
Appendix: On the Expressivity of Markov Reward

David Abel
DeepMind

dmabel@deepmind.com

Will Dabney
DeepMind

wdabney@deepmind.com

Anna Harutyunyan
DeepMind

harutyunyan@deepmind.com

Mark K. Ho
Department of Computer Science

Princeton University
mho@princeton.edu

Michael L. Littman
Department of Computer Science

Brown University
mlittman@cs.brown.edu

Doina Precup
DeepMind

doinap@deepmind.com

Satinder Singh
DeepMind

baveja@deepmind.com

A Anticipated Questions

We first address questions that might arise in response to the main text.

(Q1) What does it mean for Bob to *solve* one of these tasks? That is, if Alice chooses a SOAP,
PO, or TO for Bob to learn to solve, when can Alice determine Bob has solved the task?
A: Bob can be said to be doing better on a given task if his behavior improves, as is typical
in evaluating behavior under reward. The difference with SOAPs, POs, and TOs is that we
measure improvement relative to the task rather than reward. For instance, given a SOAP,
we might say that Bob has solved the task once he has found one of the good policies, and
we might measure Bob’s progress on a task in terms of the distance of his greedy policy to
one of the good policies (as done in our learning experiments). The same reasoning applies
to POs and TOs: Bob is doing better on a task in so far as his greedy policy (or trajectories)
is (are) higher up the ordering.

(Q2) These notions of inexpressibility all come about due to the Markov restriction on reward
functions. That is, the studied reward functions must be a function of s, (s, a), or (s, a, s′).
But, what about history-based reward functions?
A: Indeed, as discussed in our introduction, our goal is to examine the expressivity of
Markov rewards in the context of finite MDPs. We assume the environment is fixed and
given to Alice with the state and action spaces already determined. While it is sensible to
consider history-based rewards, this opens up new considerations: Must the state space also
change so as to retain the Markov property? Instead, we suggest that for a given CMP, it
is natural to be interested in Markov rewards, but acknowledge the importance of going
beyond such functions. As discussed in the main text, we suspect that there is a coherent
account of which tasks are and are not expressible as a consequence of some of the axioms
for rationality. We hope to study these directions in future work.

(Q3) Why restrict attention to SOAPs, POs, and TOs?
A: First, we recognize these do not necessarily capture all of what we hope to convey to
learning agents. It is an important next step in our work to enrich the analysis with more
general objectives. Still, we believe that these each represent an interesting, relatively
general, and concrete template for what a task might look like. They are quite flexible:
SOAPs can be simple while POs and TOs can be complex.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(Q4) Why restrict to the start-state value?
A: We adopt start-state value due to its simplicity. Other considerations might be: (1) The
expected value under some chosen distribution, or (2) That the constraint hold over all states
(so, for SOAPs, each πg is better than each πb in value for all states). We note that the
former case is identical to start-state value, as we can always add a start-state to any CMP
where all actions lead to the desired next-state distribution in T . The latter case is slightly
more complicated, so we chose not to focus on it as we prefer the simplicity of the start-state
case. However, we note that many inexpressible tasks under the start-state criterion remain
inexpressible under the “all-state” criterion (such as the XOR example from Figure 2b).

B Proofs

We next restate each central result, and present its proof.
Proposition 3.1. There exists a CMP, E, and choice of ΠG such that ΠG can be realized under the
range-SOAP criterion, but cannot be realized under the equal-SOAP criterion.

s0 s1
a1

a1

a2 a2

<latexit sha1_base64="tp9exuN8fEVL+KtciUfwfrdBW7I=">AAAPmHicjVdtb9s2EHb32nlb0277tH3hFhToAiWQZDuOCwTomr5sQF/SIGmLRllAybTNhhI1ikricgL2U/Z1+0f7NztSfpEop6gBS9Tdw+PD4/GODFNGM+m6/1376ONPPv3s8+tftL/86usbazdvffMy47mIyFHEGRevQ5wRRhNyJKlk5HUqCI5DRl6FZ3ta/+qciIzy5FBOU3IS43FCRzTCEkSnN78L9unpY7SLAhWk9FT5XhEUpzfX3S3X/FCz4c0a663Zb//01g0WDHmUxySREcNZduy5qTxRWEgaMVK0b6PNzU20j6MzPCaZ/mgHeUbSUnAcYzGmya675dPkRI0Jj4kU06KKUSQB8wJL4qAYy4nIRpmDYGohzCR2EI4zLTYNOSkF2TQOocHGXNBSxsZpRnKgyodgJ6UjnkgHZXk4omMHjXLGUhjLQVH2R84lgRGGOJuInIFM0rN3DgpDsBNyfiZxCGr9tSSRC+agS7MqNfLHI4FjApOa8OHuIT17c6LioZENizY4J8UMDCQcaT5btWkn5CK9lORSOqal52i6bGqHmvXNEE6G6Jmma6SgfEBI+pSC1FDJ2sGQjCBAzJcaQnDkpFAHj+8XynUGHcf3uoWNSXORsjnKc3tOz3X8jtvAsTpw23cGfcfv9RrAYWVUH2z1nD6AbluoKjdvx+l1Ha/bb8JYFdZ3HW/grRx0LAhJZrjetuOBSX8A/gMfPZ2u9k7F8mDHQV7XhcegMfEqznN9wPga2O/YwCpV39t2kN/pwaNJVkAwzOwNAOF52qjXsHcxoXJhD/yD5g8byAVOxgtkR7PbHsCj49vIqpd2OnoqfQftvN+b2pVgsK/RDSSrITW/ckq9vo2UeA7zfQ+m4WnfuA1vpzQ5W8SOHnNbO9LdsXFTwhi/WHhHG+tqnoNBc854OsN1wVZ3oP9mZz2h44m0o6IWcMaNsG+AbsPuh0+9zlWT8HWs+X5HB2gA2z3icQx7WwUkzQoVnGMBDcp4ohPq4TSFLM4QozGVd+v4BITQIU+GkPqJVAkKhJ4VFoJfoIAmIwmTDzSqsHpmue4Jz1NFoSx4xe+JDUkFh0gN9KsK0nsKspPmpBOSbodhvWscFcfeCbxLnFr37PHjcIkIwxUAyGo0KuaAWDUA4cOFVj20lQKDcukKS8u0lpHRSuUzbTZUz2yTb0r5G1v+opS/sOUHpfwA5HXFEKKjOPZPVDsICZTDZYk4FhyWMuIiIWLXS6FihVAdxjMpBNOuSQon7eA8g7pBlBfHRRtcMYJKABFHda0v0J117+e7CFwo0brOAQRGXZYhTecBgeotiF6656kutlxsqACKc0whpOEdOLr1PiC+nAOhZa0MBTvD2eoIwlRwn47/bPjBTEGXXECWjojgWEFEEUzmxVj5EUQpeKJ8mJnMQDNrckK4IPGGmjcKdVi2iqpe0QR8GuWZ5DGcECwQSc6p4Ik+1aglBuKzjcCNgixZB2CvbkqHbmBZN92Aqy1uo6s4wZqLQu1xwRn4e3oVLQP7AF4aZxMzfVcwK+VXEdM+UgcEDm5nV5HSkA/gpA1blMwCNBkZsT7d4HOCDjEccRsjQz0BsRl2HjxwsssFiCawPcoYocl4vsUAnoNjC8NA8tSEne7KpR4w10Po4Jrjyq+ZSUNmP5cIoxFOoikcCy8RNrsSyQmMkm1ZOxwAJr29f4d39Q438wZGs6OxlhlRycyWmpRmC3Umq8iWn5CytaDSaSax04oukj/27LwCvlqRPKAilWGS1WIGLgN5nJoEpH5ZtmuYiCdvSSS1TyHWF20LM98D9nZYIBjWVW/PvGoacoljc0Z9OGvUtIyAOwv1xLxqGqhwKc/K7Kn2Kx81lCh3QW03zHUjHEGOeqSf9bSkFRsrNaW5jdX2Zu9Knlrk4gMewi7Zm8faPkAzmukLRaFuw24qf4EWkATuPxCf6vmhV1i6DPYHyVTckE9wCrcRWzzCMWVTlabsbVUFF1JYRDP4guAhXGIegWRBscqwxrdt5XCzQhuLJWrD/dSzb6PNxkt/y+ttuS+66/eO/ipvqtdbP7R+at1pea1+617r19Z+66gVtd61/m790/p37fu1e2uP134roR9dm91uv23VfmsH/wO5nZiu</latexit>

⇧⌧ = {�21}

s1s0
a2
a1

a1
a2

Figure B.1: A CMP that separates the two kinds of SOAP realizations.

Proof of Proposition 3.1.

Consider the example in Figure B.1 and the SOAP ΠG = {π11, π21, π12}. This ΠG indicates
that all policies are acceptable except the policy that always takes a2. That is, the policy
subscripts denote which actions each policy takes in each state (π12 means a1 in s0, a2 in s1).

First, let us note that range-SOAP is realizable: The listed rewards allow for each policy in
ΠG to obtain RMAX/2

1−γ value or better, while π22 achieves zero. Letting ε = VMAX/2, this
choice of rewards satisfies the criteria, and the ΠG is ε-realized in the given MDP.

Next, note that there can exist no other choice of rewards that realize the equal-SOAP. That
is, such that V π11(s0) = V π12(s0) = V π21(s0) > V π22(s0). This fact is a consequence of
the tie in values between the policies. Here, we see that any choice of rewards that makes
V π12(s0) = V π21(s0) will also give π22 that same value. Thus, the given ΠG is unrealizable
under equal-SOAP.

Theorem 4.1. For each of SOAP, PO, and TO, there exist (E,T) pairs for which no reward function
realizes T in E.

Proof of Theorem 4.1.

We proceed by proving the existence of a pair (E,T), for each of T as a SOAP, PO, or TO.
Indeed, we find that the simple XOR case is inexpressible for all three task types.

SOAP. For SOAP, we consider the CMP with two states and two actions from Figure B.1,
and the SOAP ΠG = {π12, π21}. That is, the chosen task is for the learning agent to find a
policy that chooses each action in exactly one state. Here, we find that any Markov reward
function that makes a1 optimal in the left state will, by consequence, make a1 an optimal
action no matter what is done in other states. In other words, we cannot assign rewards to

2

(s, a) pairs so that an action’s optimality depends on which optimal action is taken in the other
state. Thus, all choices of Markov reward function that make {π12, π21} optimal will also
make {π11, π22} optimal, too.

PO. Since the given SOAP is a special case of a PO, we have already identified a given
inexpressible PO.

TO. For TO, for simplicity we consider the same CMP. We let N = 2, and suppose that the
desired trajectory ordering is over state-action pairs, giving rise to a set of good trajectories,
and a set of bad trajectories:

Lτ,N := {τG, τB}, (B.1)
τG = {{(s0, a1), (s1, a2)}, {(s0, a2), (s1, a1)}} , (B.2)
τB = {{(s0, a1), (s1, a1)}, {(s0, a2), (s1, a2)}} . (B.3)

The same reasoning from the above cases applies: We cannot make the good trajectories
strictly higher in return than the bad trajectories.

Proposition 4.2. There exist choices of E¬T = (S,A, γ, s0) or E¬γ = (S,A, T, s0), together with
a task T , such that there is no (T,R) pair that realizes T in E¬T or (R, γ) in E¬γ .

Proof of Proposition 4.2.

The running XOR example is actually inexpressible for all choices of T , or of γ. That is, there
is no way to make π12 and π21 strictly better than both π22 and π11 by varying γ or T . Such
examples likely exist for any choice of S and A of size greater than one.

Theorem 4.3. The REWARDDESIGN problem can be solved in polynomial time, for any finite E,
and any SOAP, PO, or TO, so long as a reward-function family with infinitely many outputs is used.

Proof of Theorem 4.3.

We proceed by providing constructive algorithms for each of SOAP, PO, or TO. All three are
based on similar applications of a linear program (LP), though there is nuance that separates
them. We present each as a Lemma (Lemma B.1, Lemma B.2, Lemma B.3), which together
constitute the proof of this Theorem.

Lemma B.1. The SOAP variant of REWARDDESIGN can be solved in polynomial time.

Proof of Lemma B.1.

We proceed by constructing a linear program (LP) whose solution is the desired reward
function (or correctly outputs that there is no such reward function). Specifically, note that we
want to choose a reward function so that all the policies in ΠG have strictly higher start-state
value than all the policies not in the set. We present the proof through five observations.

First, observe that any reward function that will induce the desired ordering ensures that the
optimal policy π∗ is in the set ΠG. This is true since π∗ (under the chosen reward function) is
better than all policies. So it is better than all policies not in ΠG.

Second, note that the set ΠG is well connected in the following sense. Let a step in policy
space from some reference policy πref to be a move to any other deterministic policy that
differs from πref in exactly one state. Then, for any pair of policies in ΠG, there must be a
sequence of policies in ΠG, each one step apart from the next, from one to the other. This
follows from the policy-improvement theorem: we can get from any policy to an optimal

3

policy in a sequence of policies such that each policy (1) is one step from the previous one
and (2) strictly dominates the previous one. Since any policy that strictly dominates a policy
in ΠG must be better than the policy in ΠG, it must also be in ΠG (if the problem constraint
is satisfied). That means if we choose two policies in ΠG, π1 and π2, both can reach π∗ in a
sequence of single steps while staying within ΠG. Since steps are symmetric, ΠG is connected.
The connected set of policies in ΠG has a “fringe” Πfringe—a set of policies not in ΠG that are
one step from a policy in ΠG.

Third, for the constraints of the problem to be satisfied, every policy πg ∈ ΠG must be
strictly better than every policy πf ∈ Πfringe.

Fourth, observe that |Πfringe| <= |A||ΠG|, so Πfringe is polynomial sized.

Fifth, we can construct a polynomial-sized LP that expresses that every policy πg ∈ ΠG is
strictly better than every policy πf ∈ Πfringe. Note that the direct way to build this LP has a
“strictly better than” comparison between each policy πf ∈ Πfringe and each policy π ∈ ΠG.
That’s at most |A||ΠG|2 inequalities.

We now tie the above observations together to show that the solution to this LP solves the
constraints of the problem. That is, the reward function returned makes it so every policy
πg ∈ ΠG is strictly better than every policy not in ΠG, and no valid reward function is
excluded (so, if a solution exists, it will be found).

The argument that no valid reward function is excluded is simply because the set of constraints
in the LP is a subset of the defining constraints of the problem. Specifically, the LP constrains
the policies inside ΠG to be strictly better than the ones on the fringe instead of all policies
not in ΠG.

The argument that only constraining the values on the fringe automatically constrains all the
others proceeds as follows. First, with respect to the returned reward function, there is some
optimal policy π∗. That policy π∗ must be in ΠG. To see why, let us assume it is not. That
means there is a sequence of improving steps that turn a policy in ΠG to π∗ (currently assumed
to be out of ΠG). But, any such sequence must go through the fringe, and we constrained the
fringe so that all of the policies in ΠG are strictly better than them. So, π∗ must be in ΠG.
Next, we know that all policies in ΠG must be strictly better than the policies not in ΠG. To
see why, consider an “improving” path from some policy πb 6∈ ΠG to π∗. Since π∗ is in ΠG,
we know this path must go through some policy πf ∈ Πfringe. Since it’s an improving path,
that means πf is better than πb. But, every policy in ΠG is strictly better than πf , so it must
also be strictly better than πb.

Lemma B.2. The PO variant of REWARDDESIGN can be solved in polynomial time.

Proof of Lemma B.2.

We proceed by constructing a procedure that calls a linear program whose answer is the reward
function that induces the given LΠ in M , or the procedure correctly outputs that there is no
such R.

Consider the set of policies in Π, numbered π1, . . . , πi, . . . , πN . Note that the value of πi in
s0 can be computed in terms of the expected reward under the policy’s discounted expected
state-action visitation distribution. That is, for each πi, let

ρi(s, a) :=

∞∑
t=0

γt Pr(st = s, at = a | s0, πi). (B.4)

Since the given MDP is assumed to have finite state-action space, note that ρi may be
interpreted as a vector whose elements correspond to ρi(s0, a0), ρi(s0, a1), and so on.

4

The value of πi under a given reward function R (which may also be interpreted as a vector)
is then produced by the dot product R · ρi.
Given LΠ, we want to find an R that ensures a set of linear constraints hold:

R · ρ0 ≥ R · ρ1 ≥ (B.5)

Note that the trivial reward function, R∅ : s 7→ 0, is a solution to the above linear program.
However, we can ensure some minimal increment improvement of ε for non-tying policies,
where

R · ρ0 ≥ R · ρ1 + ε ≥ (B.6)
This ε minimal increment is sufficient to separate policies with tying scores and avoids the
degenerate solution of R∅, so long as there are infinitely many reward outputs feasible.

Note that the input is of size N , where N is the number of constraints imposed on the policy
ordering. In the worst case, N = |LΠ| ≤ |A||S|. If there are fewer constraints than either |A|
or |S|, then N = max{|S|, |A|}. The amount of computational work required is split across
two steps:

1. Õ(N): Compute ρi for each policy π1 . . . πN .

2. O(N3): Formulate and solve the above linear program.

Thus, since the described linear program can be constructed in polynomial time outputs a
reward function that induces the given LΠ, we conclude the PO case.

Lemma B.3. The TO variant of REWARDDESIGN can be solved in polynomial time.

Proof of Lemma B.3.

The algorithm follows the same construction as those catered toward SOAPs and POs, but is
in fact much simpler.

We can form linear inequality constraints on the return of two trajectories as follows. First
recall that the N -step discounted return of a trajectory τ is

G(τ ; s0) =

N−1∑
i=0

γiR(si, ai), (B.7)

assuming reward is a function of state and action for simplicity. Note that because reward
functions are assumed to be deterministic, the quantity G(τ ; s0) is not a random variable.

Now, given two trajectories,

τi = {(s(i)
0 , a

(i)
0), . . . , (s

(i)
N−1, a

(i)
N−1)}, τj = {(s(j)

0 , a
(j)
0), . . . , (s

(j)
N−1, a

(j)
N−1)}, (B.8)

note that we can express linear inequality constraints as follows,

τi ·R− τj ·R ≤ ε, (B.9)

where R is a length N state-action vector, and ε ∈ Q≥0 is a slack variable to be maximized as
part of the optimization. Inequality constraints follow the same structure, only simpler. By
the same reasoning that underlies the construction of the SOAP and PO based algorithms,
the above set of constraints define a linear program whose solution is the realizing reward
function, if it exists.

Corollary 4.4. For any task T and environment E, deciding whether T is expressible in E is
solvable in polynomial time

Proof of Corollary 4.4.

5

For each of PO and TO, the constraints we construct define precisely the space of constraints
that constitute the given task. Thus, since linear programming will find a solution for the given
constraint set, we know that these two forms of the algorithm will also correctly decide when
no reward function exists.

The SOAP case is slightly more involved, but still relatively straightforward. We note that the
policy fringe, Πfringe, is a subset of ΠB , since Πfringe consists of some policies not in ΠG by
construction. This means that the constraints produced that separate each good policy from a
fringe policy in value are a subset of the true constraints (those that separate each πg ∈ ΠG

from each πb ∈ ΠB). Hence, since constraint relaxations of this kind have the property that
they do not exclude solutions, we conclude that our proposed linear program will correctly
determine when no satisfying reward function exists.

Next, we provide further details on Theorem 4.5 that examines reward design when only finitely
many reward outputs may be used. As noted in the main text, Theorem 4.3 requires that Alice is
allowed to design a reward function that can produce infinitely many outputs. It is natural to wonder
whether this requirement is strict. Theorem 4.5 answers this question in the affirmative, by proving
that the following decision problem is hard.
Definition B.1. The FINITE-PO-REWARDDECISION problem is defined as follows: Given E =
(S,A, T, γ, s0), and a set of k policy inequalities (πxi

< πyi), output True iff there is a reward
function R(s′) that induces the given policy inequalities.

Note that this formulation focuses on POs, and on reward as a function of next-state. Unfortunately,
we find this problem is NP-hard, showing that for reward design to be efficient, infinitely many reward
outputs are needed.
Theorem 4.5. The FINITE-PO-REWARDDECISION problem is NP-hard.

Proof of Theorem 4.5.

We assume every T (s′ | s, a) is expressed as a rational number. We also assume that all
policies are deterministic, Markov policies, although results should extend to stochastic
policies with rational probabilities as well.

The binary PO problem is the same, but it insists that every R(s′) ∈ {0, 1} for all s′ in the
returned reward function.

Observation 1: The binary PO decision problem is in NP. We can guess an assignment of
R(s, a) to either 0 or 1, then evaluate in inequality using linear equation solving as policy
evaluation.

We show that the binary PO decision problem can be used to decide the NP-hard monotone
clause 3-SAT problem with a polynomial reduction.

A monotone clause 3-SAT problem consists of a set of n variables, andm clauses. Each clause
consists of three variables and is either a positive clause or a negative clause. In a positive
clause, all three variables appear as literals. In a negative clause, all three variables appear
as negated literals. The problem is the same as the standard 3-SAT problem except for the
restriction that we cannot mix positive and negative literals in a clause.

We can convert an instance of monotone clause 3-SAT to the binary PO problem as follows.
There is only one state where decisions are possible. It is the initial state of the MDP. Each
action from this state results in an action-specific probabilistic transition to a set of terminal
states, each of which is associated with a terminal reward value.

Because of the simple structure of this MDP, each policy corresponds to an action and vice
versa. And, each terminal state corresponds to a reward and vice versa. So, each policy can be
viewed as a convex combination of rewards.

We create two terminal states s0 and s1 and create one action (a0) that transitions directly to
s0 and one (a1) that transitions directly to s1. We then add a policy constraint that says the

6

a0 < a1. Because all rewards are in {0, 1}, that forces the reward for s0 to be 0 and for s1 to
be 1. Those become our logical primitives, in a sense.

Next, we add 2n states, one for each positive and negative literal in the 3-SAT problem. For
each variable v, we add an action av with a 50-50 transition to sv and sv, along with two
constraints: a0 < av < a1. These constraints ensure that the reward assignment to sv and sv
can be interpreted as an assignment to the literals where one gets a 1 and the other gets a zero.
There is no other way to satisfy these constraints.

Now, for each positive clause c consisting of variables v1, v2, and v3, we create an action ac
that transitions to sv1 , sv2 , and sv3 with equal probability. We add a policy constraint that
ac > a0, forcing the assignment of rewards to the variables to correspond to a satisfying
assignment for that clause. (At least one of the rewards needs to be set to 1.)

For the each negative clause c consisting of variables v1, v2, and v3, we create an action ac
that transitions to sv1 , sv2 , and sv3 with equal probability. We add a policy constraint that
ac < a1, forcing the assignment of rewards to the variables to correspond to a satisfying
assignment for that clause. (At least one of the rewards needs to be set to 0.)

By the way the MDP is constructed, the constraints are satisfied if and only if the rewards
represent a satisfying assignments for the given monotone clause 3-SAT formula. Therefore,
an efficient solution to the binary PO decision problem would provide an efficient solution to
the NP-hard monotone clause 3-SAT problem.

Proposition 4.6. For any SOAP, PO, or TO, given a finite set of CMPs E = {E1, . . . , En} with
shared state–action space, there exists a polynomial time algorithm that outputs a single reward
function that realizes the task (when possible) in each CMP in E .

Proof of Proposition 4.6.

From Theorem 4.3, we know that there is an algorithm to solve the reward design problem
for any task and a single environment, in polynomial time. We form the multi-environment
algorithm by simply combining the constraints formed by each individual linear program. By
the properties of linear programming, the resulting solution will either satisfy all of the given
constraints, as desired, or will correctly identify that no such satisficing solution exists.

Theorem 4.7. Task realization is not closed under sets of CMPs with shared state-action space.
That is, there exist choices of T and E = {E1, . . . , En} such that T is realizable in each Ei ∈ E
independently, but there is not a single reward function that realizes T in all Ei ∈ E simultaneously.

Proof of Theorem 4.7.

We consider a pair of CMPs, (EX , EY), with the same three states and two actions. We will
show that there exists choice of T such that T is realizable in EX and EY independently,
but not in both simultaneously. Our result assumes we restrict to reward functions that are
only a function of state, but we suspect similar cases exist for reward functions on (s, a) pairs
and (s, a, s′) triples.

Consider the pair of CMPs in Figure B.2. These two CMPs share a state-action space and
start-state, but not a transition function (and, say, a γ > 0.5). Let us further suppose we are
interested in the SOAP ΠG = {π112, π212}, that is, the policies that take a1 in s1, and a2 in
s2. In both CMPs, the transition function from s0 transitions to s1 with probability 0.5 and s2

with probability 0.5, for both actions.

We first show that this ΠG is realizable in both CMPs. For the CMP on the left, note that the
reward function R(s1) = 1, R(s2) = −1, with γ = 0.95 will ensure V π112(s0) = V π212(s0),
and that both policies are strictly better than all others. Next, note that the same is true for the

7

example on the right where R(s1) = −1, R(s2) = 1. Thus, ΠG is independently realizable in
both of these CMPs.

However, there cannot exist a reward function that makes π112 and π212 strictly better than all
other policies in both CMPs—it is either better to stay in s1, or to stay in s2, but it cannot be
the case that both are true simultaneously.

s1 s2
a1a1

a2

a2 s1 s2
a2a2

a1

a1

s0

a2a1

s0

a2a1

Figure B.2: A pair of CMPs with opposite action effects: On the left, a1 keeps the agent in the same
place, while a2 flips the state. On the right, the effects are exactly inverted.

C Experimental Details

Next, we provide further details about our experiments.

C.1 Expressibility Experiments

First, we provide additional information about the first experiment that explores the fraction of SOAPs
that are expressible in small CMPs.

Six Variants. In each figure, we vary one aspect of the environment or task along the x-axis. Most
of these are self-explanatory (a: number of actions, b: number of states, c: γ), though the plots in (d),
(e) and (f) are slightly more involved. In (d), we vary the size of each sampled SOAP, corresponding
to the number of good policies in the SOAP. That is, a SOAP of size one consists only of a single
good policy, ΠG = {π∗}. In (e), we vary the Shannon entropy of the transition function on a per
state-action basis as per: H(T) = −

∑
s′∈S log2 T (s′ | s, a). This is accomplished by interpolating

between the fully deterministic transition function that only transitions to a single next-state and the
uniform random transition function through a simple soft-max distribution in which one next-state
is the intended transition, while each other next-state receives a small amount of probability mass
depending on the given entropy. In plot (f), we vary the spread of the SOAP, which is a measure of
how different the good policies in the SOAP are on average. The x-axis corresponds to an approximate
edit-distance between policies, where each point on the x-axis defines the parameter of a coin that we
flip to determine whether to change a chosen reference policy’s action for each state. So, we first
randomly sample one policy, say π1. Then, we construct the next policy for the SOAP as follows:
For a given coin weight θ, we flip a coin at each state of the CMP. If the coin lands heads (the trial
is successful), then we change the action of the new policy to a fixed action chosen uniformly at
random. Thus, when θ is zero, the SOAP will only contain π1. When θ approaches one, the SOAP
will likely contain many different policies.

Environment Details. In each case, unless otherwise specified, the underlying environment is a
four state, three action CMP with γ = 0.95, and a transition function that is a multinomial over
next-states sampled from a Dirichilet-multinomial distribution with α parameters set to 1

|S| . When
not specified, the size of each SOAP is two. We varied many aspects of these parameters and found
little change in the nature of the plots, though trends will be shifted up or down in many cases. For
instance, given the downward trend of Figure (3d) as the SOAP size increases, we know that the
remaining plots will each be scaled downward if we were to run the same experiment for a SOAP

8

size larger than two. We sample random SOAPs by first sampling a SOAP size randomly between
1 and |Π|. Then, we sample N SOAPS of the chosen size uniformly at random (unless otherwise
specified, as in the case of Figure (3f)).

C.2 Learning Experiments

In the grid environment, we set slip probability of 0.35 for all (non-terminal) states. When a “slip”
event occurs, the action effect is orthogonal to the intended direction. For instance, in the bottom left
cell, if the up action is executed, there is a 0.175 chance the agent will execute left (thus staying in
the bottom right cell), and a 0.175 chance the agent will execute right, and a 0.65 chance the agent
will move up a cell. We experiment with tabular Q-learning with ε-greedy exploration, with ε = 0.2
and learning rate α = 0.1 and no annealing. Each episode consists of 10 steps in the environment,
with 250 episodes per algorithm. We repeat the experiment 50 times and report 95% confidence
intervals. The y-axis measures, at the end of each episode, the (inverse) minimum edit distance
between Q-learning’s greedy policy and any of the policies in the SOAP along the trajectory taken by
Q-learning’s greedy policy. Thus, when the series reaches 1.0, Q-learning’s greedy policy is identical
to one of the SOAP policies in the states that the greedy policy will reach. We observe that the gap
between the blue and green curves is due to the different kinds of policies that the SOAP reward and
the regular reward promote—one is not necessarily better or worse than the other, they just convey
different kinds of objectives.

9

	Anticipated Questions
	Proofs
	Experimental Details
	Expressibility Experiments
	Learning Experiments

