
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

6 APPENDIX

6.1 ALGORITHMS

Algorithm 1: The FLDmamba Algorithm
Input: X: (B, L, V);
Output: bY: (B, L, V);

1 U  FMamba(X); // Step into FMamba algorithm 2
2 U

0
 Mamba(X); // Step into the Mamba algorithm 3

3 U
00
 U

0 + U ;
4 y

0
 FMamba(U 00); // Step into FMamba algorithm 2;

5 y
00
 Mamba(U 00); // Step into Mamba algorithm 3;

6 Y  FFT(y0 + y
00);

7 Y  Linear(Y );
8
bY  ILT(Y ); // Inverse Laplace Transform module

9 return bY;

Algorithm 2: The FMamba Algorithm
Input: X: (B, L, V);
Output: U :(B, L, V);

1 X0
 RBF(X);

2 for p = 1, 2, ..., FMamba layers do

3 A: (V, N) Parameter
4 B: (V, L, N) sB(X0)
5 C: (B, L, N) sC(X0)
6 �: (B, L, N) ⌧�(Parameter + s�(X0))
7 �0 = FFT(�)
8 �F = IFFT(�0)
9 ĀF , B̄F : (B, L, V, N) discretize(�F ,A,B)

10 U
(1)
 SSM (ĀF , B̄F ,C)(X0)

11 U
(2)
 U

(1)
⌦ SiLU(Linear(X0))

12 U  Linear(U (2))
13 end

14 return U ;

Algorithm 3: The Mamba Algorithm
Input: X: (B, L, V);
Output: U

0:(B, L, V);
1 X0

 RBF(X);
2 for p = 1, 2, ...,Mamba layers do

3 A: (V, N) Parameter
4 B: (B, L, N) sB(X0)
5 C: (B, L, N) sC(X0)
6 �: (B, L, N) ⌧�(Parameter + s�(X0))
7 Ā, B̄ : (B, L, V, N) discretize(�,A,B)
8 U

0(1)
 SSM (Ā, B̄,C)(X0)

9 U
0(2)
 U

0(1)
⌦ SiLU(Linear(X0))

10 U
0
 Linear(U 0(2))

11 end

12 return U
0;

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

6.2 PRELIMINARY

Mamba. Mamba is proposed in (Gu & Dao, 2023). With four parameters A,B,C,�, Mamba is
defined based on a sequence-to-sequence transformation via the following equations:

h
0(t) = Ah(t) +Bx(t);

y(t) = Ch(t);

ht = Āht�1 + B̄xt (9)

where h(t) denotes the hidden state, x(t) is the input sequence, y(t) is the output sequence, and A 2
RN⇥N

,B 2 RL⇥N
,C 2 RN⇥L. In addition, N and L are the dimension factor and the sequence

length, respectively. The discretization process of parameters (A,B) is shown as follows:

Ā = exp(�A); B̄ = �A�1exp(�A) ·�B (10)

Here the discretization is closely related to continuous-time systems, providing them with addi-
tional properties such as resolution invariance (Nguyen et al., 2022) and automatic normalization,
ensuring the model’s proper calibration. Mamba achieves input-dependent selection by making B,
C, and � functions of the input x. In this way, Mamba is able to dynamically adjust its opera-
tions, computations, and information flow based on the specific characteristics of the input data.
This input-dependent selection allows Mamba to effectively adapt its behavior and capture the rel-
evant patterns and dynamics present in the input, resulting in enhanced modeling capabilities and
improved performance for various tasks. Then a state-space model (SSM) utilize Ā, B̄, and C to
process the input x:

K̄ = (CB̄,CĀB̄, ...CĀkB̄, ...)T , y = K̄T
x (11)

Finally, the output y of the SSM is multiplied with a non-linear activation-transformed input. This
result is then passed through a final linear layer to produce Mamba’s output. For a complete overview
of Mamba’s architecture, refer to Algorithm 3.

Fourier Transform. Given the input function f(x), we can obtain the frequency domain conversion
function F(k) via the Discrete Fourier Transform (DFT), where F denotes the Fourier transform of
the function f(x). The process is shown as follows:

F(k) =

Z

d

f(x)e�j2⇡kx
dx

=

Z

d

f(x)cos(2⇡kx)dx+ j

Z

d

f(x)sin(2⇡kx)dx (12)

In this context, we have the frequency variable denoted as k, the spatial variable as x, and the
imaginary unit as j. The real part of F is represented as Re(F), while the imaginary part is denoted
as Im(F). The complete conversion is expressed as F = Re(F) + jIm(F). The Fourier transform
is employed to decompose the input signal into its constituent frequencies. This process facilitates
the identification and detection of periodic or aperiodic patterns, which are crucial for tasks such as
image recognition.

Laplace Transform. The Laplace transform is a powerful mathematical tool used in various fields,
particularly in engineering, physics, and applied mathematics. It allows us to convert functions of
time into functions of complex variables, providing a useful way to analyze and solve differential
equations. The Laplace transform of a function, denoted as F (s), is defined as follows:

F (s) = L{f(t)} =

Z 1

0
e
�st

f(t) dt (13)

In this equation, f(t) is the original function in the time domain, s is a complex variable, and
F (s) is the transformed function in the complex frequency domain. The Laplace transform has
several important properties that make it a versatile tool for analysis. For example, it enables us
to simplify differential equations into algebraic equations, making it easier to solve for unknown
functions. Additionally, the Laplace transform allows us to study system behavior, stability, and
response to different inputs. By applying the inverse Laplace transform, we can obtain the original
function back from its transformed representation. This transformation provides a valuable method

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

for understanding and manipulating functions in the frequency domain, facilitating analysis and
design in various scientific and engineering disciplines.

The inverse Laplace transform is defined as follows:

f(t) = L
�1

{F (s)} = lim
T!1

Z
�+iT

��iT

e
st
F (s) ds (14)

Here Re(s) = � and � is greater than the real part of all singularities of F (s). For general functions,
the inverse Laplace transform may not have analytical solution.

To allow analytical solution for inverse Laplace transform, we follow (Cao et al., 2023) and consider
a neural operator

u(t) = �(((f ;�) ⇤ v)(t) +Wv(t)) (15)

where � is a nonlinear activation function, W is a linear transformation, and  is a kernel integral
transformation. Imposing �(t, ⌧) = �(t� ⌧), in the Laplace space we have

U(s) = K�(s)V (s) (16)

where K�(s) = L{�(t)} and V (s) = L{v(t)}, U(s) = L{u(t)}.

Here we assume that the kernel integral operator has the form of K�(s) =
P

N

n=1
�n

s�µn
in the

Laplace space, where �n 2 R and µn 2 C are learnable parameters. We make the assumption so
that the singularities are first-order, and the inverse Laplace transform has analytical solution. After
some derivation, we have that the resulting form for u(t) in the original space is

u(t) =
NX

n=1

�n exp(µnt) +
1X

l=�1
�l exp(i!lt) (17)

Here !l are frequencies by decomposing v(t) via Fourier series, and �n,�l are derived parameters
from �n,!l and µn. For detailed derivation, see (Cao et al., 2023).

Here we see that by assuming the first-order singularities for the kernel where the singularities
positions µn are learnable, we can parameterize both the decay and periodic behavior in the original
space

P
N

n=1 �n exp(µnt), via µn’s real and imagery part, respectively. We further condition the real
and imagery part, as well as its amplitude �n on the output of the previous Mamba modules in our
FLDmamba, allowing the model to decide appropriate decay and periodic dynamics depending on
the input.

6.3 MODEL COMPLEXITY

This section presents a complexity analysis of our proposed model, FLDmamba. The computational
complexity of the base Mamba model is O(BLV N), where B represents the batch size, L de-
notes the sequence length, V signifies the number of variables, and N indicates the state expansion
factor. The Fast Fourier Transform (FFT) in FLDmamba has time complexity of O(BLN logL),
and the inverse Laplace transform has time complexity of O(BLN), both significantly smaller than
O(BLV N). Therefore, the total time complexity is still O(BLV N). In other words, FLDmamba
maintains a comparable computational time complexity to the base Mamba model, making it a
promising framework for large-scale real-world applications in time series prediction. This compu-
tational efficiency allows FLDmamba to handle extensive datasets and complex time series scenarios
without significant performance degradation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

6.4 EXPERIMENTS

6.4.1 EXPERIMENT SETTINGS

To ensure a fair comparison, we modify the hidden dimensionality of all compared algorithms within
the range of [128, 256, 512, 1024, 2048] to achieve their reported best performance, which is con-
sistently observed at 1024. The learning rate (⌘) is initialized to 5 ⇥ 10�6, and we set the number
of FLDmamba layers to 2. Consistent with the existing settings of time series datasets, we utilize
historical data with 96, 192, 336, or 720 time steps. The time steps are defined as 5 minutes, 1 hour,
10 minutes, or 1 day intervals to predict the corresponding future 96, 192, 336, or 720 time steps
in these time series datasets. All baseline methods are evaluated using their predefined settings as
described in their respective publications. We conduct testing for all tasks on a single NVIDIA L40
GPU equipped with 128 CPUs.

Table 2: The statistics of 9 public datasets.
Datasets Variates Timesteps Granularity

ETTh1&ETTh2 7 69,680 1 hour
PEMS04 307 16,992 5 minutes
PEMS08 170 17,856 5 minutes
Exchange 8 7,588 1 day
Electricity 321 26,304 1 hour

Solar-Energy 137 52,560 10 minutes
ETTm1&ETTm2 7 17,420 15min

6.4.2 BASELINE DESCRIPTIONS

Transformer-based methods:

• Autoformer (Wu et al., 2021) employs a series decomposition technique along with an
Auto-Correlation mechanism to effectively capture cross-time dependencies.

• FEDformer (Zhou et al., 2022) introduces an enhanced Transformer operating in the fre-
quency domain, aiming to improve both efficiency and effectiveness.

• Crossformer (Zhang & Yan, 2022) incorporates a patching operation like other models but
distinguishes itself by employing Cross-Dimension attention to capture dependencies be-
tween different series. While patching reduces the elements to process and extracts seman-
tic information comprehensively, these models encounter performance limitations when
handling longer.

• DLinear (Zeng et al., 2023) introduced DLinear, a method that decomposes time series
into two distinct components and generates a single Linear layer for each component.
This straightforward design has outperformed all previously proposed complex transformer
models.

• PatchTST (Huang et al., 2024) leverages patching and channel-independent techniques to
facilitate the extraction of semantic information from single time steps to multiple time
steps within time series data.

• iTransFormer (Liu et al., 2023) employs inverted attention layers to effectively capture
inter-series dependencies. However, its tokenization approach, which involves passing the
entire sequence through a Multilayer Perceptron (MLP) layer, falls short in capturing the
complex evolutionary patterns inherent in time series data.

MLP-based methods:

• TimesNet (Wu et al., 2022) expands the examination of temporal fluctuations by extending
the 1-D time series into a collection of 2-D tensors across multiple periods.

• RLinear (Li et al., 2023), the state-of-the-art linear model, incorporates reversible normal-
ization and channel independence into a purely linear structure.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Node 9 (b) Node 18

Figure 8: Ablation study of FLDmamba on prediction performance on Node 9 and Node 18 instances
of ETTm 1 dataset.

Figure 9: Ablation study of FLDmamba on four datasets with L = 96.

• TiDE (Das et al., 2023) is an encoder-decoder model that employs a Multi-layer Perceptron
(MLP) architecture.

SSM-based methods:

• S-Mamba (Wang et al., 2024) independently tokenizes the time points for each variate
using a linear layer. This allows for the extraction of correlations between variates using a
bidirectional Mamba layer, while a Feed-Forward Network is employed to learn temporal
dependencies.

6.5 EFFICIENCY (Q6)

This section evaluates the computational efficiency of our proposed framework, FLDmamba, in
comparison to several state-of-the-art baselines, including AutoFormer, RLinear, iTransformer, and
S-Mamba. We assess efficiency on the ETTh1 and ETTh2 datasets, considering both training time
per epoch and GPU memory consumption. The results, presented in Figure 12, demonstrate the fol-
lowing: Comparative Efficiency of FLDmamba: Our method, FLDmamba, exhibits a favorable
balance between performance and computational efficiency, achieving comparable training times
and GPU memory costs to baselines. Efficiency of Mamba-Based Methods: Mamba-based meth-
ods, including FLDmamba and S-Mamba, demonstrate a compelling advantage in terms of training

Figure 10: Hyperparameter study of FLDmamba.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

time and GPU memory consumption compared to Transformer-based baselines such as AutoFormer.
This suggests that Mamba-based architectures offer a more efficient approach for handling time se-
ries data. These findings highlight the computational efficiency of our proposed framework, FLD-
mamba, while also emphasizing the potential benefits of Mamba-based architectures for addressing
computational resource constraints in time series modeling.

6.5.1 HYPERPARAMETER STUDY (Q7)

In this section, we aim to conduct a parameter study to evaluate the impact of impor-
tant parameters on the performance of our model, FLDmamba. The results are presented
in Figure 10. Specifically, we vary the number of FLDmamba layers within the range of
{1, 2, 3, 4, 5}, the hidden size from {128, 256, 512, 1024, 2048}, and the learning rate from�
5⇥ 10�4

, 5⇥ 10�5
, 5⇥ 10�6

, 5⇥ 10�7
, 5⇥ 10�8

 
. Based on the results, we provide a sum-

mary of observations regarding these three parameters and their effects on performance, measured
by MSE and MAE metrics, as follows: (1) We examine the impact of FLDmamba layers on the
performance of FLDmamba. We observe that FLDmamba achieves the best performance when the
number of layers is set to 2. However, as we increase the number of FLDmamba layers, the per-
formance starts to diminish. This suggests that additional layers may introduce an over-smoothing
effect, which negatively affects the performance of FLDmamba. (2) We also conducted experiments
to investigate the effect of hidden sizes on FLDmamba performance. We find that our model FLD-
mamba achieves the highest performance when the hidden size is set to 1024. This indicates that
smaller hidden sizes may not provide sufficient information, while larger hidden sizes may introduce
redundant information that hampers the performance of FLDmamba. (3) Furthermore, we examine
the impact of the learning rate on performance and observe that our method FLDmamba achieves
the best performance when the learning rate is set to 5⇥ 10�6. Smaller or larger learning rates may
result in insufficient convergence or overfitting, which adversely affects the performance.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 11: Long-term prediction with the lookback length from the range [96, 192, 336, 720].

Figure 12: Model efficiency comparison on ETTh1 and ETTh2. The batch size is 32.

6.6 LIMITATIONS AND FUTURE WORK

The limitation of our work involves potential challenges in scaling the proposed model to extremely
large datasets. Future efforts will focus on improving the model’s adaptability to dynamic data
environments and assessing its performance across diverse time series datasets. Furthermore, the
exploration of alternative kernel functions beyond the RBF and a thorough scalability analysis will
be pursued. Lastly, extending the model to accommodate missing data and integrating uncertainty
quantification in predictions will bolster its practical utility.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 13: Case study of FLDmamba in terms of multi-scale periodicity.

20


	Introduction
	Related Work
	Methodology
	FLDmamba
	Data Smoothing via the Radial Basis Function Kernel
	FMamba Encoder Layer Powered by the Fast Fourier Transform (FFT)
	Mamba Encoder Layer
	The FMamba-Mamba (FMM) Block for FLDmamba
	Inverse Laplace Transform for FLDmamba


	Evaluation
	Experimental Setup
	Overall Comparison (Q1)
	Ablation Study (Q2)
	Robustness (Q3)
	Long-term Prediction Comparison (Q4)
	Case Study (Q5)

	Conclusion
	Appendix
	Algorithms
	Preliminary
	Model Complexity
	Experiments
	Experiment Settings
	Baseline Descriptions

	Efficiency (Q6)
	Hyperparameter Study (Q7)

	Limitations and Future Work


