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Abstract
Specular highlight removal plays a pivotal role in multimedia ap-
plications, as it enhances the quality and interpretability of images
and videos, ultimately improving the performance of downstream
tasks such as content-based retrieval, object recognition, and scene
understanding. Despite significant advances in deep learning-based
methods, current state-of-the-art approaches often rely on addi-
tional priors or supervision, limiting their practicality and gen-
eralization capability. In this paper, we propose the Dual-Hybrid
Attention Network for Specular Highlight Removal (DHAN-SHR),
an end-to-end network that introduces novel hybrid attentionmech-
anisms to effectively capture and process information across dif-
ferent scales and domains without relying on additional priors
or supervision. DHAN-SHR consists of two key components: the
Adaptive Local Hybrid-Domain Dual Attention Transformer (L-
HD-DAT) and the Adaptive Global Dual Attention Transformer
(G-DAT). The L-HD-DAT captures local inter-channel and inter-
pixel dependencies while incorporating spectral domain features,
enabling the network to effectively model the complex interactions
between specular highlights and the underlying surface proper-
ties. The G-DAT models global inter-channel relationships and
long-distance pixel dependencies, allowing the network to propa-
gate contextual information across the entire image and generate
more coherent and consistent highlight-free results. To evaluate
the performance of DHAN-SHR and facilitate future research in
this area, we compile a large-scale benchmark dataset comprising a
diverse range of images with varying levels of specular highlights.
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Through extensive experiments, we demonstrate that DHAN-SHR
outperforms 18 state-of-the-art methods both quantitatively and
qualitatively, setting a new standard for specular highlight removal
in multimedia applications. The code and dataset are available at
https://github.com/CXH-Research/DHAN-SHR.
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1 Introduction
Specular highlights, the intense reflections of light sources on shiny
surfaces, pose significant challenges in multimedia and computer
vision applications. These reflections disrupt visual consistency,
obscuring details and altering color fidelity, which can impact appli-
cations like video editing, content-based retrieval, and interactive
media. Removing specular highlights is crucial for accurate image
and video processing, yet it remains complex due to variable light
conditions, surface properties, and angles of observation.

Traditional highlight removal techniques, based on models such
as the dichromatic reflection model [1], often fall short in diverse
real-world scenarios. Deep learning approaches have shown promise
but typically require prior information, such as highlight masks, lim-
iting their practicality. Current methods also struggle to effectively
restore highlighted areas, leading to suboptimal results.

We propose an end-to-end network that eliminates the need for
additional priors, enabling specular highlight removal in a single
step while preserving the visual fidelity of the restored image. Our
approach leverages the observation that only a small portion of the
surface produces highlights due to its smoothness and reflection
angle, while most areas remain diffuse. We aim to learn a global
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relationship on illumination and color and consider local features
to restore details such as texture in highlight regions. Our network
design incorporates two dimensions of self-attention to capture
both global and local-level relationships.

To capture local feature relationships, we introduce the Adaptive
Local Hybrid-Domain Dual Attention Transformer. This sets our
approach apart from current methods that focus solely on the spa-
tial domain. Our transformer leverages frequency domain features
to aid the learning process, uncovering fine details and overarch-
ing patterns. A window-based dual attention mechanism focuses
on local inter-channel and inter-pixel relationships, significantly
reducing computational complexity compared to traditional self-
attention mechanisms. This allows the transformer to effectively
capture fine-grained details and textures.

To further enhance the transformer’s ability to capture depen-
dencies across window boundaries, we incorporate a window-
shifting mechanism which is inspired by Swin Transformer [2] and
SwinIR [3]. By shifting the pixels to create new window partitions,
our module facilitates information exchange between adjacent win-
dows. This shifting operation allows the transformer to capture
local dependencies that span across window boundaries, ensuring
a seamless integration of features across the entire image.

For global-level dependencies, we propose the Channel-Wise
Contextual Attention Module that employs efficient Transformers
to capture inter-channel relationships, rather than inter-patch rela-
tionships. This design choice serves two purposes: firstly, it allows
the network to focus on more coarse-grained whole features, and
secondly, it avoids the high computational and memory demands
associated with the original Vision Transformer [4]. By attending
to the channel-wise context, our module can effectively capture
the global dependencies between different feature maps, enabling
the network to reason about the overall illumination and color
distribution.

To better organize feature learning at different scales, we adopt a
network architecture similar to UNet, strategically placing modules
that focus on different granularities at various positions within the
network. Modules that capture detailed information are placed at
higher levels, while modules that focus on global information are
positioned at lower levels. This hierarchical arrangement enables
our network to effectively learn and process features at different
scales, improving its ability to handle complex specular highlight
removal tasks.

To provide a standardized basis for comparison and yield mean-
ingful insights into the performance improvements of specular
highlight removal methods, we assembled an extensive dataset by
combining images from three different highlight removal datasets
(PSD [5], SHIQ [6] and SSHR [7]). PSD features high-quality real-
world ground truth images, while the other two datasets include
generated reference ground truths and fully synthetic data, broad-
ening the diversity of the training samples. We retrained seven
state-of-the-art deep learning specular highlight removal methods
on this unified benchmark and evaluated their performance, along
with 11 traditional methods, on the test sets of the benchmark. The
experimental results demonstrate that our approach outperforms
18 other state-of-the-art methods across various test datasets and
metrics, showcasing its superiority in specular highlight removal.

Overall, our contributions can be summarized as follows:

• We propose the Dual-Hybrid Attention Network for Specu-
lar Highlight Removal (DHAN-SHR), an end-to-end specu-
lar highlight removal network that introduces novel hybrid
attention mechanisms, including the Adaptive Local Hybrid-
Domain Dual Attention and the Adaptive Global Dual At-
tention. These attention mechanisms enable DHAN-SHR to
effectively and efficiently capture both spatial and spectral
information, as well as contextual relationships at differ-
ent scales, accurately removing specular highlights while
restoring underlying diffuse components.
• We compile a comprehensive benchmark dataset for specular
highlight removal by combining images from three different
datasets, resulting in 29,306 training pairs and 2,947 testing
pairs. We retrain and test 18 state-of-the-art methods on this
new benchmark, conducting a thorough comparative analy-
sis and laying a solid foundation for future advancements in
the field.
• Demonstrating through extensive experiments that DHAN-
SHR outperforms state-of-the-art methods, setting a new
standard in image enhancement and specular highlight re-
moval.

2 Related Work
Specular highlight removal is a subset of image restoration tasks
that have evolved from traditional models to learning-based ap-
proaches. Recent innovations in related image restoration tasks
include the use of frequency transforms [8–14], generative AI [15–
19], lightweight models [20–22], and memory augmentation tech-
niques [23]. Additionally, advancements have been made through
adaptations from large models [24]. The process of specular high-
light removal follows a similar trajectory.

2.1 Traditional Approaches
Traditional methods typically rely on physical models, color, or tex-
ture information to capture the relationship between diffuse reflec-
tion and specular reflection. Thesemethods utilize optical principles
and geometric relationships to derive highlight characteristics and
perform detection and removal. Early work included illumination-
based constraints [25] and color recognition [26]. Chromaticity
analysis methods were advanced by Shen et al. [27, 28], while Yang
et al. [29] and Shen et al. [30] leveraged diffuse reflection charac-
teristics. The dichromatic reflection model [1] was used by Akashi
et al. [31] and Souza et al. [32].

Additional methods include semi-automatic algorithms by Nu-
rutdinova et al. [33], the L0 criterion approach by Fu et al. [34],
high-pass filter techniques by Yamamoto et al. [35], and combined
methods for HDR image generation by Saha et al. [36]. Wen et
al. [37] used polarization information for iterative optimization in
separation strategies.

Overall, traditional methods have evolved significantly, incorpo-
rating chromaticity analysis, diffuse reflection characteristics, and
polarization to improve highlight removal.

2.2 Deep Learning-based Approaches
In recent years, learning-based methods have gained significant
attention due to their ability to learn complex relationships between
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Figure 1: The overall architecture of our proposed Dual-Hybrid Attention Network for Specular Highlight Removal (DHAN-SHR).

input images and desired outputs. These methods often employ
techniques such as Generative Adversarial Networks (GANs) [38]
and Vision Transformer (ViT) [4] to address highlight removal.

Guo et al. [39] introduced SLRR, which laid the groundwork
for subsequent deep learning-based methods, while Hou et al. [40]
combined detection and removal networks. Wu et al. [5] devel-
oped SpecularityNet using GANs and attention mechanisms, and
Fu et al. [6] proposed a multi-task network for enhanced perfor-
mance. Liang et al. [41] combined mirror separation and intrinsic
decomposition using adversarial networks.

Several other deep learning models have been developed to ad-
dress highlight removal, including Unet-Transformer [42], which
employs a highlight detection module as a mask to guide the re-
moval task, and MG-CycleGAN [43], which leverages a mask gener-
ated by removing specular highlights from unpaired data to guide
Cycle-GAN in transforming the problem into an image-to-image
translation task. TSHRNet [7] has demonstrated superior perfor-
mance in scenarios involving multiple objects and complex lighting
conditions, while SHMGAN [44] is a neural network framework ca-
pable of effectively separating specular highlight maps and mirror
distribution maps without the need for manual input labels.

Despite the advancements made by these state-of-the-art meth-
ods, they often encounter issues such as color inconsistency be-
tween highlight regions and the background, as well as the genera-
tion of unrealistic content within the highlight regions. To address
these challenges, Hu et al. [45] proposed a neural network frame-
work that effectively mitigates these problems, further pushing the
boundaries of highlight removal techniques.

In summary, the field of highlight removal has witnessed signifi-
cant progress through the development of deep learning methods.
However, there remains room for improvement in terms of color
consistency and the generation of realistic content within highlight
regions, which future research should aim to address.

3 Methodology
3.1 Overall Architecture
Figure 1 illustrates the architecture of our proposed “DHAN-SHR”,
an end-to-end, one-stage network that takes a single image with
specular highlight as input, without requiring any additional in-
formation such as highlight masks or priors. The network adopts
a U-shape encoder-bottleneck-decoder structure to apply scale-
specific feature learning methods at different levels.

The network begins by applying Adaptive Local Hybrid-Domain
Dual Attention Transformers (L-HD-DAT) to low-level, high-resolution
feature maps, capturing spatial and spectral information with two
levels of local attention. The encoder pathway progressively down-
samples the image, using Channel-Wise Contextual Attention Trans-
formers (CCAT) to capture contextual information at lower resolu-
tions. At the bottleneck, Adaptive Global Dual Attention Transform-
ers (G-DAT) capture high-level semantic features. In the decoder
pathway, the encoded features are gradually upsampled, recovering
spatial details and fine-grained information. To maintain a balance
between the encoder and decoder, we employ the same modules
used in the corresponding levels of the encoder. And By concatenat-
ing these features via skip connections, the network can effectively
combine the strengths of both pathways.

The network’s architecture, with its scale-specific feature learn-
ing methods, enables effective capture and processing of features at
different scales and semantic levels, leading to accurate and efficient
specular highlight removal.

3.2 Adaptive Local Hybrid-Domain Dual
Attention Transformer (L-HD-DAT)

The Adaptive Local Hybrid-Domain Dual Attention Transformer
(L-HD-DAT) is a crucial component of our proposed DHAN-SHR
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network, situated at the topmost position of the U-shaped archi-
tecture. Its primary objective is to process feature maps with the
highest resolution, matching that of the input image, which con-
tains the most abundant details. In the context of specular highlight
removal, accurately detecting and removing specular highlights
while restoring the corresponding diffuse visuals with consistent
texture and detailed colors is critical for achieving high-quality
results. This task is often considered the last mile in determining
the visual quality of the highlight removal process.

The L-HD-DAT employs two parallel attention mechanisms to
capture both inter-channel and inter-pixel relationships within local
windows. These attention mechanisms are implemented through
the Pixel-wise Spatial-Spectral Shifting Window Attention Trans-
former (P_SSSWAT) and the Channel-wise Spatial-Spectral Shifting
Window Attention Transformer (C_SSSWAT). To adaptively adjust
the contribution of each attention mechanism during the train-
ing process, we introduce a learnable weight coefficient 𝛼 . The
L-HD-DAT can be formulated as follows:

L-HD-DAT(F) = 𝛼 × P_SSSWAT(F) + (1 − 𝛼 ) × C_SSSWAT(F), (1)

where F represents the input features.
Both P_SSSWAT and C_SSSWAT follow the same procedure,

which can be described as:
Y = F + SSSWA(LN(F), LN(FP(F) ) ),
SSSWAT(F) = Y + FFN(LN(Y) ) . (2)

In this procedure, F denotes the input features with dimension
𝐶 × 𝐻 ×𝑊 , LN represents the LayerNorm operation, and FP is
the Frequency Processor. The Spatial-Spectral Shifting Window
Attention (SSSWA) is a key component of both P_SSSWAT and
C_SSSWAT. The Feed Forward Network (FFN) consists of three
convolutional layers that further process the attended features,
enabling the network to capture complex spatial relationships and
refine the feature representations.

3.2.1 P_SSSWA: Pixel-wise Spatial-Spectral Shifting Window At-
tention. Both P_SSSWAT and C_SSSWAT calculate intra-window
attentions twice sequentially: first on the original features and then
on the shifted features. The Pixel-wise Spatial-Spectral Shifting
Window Attention (P_SSSWA) calculation procedure is illustrated
in the lower half of Figure 1, with the first cascaded attention de-
picted in detail. The second attention calculation follows the similar
approach, differing only in the input feature maps and the apply
of an attention mask. Given input features F ∈ R𝐶×𝐻×𝑊 , we first
obtain the corresponding spectral features Fs with the same dimen-
sion 𝐶 ×𝐻 ×𝑊 using the Frequency Processor. Both Fs and F are
then partitioned into non-overlapping𝑀 ×𝑀 windows, similar to
SwinIR [3], where 𝑀 represents the window height or width (in
pixels). To ensure consistent window sizes, we pad the feature maps’
right and bottom edges with zeros before partitioning. After par-
titioning and reshaping, Fs and F have dimensions 𝐻𝑊

𝑀2 ×𝐶 ×𝑀2,
where 𝐻𝑊

𝑀2 represents the total number of windows in a single
channel.

Next, we project the spectral features Fs to Qs (query) and Ks
(key) and compute their self-attention, enabling the model to cap-
ture fine details and subtle variations that may be challenging to
discern in the spatial domain alone. The resulting spectral atten-
tion, with dimensions 𝐻𝑊

𝑀2 ×𝑀2 ×𝑀2, is then multiplied with the
spatial features F (as V (value)), allowing the model to selectively

attend to relevant spatial regions based on insights gained from the
frequency domain analysis. In short, the first cascaded Pixel-wise
Spatial-Spectral Window Attention is computed as:

P_SSSWA_1(Qs,Ks,V) = V · Softmax
(
Qs

𝑇 · Ks

𝑀

)
. (3)

By integrating information from both the spatial and spectral do-
mains, this attention mechanism enables the model to effectively
identify and remove specular highlights while preserving the un-
derlying surface details, resulting in improved specular highlight
removal performance.

Before the partition-reversed output features of P_SSSWA_1 are
cascadedly input to the second attention block of P_SSSWAT, we
perform a cyclic shift on the pixels of each feature map by 𝑠 pixels
in both horizontal and vertical directions, to cover the areas on the
boundaries of the windows from the first partition. This shifting
rule is illustrated using four color blocks in Figure 2. Unlike Swin
Transformer’s [2] patch-based window partition rules, we directly
partition the windows on the pixels themselves. This pixel-level
window partitioning allows the window-based attention mecha-
nism to reflect more detailed textures, as it operates on the raw
pixel values rather than on abstracted patches.

We then partition and reshape the shifted features Fsh ∈ R𝐶×𝐻×𝑊
into dimensions 𝐻𝑊

𝑀2 ×𝐶 ×𝑀2, similar to the previous attention
block, and project it to obtain Qsh, Ksh and Vsh with the same di-
mension 𝐻𝑊

𝑀2 ×𝐶 ×𝑀2. The self-attention of the shifted window
is calculated by:

P_SSSWA_2(Qsh,Ksh,Vsh ) = Vsh · Softmax
(
Qsh

𝑇 · Ksh
𝑀

+Mask
)
. (4)

In addition to the different input features, the second cascaded
attention differs in the inclusion of an attention mask used to dis-
tinguish pixels that were originally not adjacent but are now in the
same window due to the cyclic shifting. This can be observed on the
right and bottom sides of the shifted features in Figure 2. The mask
has the same size as the input shifted feature maps Fsh, ensuring a
one-to-one position correspondence. We assign a value of 0 to the
positions in the windows where the pixels were originally adjacent,
and a value of −100 to the positions in the windows where the
pixels were originally not adjacent. Figure 2 provides an intuitive
understanding of these mask values. By adding this mask to the
self-attention of Qsh and Ksh, the model maintains the relationship
between originally adjacent pixels while suppressing the influence
of pixels that are only adjacent due to cyclic shifting.
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Figure 2: Illustration of the window shifting approach and the
attention mask applied to the pixel-wise shifting window attention.

Since the attention computation is limited to non-overlapping
windows, it significantly reduces the computational complexity
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compared to traditional self-attention mechanisms that consider
the entire image. In traditional approaches, the computational com-
plexity is usually quadratic relative to the image size, and the com-
putational cost is especially tremendous for high-resolution feature
maps. However, for one calculation of intra-window pixel-wise
attention with input features of dimension 𝐶 ×𝐻 ×𝑊 and a win-
dow size of 𝑀 ×𝑀 , the approximate number of operations, such
as element-wise multiplication and addition, is (𝐻𝑊 )𝑀2 (2𝐶 − 1) +
(𝐻𝑊 )𝐶 (2𝑀2−1). Since both M and C are constants, it means it has
a linear computational complexity with respect to the image size.
So the intra-window pixel attention not only helps to concentrate
on local fine details but also offers computational efficiency.

3.2.2 C_SSSWA: Channel-wise Spatial-Spectral Shifting Window
Attention. The working process of the C_SSSWA is similar to the
previously described P_SSSWA. However, the main difference lies
in the inter-channel window range attention calculation approach,
which differs from P_SSSWA’s inter-pixel counterpart. The input
features remain the same, with F ∈ R𝐶×𝐻×𝑊 representing the
spatial domain features and Fs ∈ R𝐶×𝐻×𝑊 representing the corre-
sponding spectral domain feature maps.

Following the same procedure as P_SSSWA, we perform window
partitioning, reshaping, and projection of F and Fs to obtain the
corresponding window-based features Qs, Ks, V in the same dimen-
sion 𝐻𝑊

𝑀2 ×𝐶 ×𝑀2. The first attention block, which hybridizes the
spectral and spatial domain features, is calculated as:

C_SSSWA_1(Qs,Ks,V) = Softmax
(
Qs · Ks

𝑇

𝜏

)
· V, (5)

where 𝜏 acts as a learnable temperature parameter that modulates
the magnitude of the dot product. The attention result of Ks to Qs
has a dimension of 𝐻𝑊

𝑀2 ×𝐶 ×𝐶 , representing the interrelationships
between the C channels for each window among the total 𝐻𝑊

𝑀2

windows.
In the next step, we reverse the result of equation (5) withwindow

partitioned dimension 𝐻𝑊
𝑀2 ×𝐶×𝑀2 back to the input feature maps’

dimension𝐶×𝐻 ×𝑊 . After shifting the feature maps by 𝑠 pixels, we
partition, reshape, and project the new window-based features as
Qsh, Ksh, and Vsh for the second attention block, which is similar to
P_SSSWA in employing shifted windows to capture dependencies
across window boundaries, as shown in equation (6). However,
unlike P_SSSWA, we do not use an attention mask as in equation (4).
This is because when calculating the inter-channel relationships, we
multiply the pixels that are in aligned positions within the window
and then add them together. Therefore, the computation is not
dependent on the pixels’ positional relationships.

C_SSSWA_2(Qsh,Ksh,Vsh ) = Softmax
(
Qsh · Ksh

𝑇

𝜏

)
· Vsh, (6)

where Qsh,Ksh,Vsh ∈ 𝐻𝑊
𝑀2 ×𝐶 ×𝑀2, and 𝜏 is still a learnable tem-

perature parameter. The computational complexity of both equation
(5) and equation (6) is approximately 4𝐶2 (𝐻𝑊 ), which is linearly
related to the size of the image 𝐻 ×𝑊 .

3.2.3 Frequency Processor. The Frequency Processor employed
in both P_SSSWAT and C_SSSWAT generates feature maps that
have undergone transforms to the frequency domain, as shown
in Algorithm 1. First, we compute the discrete Fourier transform
of the input feature maps. Then, a shallow convolution and GeLU

Algorithm 1 Frequency Processor
Require: F (input features)
Ensure: Fs (frequency processed features)
1: Apply convolution: identity1 ← 𝐶𝑜𝑛𝑣2𝑑1×1 (F)
2: Apply convolution: identity2 ← 𝐶𝑜𝑛𝑣2𝑑1×1 (F)
3: Compute FFT of F and keep the real part: Ffft ← FFT(F, dim =

(−2,−1)) .real
4: Apply convolution to Ffft: Ffft ← GELU(𝐶𝑜𝑛𝑣2𝑑1×1 (Ffft))
5: Pass through MLP layers: Ffft ← MLPs(Ffft)
6: Compute inverse FFT: Fifft ← IFFT(Ffft, dim = (−2,−1)) .real
7: Add residual connection: Fs ← Fifft + identity2
8: Apply toning: Fs ← Toning(Concat( [Fs, identity1], dim = 1))

activation are applied to the frequency features to introduce non-
linearity and enhance the expressiveness of the frequency-domain
representations. Before executing the inverse Fourier Transform,
MLP layers are applied to the frequency-domain features to adapt
and refine the spectral representations, capturing more accurate
and contextually relevant frequency-domain information essential
for reconstructing the diffuse visuals.

To provide conditional guidance during the spectral features’
training process, we obtain two identities of the input spatial fea-
tures, which are then added and concatenated, respectively, to the
inverse Fourier Transform of the spectral features. Finally, a toning
operation is applied to the spectral features, which removes the
phase information and focuses on the magnitude-based spectral
features, helping to suppress noise and outliers while emphasizing
relevant frequency ranges for accurate and coherent diffuse visual
reconstruction.

3.3 Channel-Wise Contextual Attention
Transformer (CCAT)

The Channel-Wise Contextual Attention Transformers (CCAT)
scale up its concentrated grain compared to L-HD-DAT by their
strategic deployment within both the encoder pathway, which pro-
gressively downsamples, and the decoder pathway, which con-
versely upsamples. This positioning allows CCAT to operate on
feature maps that possess a higher semantic level than the original
input image. To effectively address the challenge of contextual infor-
mation extraction across channels, CCAT incorporates an attention
mechanism that is meticulously designed to weigh the significance
of each channel based on its contextual relationship with others.
This is achieved through a multi-headed self-attention module as
equation (7) that operates on the channel dimension, enabling the
network to dynamically adjust the emphasis on different channels
according to their contextual relevance.

CCA(Q̂, K̂, V̂) = Softmax
©«
Q̂ · K̂𝑇√︃
𝐶/ℎ

ª®®¬ · V̂. (7)

Here, Q̂, K̂ and V̂ denote the projections of the feature maps F̂ ∈
R𝐶×�̂�×�̂� , which are adjusted to 1/2 or 1/4 the resolution of the
original input image to correspond to different scale levels within
the U-shaped architecture. These projections are then reshaped to
a dimension of ℎ × (𝐶/ℎ) × (�̂��̂� ), where ℎ denotes the number
of attention heads. The paralleled attention heads make CCAT
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Figure 3: Visual comparative analysis of our method against leading SOTA approaches, highlighting our superior ability to remove specular
highlights while preserving the original image’s color tone, structure, and crucial details, such as text clarity on reflective surfaces.

capable of capturing different aspects of inter-channel relationships.
This diversity allows for a more comprehensive understanding
of the feature maps, enhancing the network’s ability to discern
and emphasize the most relevant features for specular highlight
removal.

3.4 Adaptive Global Dual Attention
Transformer (G-DAT)

Adaptive Global Dual Attention Transformers (G-DAT) are de-
ployed at the bottleneck between the encoder and decoder. Given
the higher semantic level at this stage, the information each pixel
carries is more abstract and globally contextual than at any other
layer in the network. In response to this heightened level of abstrac-
tion, we have devised parallel dual attention mechanisms. These are
designed to concurrently grasp the intricate inter-channel and inter-
pixel dependencies on a global scale, as depicted in the following
equation:

G-DAT(F̂) = 𝛽 × CCAT(F̂) + (1 − 𝛽 ) × PSAT(F̂) . (8)

Here, the considerable reduction in the size of each feature map F̂
due to multiple downsampling stages implies that even the Pixel-
wise Self-Attention Transformer (PSAT), which directs attention
on a global scale, does not impose a significant computational load.

The operational methodology of PSAT is akin to that detailed in
Equation (3); however, unlike the attention in Equation (3) which is
confinedwithin a specificwindow, PSAT expands its focus to cover a
global range. Additionally, since the input to the bottleneck module
lacks certain visual details, we do not incorporate spectral domain
elements in PSAT. This approach ensures that the computational
demand is directly proportional to the spatial dimensions of each
feature map, maintaining linear computational efficiency.

3.5 Objective Function
To optimize the performance of our specular highlight removal
methodology, our goal is to align the output as closely as possible
with the ground truth diffuse images. This entails not only achiev-
ing pixel-level accuracy but also preserving key image attributes
such as luminance, contrast, and structure. To accomplish this, we
introduce a composite objective function that integrates both Mean
Squared Error Loss (L𝑓 ), which accounts for pixel-level fidelity, and
Structural Similarity Loss (L𝑠 ), focusing on maintaining structural
integrity. The formulation of our overall objective function is as
follows:

L = 𝑤1 · L𝑓 + 𝑤2 · L𝑠 , (9)

where 𝑤1 and 𝑤2 have been empirically set to 1 and 0.4, respec-
tively.
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We incorporate the Structural Similarity Index Measure (SSIM),
as proposed by Wang et al. [46], into the structural similarity com-
ponent L𝑠 of our objective function, as delineated below:

L𝑠 = 1 − (2𝜇𝐷𝜇𝐺 +𝐶1 ) (2𝜎𝐷𝐺 +𝐶2 )
(𝜇2

𝐷
+ 𝜇2

𝐺
+𝐶1 ) (𝜎2

𝐷
+ 𝜎2

𝐺
+𝐶2 )

, (10)

where 𝜇𝐷 and 𝜇𝐺 represent the average pixel values of the output
diffuse image D and the target ground truth image G, 𝜎2

𝐷
and 𝜎2

𝐺
are

the variances of images D and G, ad 𝜎𝐷𝐺 is the covariance between
D and G.𝐶1 and𝐶2 are constants to stabilize the division with weak
denominators.

4 Experiments
4.1 Benchmark
In the pursuit of advancing the real-world applicability of Specular
Highlight Removal (SHR) networks, the utilization of real-world
datasets is crucial. To date, the PSD [5] dataset stands out as the
only comprehensive collection across various objects where both
highlight samples and their corresponding diffuse ground truths
are captured in real-world scenarios. However, PSD’s limitation
lies in its repetition of scenes across different polarization angles,
reducing sample diversity despite having nearly 10000 pairs. To
overcome the limitations of dataset size and enhance the robustness
of deep learning methods for SHR, we propose the creation of a
hybrid benchmark. This benchmark amalgamates real-world sam-
ples with synthetically generated samples that adhere to optical
principles, offering a balanced and comprehensive training and
testing environment.

Our hybrid benchmark encompasses data from three distinct
datasets: PSD [5], SHIQ [6], and SSHR [7], each serving a different
purpose. The PSD dataset provides real-world photographs of both
specular and diffuse samples, making it a valuable resource for
realistic training. Contrastingly, SHIQ’s real-world specular sam-
ples are paired with diffuse images created via the RPCA method
[47], once state-of-the-art. Despite possibly no longer being the
leading technique, its use enriches training diversity, highlighting
its ongoing relevance. Meanwhile, the SSHR dataset offers a fully
synthetic collection, created with open-source rendering software,
adding a valuable dimension of diversity. For training, we selected
9481 pairs from PSD, 9825 pairs from SHIQ, and a random subset
of 10000 pairs from SSHR. For testing, we used the official dataset
splits for the PSD and SHIQ datasets (947 pairs for PSD and 1,000
pairs for SHIQ). However, due to the large size of the SSHR test split
(18,000 samples), a random subset of 1,000 samples was selected
to ensure dataset size parity with PSD and SHIQ. This selection
strategy guarantees a diverse and balanced collection of samples
for both the training and testing phases, ensuring robustness.

To our knowledge, this is the first instance where a hybrid bench-
mark combining multiple datasets has been employed for SHR. This
approach not only enriches the training and testing environment
but also sets a new standard for future research in the field, po-
tentially enhancing the performance and generalizability of SHR
methods across a wider range of real-world and synthetic scenarios.

Table 1: The quantitative comparison results, arranging traditional
methods in the upper section and learning-based approaches below.
The highest-performing results are emphasized in bold, while the
second-best are underscored.

Method PSD (947images) SHIQ (1000images) SSHR (1000images)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Tan [26] 5.44 0.218 0.746 5.47 0.483 0.823 10.87 0.778 0.357
Yoon [48] 16.09 0.498 0.325 19.34 0.679 0.471 28.47 0.916 0.094
Shen [27] 19.56 0.666 0.238 24.77 0.890 0.200 24.53 0.896 0.101
Shen [28] 21.33 0.753 0.142 27.30 0.917 0.102 24.00 0.891 0.094
Yang [29] 4.74 0.250 0.893 5.31 0.556 0.837 10.72 0.781 0.358
Shen [30] 11.51 0.324 0.360 12.24 0.491 0.473 27.13 0.914 0.077
Akashi [31] 17.48 0.565 0.334 21.78 0.700 0.460 29.46 0.924 0.076
Huo [49] 20.16 0.767 0.182 23.80 0.909 0.154 18.62 0.804 0.281
Fu [34] 15.24 0.688 0.146 16.40 0.724 0.306 26.15 0.910 0.076
Yamamoto [35] 18.37 0.541 0.274 25.49 0.858 0.201 26.95 0.902 0.094
Saha [36] 15.98 0.455 0.314 22.05 0.832 0.287 23.38 0.886 0.110
SLRR [39] 13.25 0.571 0.235 14.74 0.724 0.283 26.16 0.916 0.060
JSHDR*[6] 22.78 0.811 0.089 37.97 0.980 0.034 26.43 0.301 0.059
SpecularityNet [5] 23.58 0.838 0.085 30.92 0.963 0.058 31.07 0.941 0.041
MG-CycleGAN [43] 22.12 0.815 0.085 26.80 0.935 0.091 28.40 0.874 0.092
Wu [42] 23.93 0.863 0.062 31.57 0.965 0.059 33.45 0.951 0.028
TSHRNet [7] 23.30 0.826 0.097 34.57 0.972 0.044 33.32 0.950 0.036
AHA [45] 20.79 0.845 0.084 21.42 0.903 0.165 31.57 0.944 0.035
Ours 25.28 0.883 0.049 33.81 0.975 0.039 36.48 0.964 0.023
* JSHDR’s source code is not publicly available; the results are obtained from an executable file provided
by its authors.

4.2 Evaluation Metrics
In our study, we utilize a suite of full-reference evaluation metrics to
assess performance, including Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [46], and Learned Perceptual
Image Patch Similarity (LPIPS) [50]. For PSNR and SSIM, higher
scores denote better performance, indicating a greater similarity
between the generated images and the ground truth. On the other
hand, a lower score in LPIPS suggests enhanced visual quality, as
this metric measures the perceptual similarity between generated
and reference images in a way that is more aligned with human
visual perception.

4.3 Implementation Details
Our model is implemented using PyTorch and trained using the
Adam optimizer with default parameters on NVIDIA H800 GPU.
We employ standard settings for the Adam optimization algorithm,
utilizing a batch size of 8 and training for 100 epochs, starting with
an initial learning rate of 2𝑒 − 4 and progressively diminishing it to
1𝑒 − 6. To enhance the robustness and generalizability of our model,
we incorporate a comprehensive set of data augmentation tech-
niques. These augmentations include random cropping of images,
resizing, horizontal and vertical flipping, and the application of the
mixup strategy to generate composite images from the original
data, thereby exposing the model to a diverse range of variations
and improving its ability to handle different data effectively.

4.4 Comparisons with State-of-the-Art Methods
To conduct a thorough evaluation of our Specular Highlight Re-
moval (SHR) method relative to the current state-of-the-art, we
compared our model against a total of 18 representative SHR tech-
niques, which comprise both 11 traditional and 7 learning-based
approaches. For the traditional methods, we processed the test
samples directly to obtain their output results. To guarantee a fair
comparison, we retrained all the learning-based models on the same
benchmark dataset compiled for our study. During this retraining
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process, we adhered to the training settings (loss, iterations, hyper-
parameters, etc.) as specified in the original publications of each
method.

4.4.1 Quantitative Comparison. Table 1 showcases the quantitative
performance of various specular highlight removal methods across
three datasets, utilizing three distinct evaluationmetrics. Ourmodel,
DHAN-SHR, demonstrates superior performance overall, with the
sole exception being the results of JSHDR [6] on the SHIQ dataset,
which was released in conjunction with JSHDR. It’s important to
note, however, that JSHDR’s source code is not publicly available;
our analysis is based on results obtained from an executable file
provided by its authors. This limitation means we couldn’t retrain
JSHDR under the same conditions as other methods, diminishing
the comparative value of its performance on the SHIQ dataset.
Notably, JSHDR shows significantly lower performance on both
the PSD and SSHR datasets compared to DHAN-SHR, with the gap
being particularly pronounced outside the SHIQ dataset.

The performance of our DHAN-SHR model on the PSD and
SSHR datasets outpaces other methods by a considerable margin,
especially highlighting its exceptional performance on the PSD
dataset. This dataset, known for its real-world, high-resolution
images, underlines the adaptability and effectiveness of our model
in real-world application scenarios, suggesting DHAN-SHR’s robust
capability in addressing specular highlight removal across diverse
conditions.

4.4.2 Qualitative Comparison. The visual comparisons between
our DHAN-SHR and SOTA methods, which include the top 2 tradi-
tional and top 3 deep learning methods based on average metric
data in Table 1, are illustrated in Figures 3. For optimal clarity, it is
recommended to zoom in.

Observations from Figure 3 reveal that our method excels not
only in removing specular highlights effectively—surpassing even
the reference ground truth in the third row—but also in preserving
the original tone and consistent color of the entire image. Remark-
ably, it maintains the detail in diffuse areas and restores clarity to
details previously obscured by reflections. In contrast, the methods
we compared often fail to fully eliminate highlights, sometimes
resulting in black spots within the treated areas. More problematic
are the visual effects noted in the fourth row, where these methods
disrupt the image’s original structure and details, leading to poor
visual outcomes. Furthermore, in the fifth row, while competing
methods tend to erase or blur text on the car’s rear window, our
approach successfully retains and sharpens these details.

4.5 Ablation Studies
To assess the efficacy of our model’s integral features, ablation
studies were executed, utilizing the averaged metrics from the PSD,
SHIQ, and SSHR test sets to ensure a robust evaluation. To better
understand the cumulative effect of adding modules and their inter-
action, we constructed the model starting from a backbone UNet
with the same down-sample depth, overall architecture, and num-
ber of modules as our full model. Importantly, the total parameter
count of the starting backbone UNet is 4.635M, which is more than
our full model’s 4.533M. This ensures that the effectiveness of our
method is not solely due to an increase in parameter count. When

Table 2: Ablation results.

U-Net P_SSSWAT C_SSSWAT FP CCAT PSAT PSNR↑ SSIM↑ LPIPS↓
Ë 29.79 0.930 0.048
Ë Ë 30.95 0.933 0.043
Ë Ë Ë 31.48 0.935 0.041
Ë Ë 30.30 0.932 0.044
Ë Ë 30.36 0.931 0.045
Ë Ë Ë 30.54 0.931 0.044
Ë Ë Ë Ë 30.77 0.933 0.044
Ë Ë Ë Ë Ë Ë 31.86 0.940 0.037

adding modules to the backbone, we simply replaced the original
UNet module with our module at the corresponding position.

The summarized findings, detailed in Table 2, underscore our full
model’s superiority. Specifically, P_SWAT and C_SWAT correspond
to Pixel-wise and Channel-wise Shifting Window Attention Trans-
former, respectively. When we add the Frequency Processor (FP) to
them, they evolve into the Pixel-wise Spatial-Spectral Shifting Win-
dow Attention Transformer (P_SSSWAT) and Channel-wise Spatial-
Spectral Shifting Window Attention Transformer (C_SSSWAT),
respectively. CCAT (Channel-Wise Contextual Attention Trans-
former) is the basic component in the downsampled encoding and
decoding layers. Additionally, we combine CCAT and PSAT (Pixel-
wise Self-Attention Transformer) in the bottleneck to create the
Adaptive Global Dual Attention Transformer (G-DAT).

From Table 2, we observe that CCATs, which appear most fre-
quently, contribute the most improvements (3.89% PSNR) compared
to the backbone UNet. Cooperating PSAT with CCAT in the bottle-
neck captures an additional 1.78% PSNR improvement, indicating
that pixel-level and channel-level global attention can compen-
sate for each other and achieve significant progress. When using
P_SWAT and C_SWAT separately in the top level of the U-shape, we
obtain 1.71% and 1.91% improvements, respectively, demonstrating
their individual effectiveness. Their combined 2.52% improvement
further highlights their combinational strength. Importantly, in-
corporating the Frequency Processor (FP) into the pure spatial
domain architecture results in a 3.29% improvement, emphasizing
the benefits of hybrid attention that combines spectral and spa-
tial information. Our full model successfully integrates all these
individual components, achieving superior metric results. The abla-
tion study affirms the importance of combining these elements for
optimal specular highlight removal performance.

5 Conclusion
In this study, we introduce the Dual-Hybrid Attention Network for
Specular Highlight Removal (DHAN-SHR), a novel approach that
effectively addresses the challenge of specular highlight removal
in multimedia applications. DHAN-SHR leverages novel adaptive
hybrid attention mechanisms, excelling at capturing both local and
global dependencies, and at the same time, incorporating spectral
domain features to effectively model complex interactions between
specular highlights and surface properties. We assembled an ex-
tensive benchmark dataset combining images from three different
highlight removal datasets. Experimental results demonstrate that
DHAN-SHR outperforms 18 state-of-the-art methods across various
test datasets, both quantitatively and qualitatively.
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