
Appendices of:

Fitting summary statistics of neural data with a
differentiable spiking network simulator

A Datasets

V1-dataset The dataset we used was collected by Smith and Kohn [49] and is publicly available at:
http://crcns.org/data-sets/vc/pvc-11. In summary, macaque monkeys were anesthetized with Utah arrays placed
in the primary visual cortex (V1). In our analysis, we considered population spiking activity of monkey-I in
response to a gray-scale natural movie. The movie is about a monkey wading through water. It lasts for 30
seconds (with sampling rate 25Hz) and was played repeatedly for 120 times. Similarly as in [21], we used the last
26 seconds of the movies and recordings. Each frame of the movie has 320× 320 pixels and we downsampled
them to 27× 27 pixels. We used the recording from the 69 neurons with time bins 40ms and considered that
there cannot be more than one spike per bin (5% of the time bins had more than one spike).

Synthetic dataset Two target networks are trained using the V1-dataset: one with no hidden neuron and one
with 431 hidden neurons which makes 500 neurons in total. To build the target network without hidden neurons,
we fitted a network with the loss function LMLE+PSTH+NC . For the target network with hidden neurons, we
train a network using LMLE+SM−h+PSTH+NC .

Retina dataset The data we used were the same as [14] and was initially published in [9]. It was generously
shared with us privately. It contained recorded spike trains for 25 OFF Alpha retinal ganglion cells’ in the form
of binarized spike counts in 1.667ms bins. There were two stimulus conditions. For the checkerboard, the
unrepeated movie (1080s) plus one repeated movie (600s in total for 120 repetitions) were used for training
and the other repeated movie (480s in total for 120 repetitions) were used for testing. For the moving bar, the
unrepeated movie (1800s) plus one repeated movie (166s in total for 50 repetitions) were used for training and
the other repeated movie (322s in total for 50 repetitions) were used for testing.

B Simulation details

For the V1- and synthetic datasets The model combines a spatio-temporal CNN and an RSNN. Input to
the CNN consists of 10 consecutive movie frames. The CNN has 2 hidden layers and its output is fed into the
RSNN. To feed the images to the CNN the 10 gray-scaled images are concatenated on the channel dimension.
The two hidden layers include convolution with 16 and 32 filters, size 7 by 7 (with padding) followed by a ReLU
activation function and then a MaxPool layer with kernel size 3 and stride 2 as in [50]. The weights from the
CNN to the RSNN are initialized with a truncated normal distribution with standard deviation 1√

nin
where nin

in the number of inputs in the weight matrix. The tensor of recurrent weights W consider spike history of last 9
frames (dmax) and the weight distribution is initialized as a truncated normal distribution with standard deviation

1√
dmaxnH+V

. The bias b is initialized with zero. The voltage threshold vthr is set to 0.4 and the dampening

factor γ is 0.3. We used an Adam optimizer. More hyper-parameters like learning rates are given in Table S2
and Table S3. To implement the loss LMLE+PSTH+NC , we process the CNN once and simulate the RSNN
twice. Once the RSNN is clamped to the recorded spikes to compute LMLE or LELBO , the second time the
sample and generated "freely" to compute LPSTH and LNC .

For the retina dataset experiment Since the time step is much smaller for the Retina dataset than for
the V1-dataset (1.67ms rather than 40ms) the temporal filters have to be larger to take into account the full
temporal context. For both the receptive fields of the CNN and the tensor W we chose to cover time scales
that are consistent with [14]. Hence we adapted the model architecture from the previous paragraph and added
as a first layer of the CNN a causal temporal convolution (Conv1D with appropriate padding). The temporal
convolution has a receptive filed of 300 time bins and outputs 16 filters. In the RSNN we choose dmax = 24
so that the spike history filter covers around 40ms. Two fitting algorithms were tested, one with LMLE and
the other one with LMLE+single−trial+NC . The loss function Lsingle−trial is used to fit single-trial statistics
as defined in Appendix D and we used it here to replace LPSTH because some movies of training dataset
are unrepeated and we saw in Figure S3 that it fits the PSTH almost as well as LPSTH . To implement the

1

loss LMLE+single−trial+NC , we process the CNN once and simulate the RSNN twice for T time steps. The
first time the RSNN is clamped to the recorded spikes for Tgt time steps and then clamping is terminated and
the RSNN generates samples "freely" for the next T − Tgt time steps. For the first Tgt time steps, LMLE is
computed. And for the rest T − Tgt time steps where the activity is not clamped, Lsingle−trial is computed as
the cross entropy between zD and the spike probabilities. We also run the RSNN a second time with the same
CNN input and without any clamping to compute LNC . For each gradient descent step, we sample uniformly
from the dataset a batch of size KD = Km ×Kt gathering truncated movie clips and corresponding spikes
with Km different starting time points and from Kt different movies. The hyper-parameters can be found in
Table S5.

C Performance metrics

For the definition of our performance metrics we use the following notations. The trial averaged firing probability
of neuron i in the time bin t is denoted z̄t,i = 1

K

∑
k z

k
t,i where zkt,i ∈ {0, 1} is the spike and K is the number

of trials. Neuron i’s mean firing rate is further computed as z̄i = 1
T

∑
t z̄t,i where T is the number of time steps.

Peristimulus time histogram (PSTH) correlation The fit performance of the PSTH is measured by the
Pearson’s correlation between the simulated PSTH and the recorded PSTH. Hence for each neuron the PSTH
correlation is defined by:

ρPSTH
i =

∑
t (z̄t,i − z̄i)

(
z̄Dt,i − z̄Di

)√∑
t (z̄t,i − z̄i)2

√∑
t

(
z̄Dt,i − z̄Di

)2 , (7)

and a slightly better estimator of the asymptotical Pearson correlation which is less noisy can be estimated by
replacing z̄t,i and z̄i with σ̄t,i and σ̄i.

Noise-correlation matrix Pairwise noise correlations are computed as in [46]. We first define total covari-
ance M total

i,j and noise covariance Mnoise
i,j between neuron i and j.

M total
i,j =

1

TK

∑
t,k

(
zkt,i − z̄i

)(
zkt,j − z̄j

)
(8)

Mnoise
i,j =

1

TK

∑
t,k

(
zkt,i − z̄t,i

)(
zkt,j − z̄t,j

)
(9)

Then in the performance tables we report the normalized noise correlationMnoise
i,j for i 6= j:

Mnoise
i,j =

Mnoise
i,j√

M total
i,i M total

j,j

. (10)

We then define the coefficient of determination of the NC matrix R2 as in [14]. Given the NC matrices
computed from the data Mnoise,D

i,j and the NC matrix obtained from the simulation Mnoise,φ
i,j we define

Mnoise,D = 1
nV2

∑
i,jM

noise,D
i,j and:

R2 = 1−

∑
i,j

(
Mnoise,D

i,j −Mnoise,φ
i,j

)2

∑
i,j

(
Mnoise,D

i,j −Mnoise,D
)2 . (11)

D Derivations of the loss functions

Normalization of the sample-and-measure functions Most sample-and-measure may be defined one
multiplicative constant away from their formal definition. For instance when computing LMLE we compute the
binary cross entropy between the relevant probabilities aggregate them by taking the mean and not the sum. We
find the resulting number to be easier to interpret because is it independent from the number of trials and the
number of time steps.

Noise correlation We tested two sample-and-measure loss function for the noise correlation. We explain
here why the Monte-Carlo estimate of the simulated statistics is unbiased for LNC but the same argument
applies to LNCMSE .

We consider the statistics T (z)ij = 1
KT

∑
t,k z

k
t,iz

k
t,j which measure the frequency of coincident spikes

between neurons i and j. Since zkt,i and zkt,j are independent given the past, we have EPφ
[
zkt,iz

k
t,j

]
=

2

EPφ
[
σ(ukt,i)σ(ukt,j)

]
so we use the following Monte-Carlo estimate πφi,j = 1

KT

∑
t,k σ(ukt,i)σ(ukt,j) to evalu-

ate the expected simulated statistics in equation (4). Choosing the dissimilarity d to be the cross entropy and
denoting πDi,j = T (zD)ij we define:

LNC =
∑
i,j

CE(πDi,j , π
φ
i,j) (12)

As an attempt to replace the terms in LNCMSE which take into account the correlation from the PSTH, we tried
to add a related correction term in LNC . To do do we considerd another loss LNC-shuffled which is computed
like LNC but where we shuffle the trial identities in zi and not in zj . It seems that it was not as efficient as
LNCMSE .

Single-trial statistics Since both PSTH and NC are trial-averaged statistics we wondered whether another
simple measuring model could account for single-trial statistics. We therefore considered the following problem
which is notoriously challenging for the MLE [15]: we clamp the network to the recorded data until time t and
generate a simulated spike train for t′ > t. With MLE the network activity quickly diverges away from the
real data. To measure this quantitatively we estimate the multi-step log-likelihood Pφ(zDt+∆t|zD0 · · ·zDt). It is
intractable but an unbiased Monte-Carlo estimate can be computed. The multi-step log-likelihood drops quickly
as ∆t increases as expected for MLE in Figure S3.

To resolve that issue, we first suggest an extension of the definition of LSM in equation 4 which formalizes the
clamping condition:

LSM = d
(

EPD [T (z) | c] , EPφ [T (z) | c]
)
, (13)

where we have introduced a condition c into the expectations. All the theory and the geometrical interpretations
can be extended with this conditioning, but this allows to formalize that the visible units can be clamped to
the recorded data. For instance if we choose c such that zV1:t = zD1:t we formalize a sample-and-measure loss
function for which the visible units are clamped until time t.

Back to the problem of fitting the multi-step log-likelihood, we consider the sample-and-measure loss function
where T is identity, σ(u) is the Monte-Carlo estimator and d is the cross-entropy. It yields:

Lsingle-trial = CE(zD, σ(uV)) , (14)

which is pretty much computed like LMLE but where the data is only clamped until time t. Note that since the
statistics T do not involve a trial average, the computation of the expectation is not very precise but it may be
improved for the expectation EPφ by averaging over multiple batches clamped to the same data. Although this
is an interesting direction we did not try it and always sample a single batch per clamping condition. When
using this loss function, we see in Figure S3B that MLE only better just at the first time step after the clamping
terminates and optimizing Lsingle-trial makes better prediction after that. To provide a meaningful baseline we
show the m-step likelihood obtained with a theoretical model fitting perfectly the PSTH without being aware of
the clamping history. The multi-step likelihood obtained with Lsingle-trial is above this baseline for 5 time-steps
(200ms) on the training set proving that the model tries to make a clever usage of the trial specific firing history
up to this duration.

Derivation of the ELBO Like for capturing single trial statistics, the most natural way to fit neural activity
in the presence of hidden neurons is to minimize the cross-entropy between the visible spikes and their probability
while sampling from the hidden neurons. Here we want to show that this is actually the negative of a variational
lower bound of the maximum likelihood. Following [40], for any distribution q(zH) of the hidden neural activity
we have:

logPφ(zD) = log
∑
zH

Pφ(zD,zH) (15)

= log
∑
zH

q(zH)
Pφ(zD,zH)

q(zH)
(16)

≥
∑
zH

q(zH) log
Pφ(zD,zH)

q(zH)
(17)

Writing zt as the concatenation of zDt and zHt , we now choose specifically q so that for all t: q(zHt) =
Pφ(zHt |z1:t−1), using the factorization and seeing that the probability factorizes as follows: Pφ(zD,zH) =∏
t Pφ(zDt ,z

H
t |z1:t−1) =

∏
t Pφ(zDt |z1:t−1)·

∏
t Pφ(zHt |z1:t−1), some products inside the log are cancelling

out and we found the lower bound:

logPφ(zD) ≥ Eq

[∑
t

logPφ(zDt |z1:t−1)

]
(18)

= −Eq
[
CE(zD, σ(uD))

]
, (19)

3

Method learning
rate

batch
size µPSTH µNC µMLE

MLE

1e-3 20

0 0 1

PSTH 1 0 0

MLE+PSTH 0.5 0.5 0

PSTH+NC 0.11 0.89 0

MLE+PSTH+NC 0.1 0.5 0.4

MLE+PSTH+NCMSE 0.1 50 0.4

Table S2: Hyper-parameter table used when fitting the V1-dataset (Figure 3).

Method learning rate batch size µPSTH µNC µMLE µSM−h
MLE

1.5e-3 20

0 0 1 0

MLE+PSTH+NC 0.1 0.7 0.2 0

MLE+SM-h 0 0 0 1e-3

MLE+SM-h+PSTH+NC 0.1 0.7 0.2 1e-3

Table S3: Hyper-parameter table used when fitting the synthetic dataset (Figure 4). Early-stopping
was used on 40 validation trials to prevent over-fitting.

Interestingly, a similar loss function can also be formulated as a sample-and-measure loss function. To do so
we consider the definition from equation (13) with the condition c being zV = zD meaning that all the visible
units are clamped to the data. Choosing otherwise T to be the identity and d as the cross-entropy, we obtain the
following loss function denoted as LELBO−SM :

LELBO−SM = CE
(
zD,EPφ

[
σ(uD)

])
. (20)

Comparing the two loss functions we see that the essential difference is the placement of the expectation EPφ .
In practice our current optimization minimizes (19) rather than (20) because we sample a single trial for each
clamping condition and apply stochastic gradient descent with momentum. This implements implicitly the
averaging of the gradients which corresponds better to the expectation from equation (19). However it is also
possible to minimize (20) by averaging the Monte-Carlo estimates obtained with multiple simulations with the
same clamping condition. With enough sample it may provides a better estimate of the expectation EPφ

[
σ(uD)

]
.

The down side of this alternative is that it requires to sample more RSNN trajectories for each gradient update
which may consume compute time inefficiently. On the other hand, this might be relevant in another setting or at
the end of training to benefit from the theoretical properties of the sample-and-measure loss function. We leave
this to future work.

Regularization of the firing rate of hidden neurons When simulating hidden neurons which are never
recorded it is desirable to insert that as much prior knowledge as possible about the hidden activity to keep the
network model in a realistic regime. The most basic prior is to assume that every neuron i should have a realistic
average firing rate, to implement this we design again a sample-and-measure objective as a variant of LPSTH .
This time we consider that the statistics T are the average firing rate of a neuron T (zi) =

∑
t,k z

k
t,i. This

results in the objective LSM-h which is otherwise similar to LPSTH as defined in equation (5). Unfortunately
the objective cannot be implemented as such because of one missing element: the empirical probability πDi of a
hidden neuron. Instead we simply take another neuron j at random in the visible population and use this average
firing rate in place of the probability πDi . In this way, the distribution of average firing rates across neurons of
the hidden neurons is realistic at a population level because it becomes the same in the recorded population and
in simulated population.

4

Number of Hidden Neurons Noise Correlation
R2

Connectivity Matrix
R2

0 0.95 −0.95

10 0.96 0.50

200 0.97 0.59

400 0.95 0.62
Table S4: Performance summary on the test set when fitting RSNN models with variable number
of hidden neurons to the synthetic dataset. ELBO+SM-h+PSTH+NCMSE method is used when
hidden neurons are included, and MLE+PSTH+NCMSE method is used when no hidden neurons are
included.

Dataset Method Tgt T Km Kt learning rate

Moving bars stimulus MLE + single-trial + NC 45 50 20 8 5e-3

MLE 50 50 20 8 5e-3

Checkerboard stimulus MLE + single-trial + NC 75 80 30 1 1e-3

MLE 75 75 8 4 1e-3

Table S5: Hyper-parameter table for fitting the Retina Dataset, the definition of the hyper-parameter
is given in Appendix B. The results are reported in Table S6.

Figure S1: Comparison of the network architecture As a preliminary experiment we compared
our network architecture against the official GLM code [1]. In our architecture a CNN replaces the
spatio-temporal stimulus filter of the CNN, both models are fitted with MLE. A Noise correlation
matrix of the different models. We included a control architecture where we pruned out the recurrent
connection. It is called CNN because only the CNN parameters become relevant. B The PSTH
correlation computed on the training set. The violon plot represents the distribution of neurons.

Figure S2: Comparison with SpikeGAN This figure is meant to be compared with the Figure 3
from [21]. In this other paper, the authors fitted a spike-GAN to the same dataset. We argue that the
PTSH correlation and NC coefficients are as good qualitatively as the results obtained in [21].

5

Figure S3: Improving the mutli-step log-likelihood We tackle the challenge identified in [15].
We evaluated the multi-step log-likelihood logPφ(zDt+∆t|zD0 · · · zDt) as explained in the main text,
and we trained two networks to minimize LMLE and Lsingle−trial respectively. A) The PSTH
correlation of the different models trained in this context. B) The multi-step log-likelihood is reported
for different models. The dashed baseline represent the ideal model which would always fire a spike
with the true PSTH probability. The blue baseline is LMLE it has never seen self-generated activity
during the training, so it’s performance drops quickly when the network is not clamped anymore
(∆t > 0). The red-baseline is a model trained with LPSTH only, it is increasing because the model
has never been clamped during training. Therefore it is not trained to be accurate right after the
clamping terminates.

Figure S4: Example of PSTH obtained for a neuron from the V1-dataset. The PSTH are smoothed
with a window size of 280ms.

6

Method Moving bars stimulus Checkerboard stimulus
PSTH noise-corr. PSTH noise-corr.

MLE + single-trial + NC 0.91 ± 0.003 0.94 0.85 ± 0.004 0.96

MLE 0.90 ± 0.002 0.91 0.84 ± 0.003 0.96

2-step (CNN) - - 0.87 ± 0.04 0.91

2-step 0.72 ± 0.10 0.91 0.81 ± 0.05 0.95

Table S6: Performance comparison with the 2-step method [14] on the Retina Dataset. The perfor-
mance of the 2-step dataset are taken from their paper. For this comparison we used their definition
of R2 which does not penalize a constant offset between prediction and target. For historical reasons,
we used here a sample-and-measure NC loss with cross-entropy and not mean-square error. It works
but considering later simulations on other datasets we expect higher R2 with mean-square error.

Figure S5: High resolution plot of connectivity matrices in Figure 4 (large target network)

7

Figure S6: High resolution plot of connectivity matrices in Figure 4 (small target network)

8

