure our benchmark does not overemphasize simpler contact-based interactions
while underrepresenting more complex and varied solid-fluid dynamics.

Our current design prioritizes simplicity and broad applicability, especially for non-experts who
may use the benchmark across various disciplines. Future work can consider more fine-grained
categorization to better measure the ability of generative models to handle specific properties (e.g.,
plasticity, viscosity) if desired.

C MORE DISCUSSION ON USING BINARY FEEDBACK

We highlight that binary feedback (0/1) is quite popular in aligning generative models such as large
language models [31, 120]. Further, we observe that binary feedback is much easier to collect at
industrial scale by big generative model providers (e.g., ChatGPT). For instance, we note that the
ChatGPT user interface asks binary preference after generating the response to a simple query. Similar
extensions exist in the field of text-to-image generative models [58, 54]. Hence, the binary feedback
protocol is quite powerful in studying and improving the generative models.

We highlight that a dense feedback system would capture more nuanced mistakes of the video
generative models (e.g., completing 8 movements versus 6 movements). However, designing such
prompts is non-trivial, and evaluating the generated videos in such scenarios is much more challenging,
labor-extensive, and expensive (especially with limited academic budgets). Further, we note that the
collection of diverse and denser forms of feedback is a crucial future work.

In this work, we do not report posterior physical commonsense performance (PC = 1 given SA = 1)
since they can be inferred from the joint and marginal scores. In addition, we note that a bad model
can easily game the posterior metric. For example, a bad model can generate a video which aligns
with the prompt for 1 out of 700 prompts in the dataset. Now, assume that this video is also accurate
in terms of physical commonsense. Hence, the posterior performance of this model will be 100%.
This can be quite misleading for the practitioners.

D LIMITATIONS

In this work, we evaluate the physical commonsense capabilities of T2V generative models. Specifi-
cally, we curated the VIDEOPHY dataset, consisting of 688 captions. We argue that the captions are
comprehensive and high-quality after going through our three-stage data curation pipeline. In the
future, it will be pertinent to expand the physical commonsense understanding to more branches of
physics, including projective geometry. Also, as the recent trend of LLM [86, 63] begins to study
the power of process reward modeling, we give up exploring more fine-grained evaluation signals
like frame level alignment score of physics due to the heavy cost and leave it for future work. It
can be interesting to study using fine-grained language feedback to update video generation model
just like the reflection mechanism in LLM / VLM [96, 117, 116]. Additionally, we test a diverse
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set of T2V generative models, including both open and closed models. While it is financially and
computationally challenging to evaluate an exhaustive list of models, we have aimed to incorporate
models with diverse architectures, training datasets, and inference strategies. In the future, it will be
important to gain access to and include new high-performance T2V models in our study.

In addition, we perform human annotations using Amazon Mechanical Turkers (AMT), where most
of the workers primarily belong to the US and Canada. Hence, the human annotations in this work
do not represent the diverse demographics around the globe. As a result, our human annotations
reflect the perceptual biases of the annotators from Western cultures. In the future, it will be pertinent
to assess the impact of diverse groups on our human evaluations. Finally, we acknowledge that
text-to-video generative models can perpetrate societal biases in their generated content [109, 4]. It is
critical that future work quantifies this bias in the generated videos and provides methods for the safe
deployment of the models. Also, since our video just covers the domain of physics-specific videos, it
is interesting to see whether it can generalize and evaluate the videos with other properties such as
long, egocentric, embodied related [44, 124, 1], etc.

E DATA LICENSING

The VIDEOPHY dataset comprises videos generated by various T2V (Text-to-Video) generative
models, detailed in Section F. The licensing terms for these videos will align with those specified by
the respective model owners, as cited in this work. The curated captions and human annotations will
be licensed under the MIT License.

F VIDEO GENERATIVE MODELS

For the open models, we benchmark Zeroscope [21, 110], a latent diffusion-based text-to-video model
that adapts the text-to-image generative model [92] for video generation by training on high-quality
video and image data for enhanced visual quality. Further, we benchmark LaVIE [112], a cascaded
video latent diffusion model instead of a single diffusion model. Specifically, the LaVIE model
is trained with a specialized curated dataset for enhanced visual quality and diversity. In addition,
we test VideoCrafter2, a latent diffusion T2V model that enhances video generation quality by
training on high-quality image-text data [102]. In our study, we also benchmark OpenSora [80], an
open-source effort to replicate Sora [18], a high-performant closed latent diffusion model that uses
diffusion transformers [82] for text-to-video generation. Finally, we include StableVideoDiffusion
(SVD) [13], a latent diffusion model that can generate high resolution videos conditioned on a text or
image. Since SVD-I2V (Image-to-Video) is publicly available, we utilize that to generate the videos.
Specifically, we utilize SD-XL-Base-1.0 [85] to generate the conditioning images from the captions
in the VIDEOPHY dataset. We term the entire pipeline as SVD-T2I2V.

For the closed models, we include Gen-2 [29], a closed latent video diffusion model from Runway.
In addition, we include Pika [83] with undisclosed information about the underlying generative
model. Specifically, we wrote a custom API to acquire Gen-2 and Pika videos after paying for
their monthly subscription for a total of $225. Finally, we include two versions of the Lumiere
[8] from Google research. Specifically, Lumiere-T2V generates a video conditioned on the text,
while Lumiere-T2I2V generates a video conditioned on an image, that is in-turn generated with the
caption using a text-to-image generative model [93]. CogVideoX [123] is a most recent open-sourced
state-of-the-art video generation models, which uses a MMDiT [30]-like architecture, and achieves
very good text-to-video alignment and video quality performance.

G QUERYING GPT-4 FOR PROMPT GENERATION

In this section we discuss the prompt we utilized to generate all the prompts including three physical
interaction categories: solid-solid, solid-fluid, fluid-fluid for video generation, which is displayed in
Table 6, Table 7 and Table 8.
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Develop unique and imaginative captions, each briefly describing the interaction between two different solid materials in a realistic
scene. Each caption should consist of 7-10 words and clearly indicate the solids involved in the action.

Guidelines:

1. Focus on common solids used in everyday scenarios, avoiding rare or seldom-used materials.

2. Exclude actions like ‘celebrating’, ‘arguing’, or ‘laughing’ that do not clearly involve physical interaction between materials.

3. Avoid generating static scenes (e.g., ‘Lid covers pot to retain heat’, ‘Stack of paper sits on the desk’).

4. Avoid adding participle phrases (e.g., ‘sweetening it’, ‘a creamy swirl’, ‘fizzing energetically’) in the caption.

5. The captions should focus on the actions that require contact forces, or friction forces. Do not focus on the actions that require
penetration forces.

6. Format each caption as follows: ‘action’: ACTION, ‘solid 1’: SOLID, ‘solid 2’: SOLID, ‘caption’: CAPTION

Bad Examples Of Captions (Do Not Generate Such Captions):
A diamond scratching glass. ## Scratching action that requires penetration
A key scratches the surface of a wooden table. ## Scratching action that requires penetration

Good Examples Of Captions:
A brick presses down on a metal can.
A snowball falls to the ground and splits apart.
A small red elastic ball stuck to the wall.

Figure 6: GPT-4 Prompt to Generate Solid-Solid Captions.

Develop unique and imaginative captions, showcasing interaction between a solid material with a fluid material, for generating a
video. After crafting the caption, list the entities that act as solid and fluid in the caption.

Guidelines:

1. Focus on common solids and fluids used in everyday scenarios, avoiding rare or seldom-used materials.

2. Exclude actions like ‘celebrating’, ‘arguing’, or ‘laughing’ that do not clearly involve physical interaction between materials.

3. Avoid actions that execute state change from solid to fluid or vice-versa.

4. Avoid generating static scenes (e.g., ‘Lid covers pot to retain heat’).

5. Avoid adding participle phrases (e.g., ‘sweetening it’, ‘a creamy swirl’, ‘fizzing energetically’) in the caption.

6. The captions should focus on the actions that require contact forces, or friction forces. Do not focus on the actions that require
penetration forces.

7. Format each caption as follows: ‘action’: ACTION, ‘solid’: SOLID, ‘fluid’: FLUID, ‘caption’: CAPTION

Bad Examples Of Captions (Do Not Generate Such Captions):
Sugar dissolves in water. ## dissolving action will not be visible in video
Sulfuric acid corroding metal. ## corrosion will not be visible in video
Water boiling in a pot. ## boiling action will not be visible in video

Good Examples Of Captions:
A dam break releases a massive flood.
An iron rod falls into the water.
A metal spoon stirs the honey in a cup.

Figure 7: GPT-4 Prompt to Generate Solid-Fluid Captions.
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Develop unique and imaginative captions, each briefly describing the interaction between two different fluid materials in a realistic
scene. Each caption should consist of 7-10 words and clearly indicate the fluids involved in the action.

Guidelines:

1. Focus on common fluids used in everyday scenarios, avoiding rare or seldom-used materials.

2. Exclude actions like ‘celebrating’, ‘arguing’, or ‘laughing’ that do not clearly involve physical interaction between materials.

3. Avoid generating static scenes (e.g., ‘Lid covers pot to retain heat’).

4. Avoid adding participle phrases (e.g., ‘sweetening it’, ‘a creamy swirl’, ‘fizzing energetically’) in the caption.

5. The captions should focus on the actions that require mixing and laying for liquid-liquid interactions, or some contact forces
between liquid and gas.

6. Format each caption as follows: ‘action’: ACTION, ‘fluid 1’: FLUID, ‘fluid 2’: FLUID, ‘caption’: CAPTION

Bad Examples Of Captions (Do Not Generate Such Captions):
Juice solidifies around water in ice trays. ## solidification won’t be visible in the video
Sugar disappears into stirring water. ## dissolving won‘t be visible in the video An acid and a base react to neutralize each other,
forming water. ## chemical reactions are not visible in the video

Good Examples Of Captions:
The wind creating ripples across the surface of the lake.
Milk falls into a transparent cup of water.
Oil falls into a transparent cup of water.

Figure 8: GPT-4 Prompt to Generate Fluid-Fluid Captions.

H HUMAN ANNOTATION SCREENSHOT

We display the screenshot of our human annotation system in Figure 9 .

Figure 9: The screenshot of the human annotation interface.

I VIDEOCON DETAILS

We prompt VIDEOCON to generate a text response (Yes/No) conditioned on the multimodal template
Tt(x) for semantic adherence and physical commonsense tasks. Formally,

Tt(x) =
{
TSA(V,C), t = SA

TPC(V ), t = PC
(1)

where t is either semantic adherence to the caption or physical commonsense task, C is the condition-
ing caption and V is the generated video for the caption C. We provide the multimodal templates
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(TSA(V,C), TPC(V )). We compute the score from the VIDEOCON model pθ:

sθ(Tt(x)) =
pθ(Yes|Tt(x))

pθ(Yes|Tt(x)) + pθ(No|Tt(x))
, (2)

where pθ(Yes|Tt(x)) is the probability of ‘Yes’ conditioned on Tt(x), and t ∈ {SA,PC}. 8

We present the prompts used for the GPT4V, Gemini-1.5-Pro-Vision, VideoCon baselines, and
VIDEOCON-PHYSICS for semantic adherence evaluation in Figure 10 and physical commonsense
alignment in Figure 11.

Semantic adherence:

Given: V (Video), T (Caption)

Instruction (I): [V] Does this video entail the description [T]?
Response (R): Yes or No

Figure 10: Template used assessing semantic adherence for a generated video.

Physical Commonsense:

Given: V (Video)

Instruction (I): [V] Does this video follow physical laws?
Response (R): Yes or No

Figure 11: Template for assessing physical commonsense. We note that the physical commonsense is
independent of the conditioning caption. Hence, it is not present in this template.

J FINE-GRAINED DIVERSITY ANALYSIS

In this section, we visualize the fine-grained statistics of collections across different physical interac-
tion categories (Figure 12 - Figure 14).

K RESULTS FOR TASK COMPLEXITY

We compare the performance of various video generative models across different task complexity in
Table 6.

L FINE-GRAINED RESULTS

In this section, we report the fine-grained performance of semantic adherence and physical com-
monsense scores from all video generation models and compute the scores across different physical
interaction categories (solid-solid, solid-fluid and fluid-fluid), as well as difficulty levels (0 and 1).

M AUTOMATIC EVALUATION BASELINES

Similar to [6], we utilize the capability of GPT-4Vision [79] to reason over multiple images in a
zero-shot manner. Specifically, we prompt the GPT-4V model with the caption and 8 video frames

8As a large video multimodal model, VIDEOCON predicts a token distribution over the entire token vocabulary
conditioned on the multimodal template. Therefore, pθ(Yes|Tt(x)) + pθ(No|Tt(x)) is not equal to 1.
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Figure 12: Top 20 most frequently occurring verbs (inner circle) and their top 4 direct nouns (outer
circle) in our curated captions that consists of interaction between solid-solid states of matter.

Figure 13: Top 20 most frequently occurring verbs (inner circle) and their top 4 direct nouns (outer
circle) in our curated captions that consists of interaction between solid-fluid states of matter.

sampled uniformly from the generated video. Here, we instruct the model to provide the semantic
adherence (0 or 1) and physical commonsense score (0 or 1). Since GPT-4V does not process videos
natively, we assess the automatic evaluation using Gemini-Pro-Vision-1.5, which can input the
caption and the entire generated video. Specifically, we instruct it to provide the semantic adherence
(0 or 1) and physical commonsense (0 or 1) of the input video, identical to the GPT-4V analysis. We
provide the prompts used in the experiments in Figure 10 and 11.

N INFERENCE DETAILS

We add the inference configurations for different video generation models in Table 9.

O TRAINING DETAILS FOR VIDEOCON-PHYSICS

To create VIDEOCON-PHYSICS, we use low-rank adaptation (LoRA) [39] of the VIDEOCON applied
to all the layers of the attention blocks including QKVO, gate, up and down projection matrices. We
set the LoRA r = 32 and α = 32 and dropout = 0.05. The finetuning is performed for 5 epochs using
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Figure 14: Top 20 most frequently occurring verbs (inner circle) and their top 4 direct nouns (outer
circle) in curated captions that consists of interaction between fluid-fluid states of matter.

Table 6: Fine-grained performance across caption complexity using human evaluation. We find
that T2V models struggle more on the harder captions than the easier captions in both the semantic
adherence (SA) and physical commonsense (PC) metrics.

Easy (%) Hard (%)
Model SA PC SA PC
Open Models
CogVideoX-5B 63.8 55.3 62.5 50.3
VideoCrafter2 53.4 38.1 42.6 30.3
CogVideoX-2B 51.1 38.3 42.6 29.0
LaVIE 51.9 31.2 44.8 24.0
SVD-T2I2V 41.8 37.6 43.2 22.6
ZeroScope 32.3 33.9 27.7 31.0
OpenSora 20.1 25.4 5.2 21.3
Closed Model
Pika 45.7 39.9 35.1 32.1
Dream Machine 65.2 29.4 57.8 12.5
Lumiere-T2I2V 56.6 29.1 38.7 20.0
Lumiere-T2V 38.6 34.9 38.1 19.4
Gen-2 26.6 31.8 26.6 21.6

Adam [46] optimizer with a linear warmup of 50 steps followed by linear decay. Similar to [5], we
chose the peak learning rate as 1e− 4. We utilized 2 A6000 GPUs with the total batch size of 32. In
addition, we finetune our model with 32 frames in the video and the frames are resized to 224× 224
by image processor. Similar to [72, 125], we create 32 segments of the video, and sample the middle
frame for each segment.

P AUTOMATIC AND HUMAN LEADERBOARD

We compute the physical commonsense and semantic adherence scores for the models on the testing
set using VIDEOCON-PHYSICS. Subsequently, we take their average and create a rankings of the
models. We have a similar ranking of the models using the joint performance metrics (SA=1, PC=1)
from human evaluation. We present the human and automatic leaderboard for the open and closed
models in Table 10. Our analysis reveals that the average rank of the models in the automatic
leaderboard is 0.66 above or below the expected rank of the model in the human leaderboard. This
indicates VIDEOCON-PHYSICS is reliable for evaluating the future models on our dataset.
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Table 7: Fine-grained performance of T2V models for the interaction between diverse states of matter
using human evaluation. Ideally, we want the T2V models to achieve a high score on the SA = 1
and PC = 1 metric while reduce the score on the SA=0 and PC=0, SA=1 and PC=0, and SA=0 and
PC=1 metrics.

Source Category SA (%) PC (%) SA=1 and PC=1 (%) SA=1 and PC=0 (%) SA=0 and PC=1 (%) SA=0 and PC=0 (%)

Open Models

CogVideoX-5B
Fluid-Fluid 61.8 43.6 18.2 18.2 18.2 20.0
Solid-Fluid 76.6 59.3 53.1 23.4 6.2 17.2
Solid-Solid 50.3 24.5 25.9 18.9 18.9 30.8

CogVideoX-2B
Fluid-Fluid 34.5 47.3 25.5 9.1 21.8 43.6
Solid-Fluid 56.2 34.9 21.9 34.2 13.0 30.8
Solid-Solid 43.0 28.2 12.7 30.3 15.5 41.5

LaVIE
Fluid-Fluid 69.1 43.6 34.5 34.5 9.1 21.8
Solid-Fluid 52.1 30.8 15.8 36.3 15.1 32.9
Solid-Solid 37.3 19.0 8.5 28.9 10.6 52.1

OpenSora
Fluid-Fluid 12.7 27.3 7.3 5.5 20.0 67.3
Solid-Fluid 30.1 21.9 7.5 22.6 14.4 55.5
Solid-Solid 7.7 23.8 1.4 6.3 22.4 69.9

VideoCrafter2
Fluid-Fluid 69.1 43.6 32.7 36.4 10.9 20.0
Solid-Fluid 57.5 41.8 27.4 30.1 14.4 28.1
Solid-Solid 31.5 23.8 4.9 26.6 18.9 49.7

SVD-T2I2V
Fluid-Fluid 58.2 34.5 18.2 40.0 16.4 25.5
Solid-Fluid 52.7 32.9 17.1 35.6 15.8 25.5
Solid-Solid 25.9 27.3 4.2 21.7 23.1 51.0

ZeroScope
Fluid-Fluid 36.4 47.3 20.0 16.4 27.3 36.4
Solid-Fluid 40.4 37.0 14.4 26.0 22.6 37.0
Solid-Solid 17.5 22.4 6.3 11.2 16.1 66.4

Closed Models

Dream Machine
Fluid-Fluid 76.4 10.9 9.1 67.3 1.8 21.8
Solid-Fluid 68.1 23.6 16.7 51.4 6.9 25.0
Solid-Solid 50.0 24.3 12.1 37.9 12.1 37.9

Gen-2
Fluid-Fluid 37.7 26.4 15.1 22.6 11.3 50.9
Solid-Fluid 38.5 18.5 8.1 30.4 10.4 51.1
Solid-Solid 8.9 37.1 4.0 4.8 33.1 58.1

Lumiere-T2V
Fluid-Fluid 45.4 34.5 9.1 36.4 25.5 29.1
Solid-Fluid 47.2 26.0 9.6 37.7 16.4 36.3
Solid-Solid 26.5 27.3 8.4 18.2 18.9 54.5

Lumiere-T2I2V
Fluid-Fluid 49.5 21.8 10.9 38.2 10.9 40.0
Solid-Fluid 59.6 26.0 17.1 42.5 8.9 31.5
Solid-Solid 37.1 25.2 8.4 28.7 16.8 46.2

Pika
Fluid-Fluid 68.0 58.0 44.0 24.0 14.0 18.0
Solid-Fluid 46.5 27.9 16.3 30.2 11.6 41.9
Solid-Solid 24.8 36.8 13.6 11.2 23.2 52.0
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Table 8: Fine-grained performance of T2V models for the complexity of the captions using human
evaluation. Ideally, we want the T2V models to achieve a high score on the SA = 1 and PC = 1 metric
while reduce the score on the SA=0 and PC=0, SA=1 and PC=0, and SA=0 and PC=1 metrics.

Source Category SA (%) PC (%) SA=1 and PC=1 (%) SA=1 and PC=0 (%) SA=0 and PC=1 (%) SA=0 and PC=0 (%)

Open Models

CogVideoX-5B EASY 63.8 40.9 22.9 14.4 14.4 21.8
HARD 62.6 38.1 24.5 12.3 12.3 25.2

CogVideoX-2B EASY 51.1 38.3 20.7 17.6 17.6 31.4
HARD 42.6 29.0 16.1 12.9 12.9 44.5

LaVIE EASY 51.9 31.2 19.6 32.3 11.6 36.5
HARD 44.8 24.0 11.0 33.8 13.0 42.2

OpenSora EASY 20.1 25.4 4.8 15.3 20.6 59.3
HARD 15.5 21.3 5.2 10.3 16.1 68.4

VideoCrafter2 EASY 53.4 38.1 21.2 32.3 16.9 29.6
HARD 42.6 30.3 16.1 26.5 14.2 43.2

SVD-T2I2V EASY 42.0 38.0 16.0 25.0 21.0 37.0
HARD 43.0 23.0 6.0 37.0 16.0 41.0

ZeroScope EASY 32.3 33.9 13.8 18.5 20.1 47.6
HARD 27.7 31.0 9.7 18.1 21.3 51.0

Closed Models

Dream Machine EASY 65.2 29.4 19.8 45.5 9.6 25.1
HARD 57.9 12.5 5.9 52.0 6.6 35.5

Gen-2 EASY 26.6 31.8 10.4 16.2 21.4 52.0
HARD 26.6 21.6 4.3 22.3 17.3 56.1

Lumiere-T2V EASY 38.6 34.9 11.1 27.5 23.8 37.6
HARD 38.1 19.3 6.5 31.6 12.9 49.0

Lumiere-T2I2V EASY 56.6 29.1 16.4 40.2 12.7 30.7
HARD 38.7 20.0 7.7 31.0 12.3 49.0

Pika EASY 45.7 39.9 23.7 22.0 16.2 38.2
HARD 35.1 32.1 14.5 20.6 17.6 47.3

Table 9: Inference details for models in our testbed. Here, NA indicates that the information is not
available for the closed models.

Model Resolution # of Video Frames Guidance Scale Sampling Steps Noise Scheduler
Open Models
CogVideoX 480 × 720 25 7.5 50 DDPM [37]
ZeroScope 320 × 576 32 9 50 DPMSolverMultiStep [70]
VideoCrafter2 320 × 512 32 12 50 DDIM [100]
LaVIE 320 × 512 32 7.5 50 DDPM [37]
OpenSora 240 × 426 32 7 100 IDDPM [76]
SVD-T2I2V 1024 × 576 25 (1, 3) 25 EulerDiscrete [43]
Closed Models
Lumiere-T2V 1024 × 1024 80 8 256 NA
Lumiere-T2I2V 1024 × 1024 80 6 256 NA
Gen-2 720 × 1280 32 8.5 100 NA
Dream Machine 1280 × 720 24 NA NA NA
Pika 640 × 1088 72 12 NA NA

Q ADDITIONAL EXPERIMENT: RELATIVE RANKINGS

In this work, we focus on collecting the absolute (0/1) feedback from the human annotators. Here,
we aim to understand the effect of changing the feedback acquisition protocol to relative rankings
for physical commonsense evaluation. Specifically, we ask the three workers to look at two videos
simultaneously and pick the one with better physical commonsense. In particular, we got 500 pairwise
comparisons for 4 video generative models (CogVideoX-5B, Pika, Gen2, OpenSora). It costs us $360
to run this human evaluation. Subsequently, we computed the ELO scores of these models based on
the human annotations. We present the results in Table 12.

Interestingly, we find that the relative ranking of these models remains unchanged under both the
feedback methods. Specifically, CogVideoX-5B and OpenSora are still the best and worst models on
the VideoPhy dataset, respectively. We note that the open (usually smaller) video generative models
will be penalized for losing to close (usually larger) video generative models in the ranking-based
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Table 10: Human and Automatic leaderboard for open and closed video generative models. We
compute the joint performance metrics (SA = 1, PC = 1) from human evaluation, and average the SA
and PC scores from automatic evaluation to construct the leaderboard. The models are ranked from
best to worst (descending order). We find that the automatic leaderboard reliably tracks the human
leaderboard.

Open models Closed models
Human VIDEOCON-PHYSICS Rank diff. Human VIDEOCON-PHYSICS Rank diff.

CogVideoX-5B CogVideoX-5B 0 Pika Dream Machine 3
VideoCrafter2 VideoCrafter2 0 Dream Machine Lumiere-T2I2V 1

CogVideoX-2B LaVIE 1 Lumiere-T2I2V SVD-T2I2V 1
LaVIE CogVideoX-2B 1 Lumiere-T2V Pika 1

SVD-T2I2V SVD-T2I2V 0 Gen-2 Gen-2 0
ZeroScope ZeroScope 0 - - -
OpenSora OpenSora 0 - - -

Table 11: Automatic Leaderboard on Video Generation Models.

# Open Models PC SA Avg.
1 CogVideo-xl 41 57 49
2 VideoCrafter-2 36 47 42
3 LaVIE 35 46 41
4 Mochi 30 42 36
5 CogVideo (Base) 29 40 35
6 SDXV-T2i2V 28 38 33
7 Hunyuan Video 26 38 32
8 ZeroScope 24 35 29
9 Pika 23 34 29

# Closed Models PC SA Avg.
1 Luma Dreamer T2i2V 30 45 38
2 Lamma T2i2V 25 36 31
3 Pika 23 34 29
4 Gen-2 (Runway) 31 26 29

setup. The absolute feedback operates independently across all video generative models, and helps in
better contextualizing the capability of the models with similar scales.

R APPLICATIONS OF VIDEOCON-PHYSICS

In this work, we propose VIDEOCON-PHYSICS, an auto-evaluator that judges the semantic adherence
and physical commonsense of the generated videos for a given caption. Here, we describe the
potential usecases of the model for future work.

Video Generative Model Selection: The ability to perform model verification on downstream tasks
cheaply and reliably is critical. In this regard, the model builders can utilize VIDEOCON-PHYSICS to
evaluate their candidate models on the VIDEOPHY dataset at scale. The top candidate models can
then be evaluated with the human workers for more accurate evaluation.

Data Filtering: With the advent of foundation models that are trained on the internet data, high-
quality filtering has emerged as a crucial step in the pipeline [33, 131, 62]. Here, the data builders can
utilize VIDEOCON-PHYSICS to filter low-quality video-text data that lacks in semantic adherence
and physical commonsense.

Post-training: Recently, aligning the generative models with human or AI feedback has become
pivotal for high-quality generations [94, 89, 7, 108, 58]. Here, the post-training pipeline of the video
generative models can leverage the VIDEOCON-PHYSICS model as an reward model that provides
feedback to the model generated content. Subsequently, this feedback can be utilized to refine the
model for better generations.

S CORRELATION WITH VIDEO QUALITY AND MOTION

There are several works that focus on assessing the generated video quality and motions [42, 67].
Here, we aim to assess the correlation between the semantic adherence and physical commonsense

30



Published as a conference paper at ICLR 2025

Table 12: Results with relative feedback acquisition protocol. We present the ELO score of a few
selected model by asking human annotators to compare the two videos side-by-side, and pick the one
that follows physical commonsense more. We also mention that the binary ratings that the videos
get under the absolute feedback acquisition protocol. We find that the rankings of the models are
identical under both the setups.

Model ELO Binary ratings
CogVideoX-5B 1081 53
Pika 1048 36.5
Gen2 1010 27.2
OpenSora 860 23.5

scores and these metrics. Specifically, we calculate the video quality using LAION aesthetic classifier
[52] and video motion using the RAFT optical flow model [104]. Subsequently, we calculate the
pearson correlation between video quality and motion with physical commonsense and semantic
adherence. We present the results in Table 13.

We find that physical commonsense and semantic adherence are correlated positively with the video
quality, albeit the correlation is not very strong. In addition, we find that physical commonsense and
semantic adherence are negatively correlated with the video motions. This indicates that the video
models tend to make more mistakes in the semantic adherence and physical commonsense when
more motions are depicted in them. In this work, we consider a wide breadth of video generative
models – open and closed. The closed models (Dream Machine/Gen-2/Pika) contribute to the higher
end of the video quality while open models (Zeroscope/OpenSora) contribute to the lower end. While
the high quality is ‘correlated’ with the better physical commonsense, we note that the absolute
performance of the models is quite poor on our benchmark. For instance, Gen-2 achieves the one of
the highest video quality score (5.8 on LAION aesthetics classifier) but has a poor semantic adherence
and physical commonsense score of 7.6 (Table 3).

Table 13: Correlation between video quality (Aesthetics) and optical flow (motion) with physical
commonsense and semantic adherence over VIDEOPHY dataset.

Metrics Correlation
Aesthetics-Physical Commonsense 0.3
Aesthetics-Semantic Adherence 0.5
Motion-Physical Commonsense -0.8
Motion-Semantic Adherence -0.1

T FINETUNING VIDEO MODEL WITH VIDEOPHY DATA

This work is centered around physical commonsense evaluation, and we trained an automatic evaluator
(VIDEOCON-PHYSICS) using the training set. Here, we assess whether VIDEOPHY training set
instances can also be used for finetuning video models. Specifically, we finetune Lumiere-T2I2V
model on the instances from the training set of VIDEOPHY which achieve a score of 1 on physical
commonsense and a score of 1 on semantic adherence. In total, there are 1000 such (video, caption)
pairs in the dataset. Post-finetuning, we generate the videos for the test prompts and evaluate them
using our automatic evaluator, VIDEOCON-PHYSICS.

Table 14: Finetuning Lumiere-T2I2V with the (video, text) pairs that achieve joint performance
score of 1 (i.e., PC = 1 and SA = 1) in the train set of VIDEOPHY data. While the training set of
the VIDEOPHY was primarily collected for training an automatic evaluator, we test whether it can
also improve the video generative models itself.

Model SA PC Average
Lumiere-T2I2V-Pretrained 46 25 35
Lumiere-T2I2V-Finetuned 36.5 24.6 30.5

31



Published as a conference paper at ICLR 2025

We present the results in Table 14. We find that the semantic adherence (video-text alignment)
reduces by a large margin and physical commonsense remains unchanged after finetuning. This
can be due to several factors: (a) the number of training samples is not enough, (b) optimization
difficulties since the training videos are generated from several generative models (mix of on-policy
and off-policy videos), and (c) vanilla finetuning being a bad algorithm for learning from these
samples. Since post-training of video generative models is a less explored direction, there can be
many ways to improve the generative model’s physical commonsense. These results also show that
mere finetuning with the samples in the training set of VideoPhy does not lead to large gains in the
automatic evaluation on the test set. Future work will focus on training better physical commonsense
models using the insights provided in our work.

U MORE QUALITATIVE EXAMPLES OF POOR PHYSICAL COMMONSENSE

We present more examples from each generative model where one or more physical laws are violated
in Figure 15 - Figure 26.
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(a) A paddle mixes wet cement in a bucket

(c) Hands rub luscious lotion on dry skin

(d) The net catches the fast-moving soccer ball

(e) Yogurt merging with strawberry puree

(b) A whisk whips cream to a perfect fluffy consistency

Figure 15: Unphysical Generated Examples of LaVIE. (a) Solid Constitutive Laws Violation: the
metal spoon should not deform; Nonphysical Penetration: the spoon unnaturally passes through the
liquid. (b) Solid Constitutive Laws Violation: the whisk exhibits abnormal shape deformation. (c)
Solid Constitutive Laws Violation: the two hands show abnormal shape deformation; Nonphysical
Penetration: fingers penetrate each other; Conservation of Mass Violation: the geometry (plus texture)
of the two hands are inconsistent over time. (d) Conservation of Mass Violation: the geometry (plus
texture) of the soccer is inconsistent over time; Newton’s Second Law Violation: the soccer does
not fall under gravity. (e) Conservation of Mass Violation: the volume of yogurt in the cup does not
increase as more yogurt is added.

V EXAMPLES FROM DIVERSE STATES OF MATTER AND COMPLEXITY

We present a few qualitative examples highlighting instances of good physical commonsense and bad
physical commonsense in Figure 27-Figure 29.
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(a) A blender spins, mixing squeezed juice within it

(b) A teaspoon stirs sugar into a cup of coffee

(c) Hand flipping open book cover

(e) Water pouring from a watering can onto plants

(d) Soap washes grime off dirty hands

Figure 16: Unphysical Generated Examples of Gen-2. (a) Conservation of Mass Violation: the
volume of juice in the blender increases over time without new substances being added. (b) Solid
Constitutive Laws Violation: the metal spoon should not deform. (c) Conservation of Mass Violation:
the volume of the book increases over time; Nonphysical Penetration: the fingers pass through the
book. (d) Nonphysical Penetration: fingers penetrate into each other. (e) Newton’s Second Law
Violation: the flowing water appears to be static, ignoring the effect of gravity.
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(a) A foot crushing an empty soda can

(e) Pouring milk into still tea

(d) Plastic frisbee lands on a lush grass lawn

(c) Mustard squirting out of a plastic bottle onto a hotdog

(b) A spinning wheel sprays muddy water

Figure 17: Unphysical Generated Examples of VideoCrafter2. (a) Newton’s Second Law Violation:
the metal can deforms without being pressed. (b) Newton’s Second Law Violation: Water splashes
while the rolling wheel remains static. (c) Newton’s Second Law Violation: the bottle floats in the air,
ignoring the effect of gravity; Fluid Constitutive Law Violation: the dripping and flowing of mustard
are unnatural. (d) Conservation of Mass Violation: the geometry (plus texture) of the frisbee is not
consistent over time. (e) Conservation of Mass Violation: the total volume of milk in the glass does
not increase as more milk is poured into; Nonphysical Penetration: milk penetrates the glass.
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(a) A futuristic hoverboard hovers just above the water

(b) A swimmer splashing in the sea water

(c) Frog leaping from one lilypad to another

(d) Plastic fidget spinner rotating on rubber mat

(e) The eraser rubs against the paper, removing pencil marks

Figure 18: Unphysical Generated Examples of ZeroScope. (a) Newton’s Second Law Violation:
the motion of the hoverboard does not satisfy the momentum equation. (b) Newton’s Second Law
Violation: the motion of the arm of the swimmer is unnatural. (c) Conservation of Mass Violation:
the geometry (texture) of the frog is inconsistent over time. (d) Newton’s First Law Violation: the
velocity of the fidget spinner changes despite being in a balanced state. (e) Solid Constitutive Laws
Violation: the paper is torn apart without external forces but recovers later.
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(a) A blender spins, mixing squeezed juice within it

(b) A car gliding over a road slick with rainwater

(c) A shaker mixes a delightful cocktail at the bar

(d) A shiny coin takes a dive into a clear water fountain

(e) A stroller wheels through a large puddle

Figure 19: Unphysical Generated Examples of OpenSora. (a) Solid Constitutive Laws Violation:
the metal blender should not deform. (b) Newton’s Second Law Violation: the car moves backward,
violating the momentum equation (c) Solid Constitutive Laws Violation: the metal spoon deforms
when stirring the cocktail. (d) Newton’s First Law Violation: the coin moves on the ground back and
forth without horizontal forces. (e) Conservation of Mass Violation: the left rear wheel disappears
over time.
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(a) A perfume bottle spritzes fragrance into the air

(b) Lemon juice drops splash into water

(c) Loose sneaker swings on dangling foot

(d) Detergent flowing into a bucket of water

(e) The screwdriver tightens the metal screw in the wood

Figure 20: Unphysical Generated Examples of SVD-T2I2V. (a) Newton’s Second Law Violation:
the perfume spreads back and forth, violating the momentum equation. (b) Newton’s Second Law
Violation: the water drops float in the air, ignoring gravity. (c) Solid Constitutive Laws Violation: the
leg exhibits unnatural deformation. (d) Newton’s Second Law Violation: the water flows upward into
the air without external forces. (e) Solid Constitutive Laws Violation: the screwdriver head deforms
unnaturally.
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(a) Plastic fidget spinner rotating on rubber mat

(b) Clasping a necklace around a neck

(c) A whisk churns heavy cream into whipped cream

(d) A sailboat cuts through the choppy sea waves

(e) A diver plunges headlong into a sparkling pool

Figure 21: Unphysical Generated Examples of Pika. (a) Solid Constitutive Laws Violation: the fidget
spinner should not deform. (b) Solid Constitutive Laws Violation: the necklace should not deform.
(c) Conservation of Mass Violation: the volume of cream increases over time without additional input.
(d) Fluid constitutive Law Violation: unnatural waves on the sea surface. (e) Solid Constitutive Law
Violation: one diving shoe splits into two and detaches from the feet.
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(a) A spoon stirs a pot of vegetable soup

(b) A whisk spins in the egg mixture, mixing it thoroughly

(c) Coin spins rapidly on a wooden table

(d) Squeezing lemon drops into warm tea

(e) Tea accepts stream of milk

Figure 22: Unphysical Generated Examples of Lumiere-T2V. (a) Conservation of Mass Violation:
the vegetable appears on the spoon out of nowhere. (b) Solid Constitutive Laws Violation: the whisk
should not deform. (c) Solid Constitutive Laws Violation: the coin splits into two and then merges
back into one. (d) Solid Constitutive Laws Violation: the lemon shows an unnatural appearance
change; Fluid Constitutive Laws Violation: the lemon juice appears like static glue. (e) Nonphysical
Penetration: the tea flows through the cup.
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(a) A drum vibrating from the beating stick

(b) A leaf falls delicately into a slow-moving river

(c) A wooden spoon stirring soup in a pot

(d) Hand folds the paper

(e) Skateboard glides on the pavement

Figure 23: Unphysical Generated Examples of Lumiere-T2I2V. (a) Solid Constitutive Laws Violation:
the drum stick head should not deform (b) Newton’s Second Law Violation: the leaf floats in the
air, ignoring gravity. (c) Conservation of Mass Violation: the vegetable appears on the spoon out
of nowhere. (d) Nonphysical Penetration: hands penetrate each other. (e) Solid Constitutive Laws
Violation: one leg on the skateboard transforms into a person.
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(a) A diver splashing into the pool water

(b) Peeler peels an apple

(c) Shoveling sand into a bucket

(d) The pickaxe digs into the hard grounds

(e) The rock topples the carefully stacked pile of cans

Figure 24: Unphysical Generated Examples of CogVideoX-2B. a) Newton’s Second Law Violation:
the splash appears without any external force, violating the principle of momentum conservation.
(b) Solid Constitutive Law Violation: the apple undergoes deformation, which should not occur.
(c) Conservation of Mass Violation: the sand’s volume changes over time without the addition
of new material. (d) Conservation of Mass Violation: the geometry and texture of the pickaxe
change inconsistently over time. (e) Solid Constitutive Law Violation: the cans exhibit unnatural
deformations.
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(a) A spinning wheel sprays muddy water

(b) Dominoes toppling one after another on the table

(c) Leather glove catching a hard baseball

(d) Milk blending seamlessly into tea

(e) The net catches the fast-moving soccer ball

Figure 25: Unphysical Generated Examples of CogVideoX-5B. (a) Newton’s Second Law Violation:
the wave dynamics are discontinuous over time, violating the momentum conservation principle. (b)
Conservation of Mass Violation: the geometry and texture of the dominoes change inconsistently
over time. (c) Solid Constitutive Law Violation: the leather glove exhibits unnatural deformations.
(d) Conservation of Mass Violation: the volume of tea remains unchanged despite the addition of
milk to the glass cup. (e) Solid Constitutive Law Violation: the soccer ball displays unnatural and
discontinuous deformations over time.
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(a) A brave diver splashes into a pool from a great height

(b) Coin flicking into a sparkling fountain

(c) Metal grinder crushing coffee beans

(e) Water streams into fresh juice

(d) Oil cascades into vinegar for vinaigrette

Figure 26: Unphysical Generated Examples of Dream Machine. (a) Newton’s Second Law Violation:
the diver floats in mid-air, defying gravity. (b) Newton’s Second Law Violation: the coin hovers,
disregarding gravitational forces. (c) Conservation of Mass Violation: numerous coffee beans appear
spontaneously without a source. (d) Nonphysical Penetration: oil and vinegar pass through the glass
cup. (e) Conservation of Mass Violation: the juice volume remains unchanged despite the addition of
water.
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Ea
sy (c) Rain splashing on a still pond.

(d) Raindrops disturb quiet puddles.

PC = 0 PC = 1

(g) Perfume mist diffusing through the air.

(h) Pouring milk into still tea.
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(a) Rain creates concentric ripples in water.

(b) Water droplet bouncing on a water surface.

(e) Juice and fizz shake in a bottle.

(f) Yogurt merging with strawberry puree.

Figure 27: Qualitative examples in the fluid-fluid category. Videos in the left column have a majority
PC score of 0, while videos in the right column have a majority PC score of 1. (a) The central ripple
does not vanish even in absence of raindrops. (b) The water droplet is floating upwards, defying
gravity. (e) The total volume of juice is increasing. (f) The color of the yogurt is not consistent over
time.
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(a) The wristwatch knob winds the inner spring tightly. 

(b) Tying a rope to a pole.

(c) Cloth banner hanging from wooden twig.

(d) Wooden swing dangles over the sand in the sandpit.

(e) Darts lands in the middle of the cork dartboard.

(f) Ripping paper sheet by hand.

(g) Metal grinder crushing coffee beans.

(h) Shoveling sand into a bucket.

PC = 0 PC = 1
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Figure 28: Qualitative examples in the solid-solid category. Videos in the left column have a majority
PC score of 0, while videos in the right column have a majority PC score of 1. (a) The hands of the
clock have illogical motion. (b) One piece of the robe disappears. (e) The geometry and texture of
the dart are not consistent over time. (f) The total volume of the sheet of paper is not consistent over
time.
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(a) A toy duck floats on a tranquil neighborhood pond.

(b) Chopsticks dipping a sushi roll into soy sauce. (d) A small paper boat drifts along a stream.

(c) A leaf floating on the stream water.

(e) Feet kick and splash about in a rain puddle.

(f) Water spraying from a garden hose onto plants.

(g) A wine bottle pours a red blend into a glass.

(h) Foot kicks water in the swimming pool.

PC = 0 PC = 1
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Figure 29: Qualitative examples in the fluid-fluid category. Videos in the left column have a majority
PC score of 0, while videos in the right column have a majority PC score of 1. (a) The geometry and
color of the duck head changes over time. (b) One chopstick appears from nowhere. (e) One leg
appears from nowhere. (f) The geometry and texture of the leaves are not consistent over time.
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