
Supplementary Materials: Dual-Hybrid Attention Network for
Specular Highlight Removal

Xiaojiao Guo∗†
University of Macau

Macau, China
yc27441@um.edu.mo

Xuhang Chen∗‡§
Huizhou University
Huizhou, China

xuhangc@hzu.edu.cn

Shenghong Luo
University of Macau

Macau, China
ykd823332077@gmail.com

Shuqiang Wang¶
Shenzhen Institute of Advanced
Technology, Chinese Academy of

Sciences
Shenzhen, China

sq.wang@siat.ac.cn

Chi-Man Pun¶
University of Macau

Macau, China
cmpun@umac.mo

1 Computational Cost
The computational cost comparison of our methods with those
of other deep learning techniques is shown in Table 1. Although
the multiple attention mechanisms and U-shaped architecture of
our model result in longer training and inference times, our model
remains computationally efficient compared to other deep learning
methods.

2 Supplementary Description of the Dataset
For the PSD and SHIQ datasets, the official dataset splits were used.
However, due to the large size of the SSHR test split (18,000 samples),
a random subset of 1,000 samples was selected to maintain dataset
size parity with PSD (947 samples) and SHIQ (1,000 samples) and
mitigate potential bias. This sampling strategy does not impact the
evaluation results, as evidenced by the minimal deviation observed
between the results obtained using the selected subset and the
complete SSHR test set, as shown in Table 2.

3 Full Comparisons
Figure 1, 2, 3, and 4 provide a comprehensive visual comparison of
all the methods discussed in the main paper, offering a more exten-
sive performance evaluation. Overall, our method surpasses both
traditional and deep learning specular highlight removal methods,
excelling not only in effective highlight removal but also in the
visual quality.

4 User Study
Although metrics such as Naturalness Image Quality Evaluator
(NIQE) offers valuable insights into the visual quality of images,
there remains a lack of unreferenced metrics specifically designed
to evaluate the results of highlight removal. To address this gap
and further validate the effectiveness of our DHAN-SHR in prac-
tical applications, we conducted a user study. This study aims to
assess the perceptual quality of images processed by our method in
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Table 1: Computational cost for deep learning methods. The batch
size for evaluating the training time per iteration is uniformly set
to 2.

Method MACs(G)↓ Params(M)↓ Infer Time(ms)↓ Train Time(ms/iter)↓
SpecularityNet 212.87 17.00 18.33 99.02
MG-CycleGAN 178.07 12.78 115.13 213.24
Unet-Transformer 101.63 53.39 15.45 72.59
TSHRNet 72.76 116.99 12.00 35.90
AHA 92.40 35.86 11.26 56.07
Ours 65.69 4.53 43.82 119.84

Table 2: Metric comparison: official SSHR test split vs. randomly
selected 1,000-group subset.

Method SSHR(Subset) SSHR(Full) PSNR
DeviationPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Tan et al. 10.87 0.778 0.357 10.78 0.775 0.359 0.82%
Yoon et al. 28.47 0.916 0.094 28.32 0.914 0.094 0.52%
Shen et al. 24.53 0.896 0.101 24.59 0.895 0.100 0.26%
Shen et al. 24.00 0.891 0.094 24.28 0.892 0.092 1.16%
Yang et al. 10.72 0.781 0.358 10.64 0.778 0.360 0.72%
Shen et al. 27.13 0.914 0.077 27.20 0.913 0.077 0.25%
Akashi et al. 29.46 0.924 0.076 29.48 0.923 0.076 0.04%
Huo et al. 18.62 0.804 0.281 18.59 0.802 0.280 0.17%
Fu et al. 26.15 0.910 0.076 26.25 0.909 0.076 0.41%
Yamamoto et al. 26.95 0.902 0.094 27.04 0.902 0.093 0.31%
Saha et al. 23.38 0.886 0.110 23.48 0.886 0.108 0.45%
SLRR 26.16 0.916 0.060 26.34 0.916 0.059 0.67%
JSHDR 26.43 0.301 0.059 26.60 0.304 0.058 0.66%
SpecularityNet 31.07 0.941 0.041 30.92 0.940 0.042 0.47%
MG-CycleGAN 28.40 0.874 0.092 28.24 0.872 0.092 0.58%
Unet-Transformer 33.45 0.951 0.028 33.27 0.949 0.029 0.55%
TSHRNet 33.32 0.950 0.036 33.14 0.948 0.036 0.55%
AHA 31.57 0.944 0.035 31.61 0.943 0.036 0.12%
Ours 36.48 0.964 0.023 36.29 0.962 0.024 0.52%

comparison to other state-of-the-art techniques. It focuses not only
on evaluating the effectiveness of highlight removal but also on the
overall quality of the output images, providing a comprehensive
analysis of our method’s performance.

Observing that deep learning methods significantly outperform
traditional approaches, we limited participant evaluation to our
method versus seven other learning-based methods to maintain the
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focus and reduce the burden on our study participants. We invited
20 participants to evaluate the visual quality of highlight removal
images. To ensure a comprehensive assessment, we randomly se-
lected 10 images from each of the three test sets (PSD, SHIQ, and
SSHR), resulting in a total of 240 images for evaluation.

We have meticulously prepared the user study form, as shown
on the last page, in a Word document format and ensuring that
there is no compression of the images. The images were organized
into groups, each consisting of one original input image with spec-
ular highlights and eight corresponding highlight removal results,
including our method and the seven other learning-based methods.
The methods were anonymized to prevent bias, and the order of
the methods within each group was randomized.

Participants were provided with a scoring table for each group of
images, where they rated the eight methods based on the following
criteria:

(1) Highlight Reflection Area Detection Ability: Assessing
the effectiveness and accuracy of detecting highlight areas.

(2) Highlight Removal Effect: Evaluating the naturalness of
highlight removal and the absence of color distortion.

(3) Texture Restoration Level: Assessing the consistency of
texture in the highlight-removed area with nearby regions.

(4) Diffuse Area Visual Quality: Evaluating whether the dif-
fuse areas were altered.

The scoring scale ranged from 1 (worst) to 5 (best), allowing
participants to capture a spectrum of perceptible quality levels in
the highlight removal results:

• 1 (Poor): The image significantly falls short in the specific
criterion, marked by noticeable issues or distortions.

• 2 (Fair): The image, despite visible flaws, exhibits some ele-
ments of acceptable quality.

• 3 (Average): The image is satisfactory overall, with most
elements adequately processed.

• 4 (Good): The image is well-processed, presenting onlyminor
imperfections.

• 5 (Excellent): The image excels in the criterion, demonstrat-
ing exceptional quality.

Participants were instructed to assign a score for each crite-
rion independently, ensuring a thorough evaluation of the various
aspects of highlight removal. During the evaluation process, par-
ticipants were able to zoom in on the images for a more detailed
examination. For each de-highlighted image, we presented the orig-
inal alongside the outputs from the eight methods, anonymizing
the method names to prevent bias.

The final score for each image was determined by calculating
the mean of the scores across the four criteria, with each criterion
being equally weighted. This approach ensured a balanced and com-
prehensive assessment of each highlight removal result’s overall
quality. Table 3 presents the final user study scores, illustrating that
our method consistently achieves the highest average score across
all three test sets.

5 Performance in Videos
To validate our model’s performance in video processing, we tested
it on self-captured videos and those downloaded from the Internet.
The results demonstrate that ourmodel effectively removes specular

Table 3: Comparison of user study scores with seven learning-
based methods. The highest-scored results are highlighted
in bold, while the second-best are underlined for emphasis.

Method PSD SHIQ SSHR
SLRR [22] 1.65 1.83 3.09
JSHDR [6] 3.64 4.8 3.06
SpecularityNet [5] 3.95 3.96 3.72
MG-CycleGAN [26] 3.26 3.21 2.46
Wu [25] 3.65 3.95 4.25
TSHRNet [7] 3.95 4.53 3.79
AHA [28] 3.03 2.38 4.09
Ours 4.41 4.92 4.77

highlights from videos. We have included three sample videos in
the "videos" folder to showcase the impressive specular highlight
removal effects achieved by our model.
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Figure 1: Comprehensive visual comparison. (a) Input specular highlight image, (b) Tan [10], (c) Yoon [31], (d) Shen [11], (e) Shen [12], (f) Yang
[13], (g) Shen [14], (h) Akashi [15], (i) Huo [32], (j) Fu [18], (k) Yamamoto [19], (l) Saha [20], (m) SLRR [22], (n) JSHDR [6], (o) SpecularityNet [5],
(p) MG-CycleGAN [26], (q) Wu [25], (r) TSHRNet [7], (s) AHA [28], (t) Ours, (u) GT diffuse image. The reader is encouraged to zoom-in.
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Figure 2: Comprehensive visual comparison. (a) Input specular highlight image, (b) Tan [10], (c) Yoon [31], (d) Shen [11], (e) Shen [12], (f) Yang
[13], (g) Shen [14], (h) Akashi [15], (i) Huo [32], (j) Fu [18], (k) Yamamoto [19], (l) Saha [20], (m) SLRR [22], (n) JSHDR [6], (o) SpecularityNet [5],
(p) MG-CycleGAN [26], (q) Wu [25], (r) TSHRNet [7], (s) AHA [28], (t) Ours, (u) GT diffuse image. The reader is encouraged to zoom-in.
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Figure 3: Comprehensive visual comparison. (a) Input specular highlight image, (b) Tan [10], (c) Yoon [31], (d) Shen [11], (e) Shen [12], (f) Yang
[13], (g) Shen [14], (h) Akashi [15], (i) Huo [32], (j) Fu [18], (k) Yamamoto [19], (l) Saha [20], (m) SLRR [22], (n) JSHDR [6], (o) SpecularityNet [5],
(p) MG-CycleGAN [26], (q) Wu [25], (r) TSHRNet [7], (s) AHA [28], (t) Ours, (u) GT diffuse image. The reader is encouraged to zoom-in.
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Figure 4: Comprehensive visual comparison. (a) Input specular highlight image, (b) Tan [10], (c) Yoon [31], (d) Shen [11], (e) Shen [12], (f) Yang
[13], (g) Shen [14], (h) Akashi [15], (i) Huo [32], (j) Fu [18], (k) Yamamoto [19], (l) Saha [20], (m) SLRR [22], (n) JSHDR [6], (o) SpecularityNet [5],
(p) MG-CycleGAN [26], (q) Wu [25], (r) TSHRNet [7], (s) AHA [28], (t) Ours, (u) GT diffuse image. The reader is encouraged to zoom-in.
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Specular Highlight Removal Methods Evaluation Form

Purpose: This study aims to assess the effectiveness of various specular highlight removal methods. Your feedback will help improve the
quality of specular highlight removal techniques.

Instructions:
• You will see an original image with specular highlights followed by its processed versions.
• Please rate each processed image based on the criteria provided.
• Use the scale from 1 (Poor) to 5 (Excellent) for your rating.

Evaluation Criteria:
(1) Highlight Reflection Area Detection Ability: Assessing the effectiveness and accuracy of detecting highlight areas.
(2) Highlight Removal Effect: Evaluating the naturalness of highlight removal and the absence of color distortion.
(3) Texture Restoration Level: Assessing the consistency of texture in the highlight-removed area with nearby regions.
(4) Diffuse Area Visual Quality: Evaluating whether the diffusion areas were altered.

Image Evaluation: (**Below is a demonstration of one group of images to serve as an example for the evaluation process.)

Input

Method 1 Method 2 Method 3 Method 4

Method 5 Method 6 Method 7 Method 8

Method 1 2 3 4 5 6 7 8
Highlight Detection Ability
Highlight Removal Effect
Texture Restoration Level
Diffuse Area Visual Quality

Groups 2 to 30 have been omitted in this section for brevity.

Thank You Note: Thank you for your participation. Your insights are invaluable to us.
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