N U B W N -

o

(R RN - 7 T VI SR

10

12
13
14

—
»~

Under review as a conference paper at ICLR 2025

6 APPENDIX

6.1 ALGORITHMS

Algorithm 1: The FLDmamba Algorithm

Input: X/:\(B, L,V);

Output: Y: (B, L, V),

U + FMamba(X); // Step into FMamba algorithm
U’ <+ Mamba(X); // Step into the Mamba algorithm
U' U +U;

y' < FMamba(U"); // Step into FMamba algorith
y" +— Mamba(U"); // Step into Mamba algorithm ,
Y + FFT(y' +y");

Y <« Linear(Y);

Y « ILT(Y); // Inverse Laplace Transform module
return SA(;

Algorithm 2: The FMamba Algorithm

Input: X:(B,L,V);

Output: U:(B, L, V);

X’ «+ RBF(X);

forp=1,2, ..., FMamba layers do

A: (V, N) «+ Parameter

B: (V,L,N) < sp(X')

C:(B,L,N) + s¢(X')

A: (B, L, N) « 7a(Parameter + sa (X'))
A’ = FFT(A)

Ap = IFFT(A)

Ar,Br: (B,L,V,N) < discretize(Ap, A, B)
UM < SSM (Ar, B, C)(X')

U® « UM @ SiLU(Linear(X'))

U « Linear(U®)

end
return U;

Algorithm 3: The Mamba Algorithm

Input: X: (B,L,V);

Output: U':(B,L, V);

X’ + RBF(X);

for p=1,2, ..., Mamba layers do

A: (V, N) «+ Parameter

B: (B,L,N) «+ sp(X’)

C: (B,L,N) «+ s¢(X')

A: (B, L, N) < 7a(Parameter + sa (X))
A B:(B,L, V,N) < discretize(A,A,B)
UM+ SSM (A, B, C)(X')

U'? « U'M @ SiLU(Linear(X"))

U’ < Linear(U'?)

end
return U’;

13

Under review as a conference paper at ICLR 2025

6.2 PRELIMINARY

Mamba. Mamba is proposed in (Gu & Dao, [2023). With four parameters A, B, C, A, Mamba is
defined based on a sequence-to-sequence transformation via the following equations:

h'(t) = Ah(t) + Bx(t);
y(t) = Ch(t);
hy = Ahy_1 + Bxy &)

where h(t) denotes the hidden state, x(t) is the input sequence, y(t) is the output sequence, and A €
RNXN B ¢ REXN C € RV*L, In addition, N and L are the dimension factor and the sequence
length, respectively. The discretization process of parameters (A, B) is shown as follows:

A =exp(AA); B =AA'exp(AA)-AB (10)
Here the discretization is closely related to continuous-time systems, providing them with addi-
tional properties such as resolution invariance (Nguyen et al.| [2022) and automatic normalization,
ensuring the model’s proper calibration. Mamba achieves input-dependent selection by making B,
C, and A functions of the input x. In this way, Mamba is able to dynamically adjust its opera-
tions, computations, and information flow based on the specific characteristics of the input data.
This input-dependent selection allows Mamba to effectively adapt its behavior and capture the rel-
evant patterns and dynamics present in the input, resulting in enhanced modeling capabilities and
improved performance for various tasks. Then a state-space model (SSM) utilize A, B, and C to
process the input z:

K = (CB,CAB,..CA*B,..)T, y=KTz (11)

Finally, the output y of the SSM is multiplied with a non-linear activation-transformed input. This
result is then passed through a final linear layer to produce Mamba’s output. For a complete overview
of Mamba’s architecture, refer to Algorithm

Fourier Transform. Given the input function f(x), we can obtain the frequency domain conversion
function F(k) via the Discrete Fourier Transform (DFT), where F denotes the Fourier transform of
the function f(x). The process is shown as follows:

F(k) :/df(a:)e_ﬂ”k‘”dm

= / f(x)cos(2mkx)dx + j / f(z)sin(2rkax)dx (12)
d d

In this context, we have the frequency variable denoted as k, the spatial variable as x, and the
imaginary unit as j. The real part of F is represented as Re(F'), while the imaginary part is denoted
as Im(F). The complete conversion is expressed as F = Re(F) + jIm(F). The Fourier transform
is employed to decompose the input signal into its constituent frequencies. This process facilitates
the identification and detection of periodic or aperiodic patterns, which are crucial for tasks such as
image recognition.

Laplace Transform. The Laplace transform is a powerful mathematical tool used in various fields,
particularly in engineering, physics, and applied mathematics. It allows us to convert functions of
time into functions of complex variables, providing a useful way to analyze and solve differential
equations. The Laplace transform of a function, denoted as F'(s), is defined as follows:

F(s) = L{F (D)} = / T eti) di (13)

In this equation, f(t) is the original function in the time domain, s is a complex variable, and
F(s) is the transformed function in the complex frequency domain. The Laplace transform has
several important properties that make it a versatile tool for analysis. For example, it enables us
to simplify differential equations into algebraic equations, making it easier to solve for unknown
functions. Additionally, the Laplace transform allows us to study system behavior, stability, and
response to different inputs. By applying the inverse Laplace transform, we can obtain the original
function back from its transformed representation. This transformation provides a valuable method

14

Under review as a conference paper at ICLR 2025

for understanding and manipulating functions in the frequency domain, facilitating analysis and
design in various scientific and engineering disciplines.

The inverse Laplace transform is defined as follows:

f(t)=L7Y{F(s)} = lim WTestF(s)ds (14)

T—o0 y—iT

Here Re(s) = v and y is greater than the real part of all singularities of F'(s). For general functions,
the inverse Laplace transform may not have analytical solution.

To allow analytical solution for inverse Laplace transform, we follow (Cao et al.||2023) and consider
a neural operator

u(t) = o((s(f; ¢) * v)(t) + Wo(t)) (15)

where ¢ is a nonlinear activation function, W is a linear transformation, and « is a kernel integral
transformation. Imposing x4 (¢, 7) = k4 (t — 7), in the Laplace space we have

U(s) = Ky(s)V(s) (16)

where Ky (s) = L{k4(t)} and V(s) = L{v(t)}, U(s) = L{u(t)}.

Here we assume that the kernel integral operator has the form of Ky4(s) = 25:1 sz in the
Laplace space, where 3,, € R and u, € C are learnable parameters. We make the assumption so
that the singularities are first-order, and the inverse Laplace transform has analytical solution. After
some derivation, we have that the resulting form for «(¢) in the original space is

N s}
u(t) = Anexp(unt) + > A exp(iwit) (17)
n=1

l=—00

Here w; are frequencies by decomposing v(t) via Fourier series, and ~,,, \; are derived parameters
from f3,,,w; and p,,. For detailed derivation, see (Cao et al.,[2023).

Here we see that by assuming the first-order singularities for the kernel where the singularities
positions p,, are learnable, we can parameterize both the decay and periodic behavior in the original
space 25:1 Y exp(nt), via uy,’s real and imagery part, respectively. We further condition the real
and imagery part, as well as its amplitude ~,, on the output of the previous Mamba modules in our
FLDmamba, allowing the model to decide appropriate decay and periodic dynamics depending on
the input.

6.3 MODEL COMPLEXITY

This section presents a complexity analysis of our proposed model, FLDmamba. The computational
complexity of the base Mamba model is O(BLV N), where B represents the batch size, L de-
notes the sequence length, V' signifies the number of variables, and NV indicates the state expansion
factor. The Fast Fourier Transform (FFT) in FLDmamba has time complexity of O(BLN log L),
and the inverse Laplace transform has time complexity of O(BLN), both significantly smaller than
O(BLV N). Therefore, the total time complexity is still O(BLV N). In other words, FLDmamba
maintains a comparable computational time complexity to the base Mamba model, making it a
promising framework for large-scale real-world applications in time series prediction. This compu-
tational efficiency allows FLDmamba to handle extensive datasets and complex time series scenarios
without significant performance degradation.

15

Under review as a conference paper at ICLR 2025

6.4 EXPERIMENTS
6.4.1 EXPERIMENT SETTINGS

To ensure a fair comparison, we modify the hidden dimensionality of all compared algorithms within
the range of [128, 256,512, 1024, 2048] to achieve their reported best performance, which is con-
sistently observed at 1024. The learning rate (n) is initialized to 5 x 1075, and we set the number
of FLDmamba layers to 2. Consistent with the existing settings of time series datasets, we utilize
historical data with 96, 192, 336, or 720 time steps. The time steps are defined as 5 minutes, 1 hour,
10 minutes, or 1 day intervals to predict the corresponding future 96, 192, 336, or 720 time steps
in these time series datasets. All baseline methods are evaluated using their predefined settings as
described in their respective publications. We conduct testing for all tasks on a single NVIDIA L40
GPU equipped with 128 CPUs.

Table 2: The statistics of 9 public datasets.

Datasets Variates Timesteps Granularity
ETTh1&ETTh2 7 69,680 1 hour
PEMS04 307 16,992 5 minutes
PEMSO08 170 17,856 5 minutes
Exchange 8 7,588 1 day
Electricity 321 26,304 1 hour
Solar-Energy 137 52,560 10 minutes
ETTm1&ETTm?2 7 17,420 15min

6.4.2 BASELINE DESCRIPTIONS

Transformer-based methods:

* Autoformer (Wu et al., [2021) employs a series decomposition technique along with an
Auto-Correlation mechanism to effectively capture cross-time dependencies.

* FEDformer (Zhou et al., 2022) introduces an enhanced Transformer operating in the fre-
quency domain, aiming to improve both efficiency and effectiveness.

* Crossformer (Zhang & Yan,|2022) incorporates a patching operation like other models but
distinguishes itself by employing Cross-Dimension attention to capture dependencies be-
tween different series. While patching reduces the elements to process and extracts seman-
tic information comprehensively, these models encounter performance limitations when
handling longer.

* DLinear (Zeng et al., |2023) introduced DLinear, a method that decomposes time series
into two distinct components and generates a single Linear layer for each component.
This straightforward design has outperformed all previously proposed complex transformer
models.

* PatchTST (Huang et al., 2024) leverages patching and channel-independent techniques to
facilitate the extraction of semantic information from single time steps to multiple time
steps within time series data.

* iTransFormer (Liu et al., 2023) employs inverted attention layers to effectively capture
inter-series dependencies. However, its tokenization approach, which involves passing the
entire sequence through a Multilayer Perceptron (MLP) layer, falls short in capturing the
complex evolutionary patterns inherent in time series data.

MLP-based methods:

» TimesNet (Wu et al.,|2022) expands the examination of temporal fluctuations by extending
the 1-D time series into a collection of 2-D tensors across multiple periods.

* RLinear (Li et al.,[2023), the state-of-the-art linear model, incorporates reversible normal-
ization and channel independence into a purely linear structure.

16

Under review as a conference paper at ICLR 2025

ETTm 1
4 3
G 3 B2
= s
2 1
1 0
0 1 2 3 4 5 0 1 2 3 4 5
Time period Time period
(a) Node 9 (b) Node 18

Figure 8: Ablation study of FLDmamba on prediction performance on Node 9 and Node 18 instances
of ETTm 1 dataset.

ETTh1 ETTh2
0.40 0. 41 0.40
././o/‘\.\. 0.40 ./.\./0\.\. 10. 40
0.38F 0.38F
W 0.39 . 10.38 ,
n < w0 <<
= = = =
0.3 0.38 0
: .36+ 1o 36
0.37
0. 34 0.36 0.34 34

-FT -FM -Ma -RBF —ILT Ours

-FT -FM -Ma -RBF —ILT Ours
Figure 9: Ablation study of FLDmamba on four datasets with L = 96.

* TiDE (Das et al.|[2023) is an encoder-decoder model that employs a Multi-layer Perceptron
(MLP) architecture.

SSM-based methods:

* S-Mamba (Wang et al [2024) independently tokenizes the time points for each variate
using a linear layer. This allows for the extraction of correlations between variates using a
bidirectional Mamba layer, while a Feed-Forward Network is employed to learn temporal
dependencies.

6.5 EFFICIENCY (Q6)

This section evaluates the computational efficiency of our proposed framework, FLDmamba, in
comparison to several state-of-the-art baselines, including AutoFormer, RLinear, iTransformer, and
S-Mamba. We assess efficiency on the ETTh1 and ETTh2 datasets, considering both training time
per epoch and GPU memory consumption. The results, presented in Figure[I2] demonstrate the fol-
lowing: Comparative Efficiency of FLDmamba: Our method, FLDmamba, exhibits a favorable
balance between performance and computational efficiency, achieving comparable training times
and GPU memory costs to baselines. Efficiency of Mamba-Based Methods: Mamba-based meth-
ods, including FLDmamba and S-Mamba, demonstrate a compelling advantage in terms of training

0.39

0.38f

ETTh1-Hidden Size

ETThl-Layer
0.40
\/./'/' 0.40
0.38
w
(%]
=
0.36 0.36
0.34 0.34

038w w 0.37}
= = o36}

0.35¢

5 0.34

128 256 512 1024 2048

ETThl-Learning Rate

0.375f

0.350

5e-4 5e-5 5e-6 5e-7 5e-8

Figure 10: Hyperparameter study of FLDmamba.

17

Under review as a conference paper at ICLR 2025

time and GPU memory consumption compared to Transformer-based baselines such as AutoFormer.
This suggests that Mamba-based architectures offer a more efficient approach for handling time se-
ries data. These findings highlight the computational efficiency of our proposed framework, FLD-
mamba, while also emphasizing the potential benefits of Mamba-based architectures for addressing
computational resource constraints in time series modeling.

6.5.1 HYPERPARAMETER STUDY (Q7)

In this section, we aim to conduct a parameter study to evaluate the impact of impor-
tant parameters on the performance of our model, FLDmamba. The results are presented
in Figure Specifically, we vary the number of FLDmamba layers within the range of
{1,2,3,4,5}, the hidden size from {128,256,512,1024,2048}, and the learning rate from
{5x107*,5x1075,5 x 107%,5 x 1077,5 x 10~%}. Based on the results, we provide a sum-
mary of observations regarding these three parameters and their effects on performance, measured
by MSE and MAE metrics, as follows: (1) We examine the impact of FLDmamba layers on the
performance of FLDmamba. We observe that FLDmamba achieves the best performance when the
number of layers is set to 2. However, as we increase the number of FLDmamba layers, the per-
formance starts to diminish. This suggests that additional layers may introduce an over-smoothing
effect, which negatively affects the performance of FLDmamba. (2) We also conducted experiments
to investigate the effect of hidden sizes on FLDmamba performance. We find that our model FLD-
mamba achieves the highest performance when the hidden size is set to 1024. This indicates that
smaller hidden sizes may not provide sufficient information, while larger hidden sizes may introduce
redundant information that hampers the performance of FLDmamba. (3) Furthermore, we examine
the impact of the learning rate on performance and observe that our method FLDmamba achieves
the best performance when the learning rate is set to 5 x 10~%. Smaller or larger learning rates may
result in insufficient convergence or overfitting, which adversely affects the performance.

18

Under review as a conference paper at ICLR 2025

ETTh1 ETTh2

0. 46 Fie— = | =@ Ours —a

0. 38k ~—0— S-Mamba

0. 44k =@ QOurs == iTransformer
w : ~0— S-Mamba w RLinear
<E|: =& jTransformer <El: == AutoFormer

0.42F RLinear 0.36
== AutoFormer /ﬁm
———— v

[o R 4

0.40F 0.34F
96 19 336 720 96 19 336 720
Lookback Leneth Lookback Length

Figure 11: Long-term prediction with the lookback length from the range [96, 192, 336, 720].

ETTh1 80 ETTh1
0.50 1 0.50- 5000
o
o @ L 4000
0.45 00 §45] s
s 20 " w 3000 §
i i c 2 i S
S 0.40 £ 2040 5000 5
0.35 (20= 0.351 L 1000 2
O
Lo
g 5 ¢ & &
§48Fs
£7 §¢
5] g 9
< £
ETTh2
0.26 0.26 5000

B)

0.24 1 s

wn
= 0.201

Training Time
MSE

0.18 1

o

GPU Memory (

0.16 -

Figure 12: Model efficiency comparison on ETTh1 and ETTh2. The batch size is 32.
6.6 LIMITATIONS AND FUTURE WORK

The limitation of our work involves potential challenges in scaling the proposed model to extremely
large datasets. Future efforts will focus on improving the model’s adaptability to dynamic data
environments and assessing its performance across diverse time series datasets. Furthermore, the
exploration of alternative kernel functions beyond the RBF and a thorough scalability analysis will
be pursued. Lastly, extending the model to accommodate missing data and integrating uncertainty
quantification in predictions will bolster its practical utility.

19

Under review as a conference paper at ICLR 2025

ETTm 1 - Node 2

ETTm 1 - Node 4
1.0 1.0 Real
ffffff S-Mamba
0.5 0.5 ——- Ours .
g iTransformer, /"~ 7/
g 0.0
-0.5
iTransformer : ;
00:00 12:00 24:00 36:00 48:00 00:00 12:00 24:00 36:00 48:00
Time of Day Time of Day
ETTm 1 - Node 5 ETTm 1 - Node 6
1.0 Real 1.0 Real
fffff S-Mamba o AT - S-Mamba
0.5; ——- Ours ——— Ours .
g iTransformer
3 ¥
g o0
-0.5
00:00 12:00 24:00 36:00 48:00 00:00 12:0Q 24:00 36:00 48:00
Time of Day Time of Day
ETTm 2 - Node 2 ETTm 1 - Node 7
0.2 e 1.0 Real
E ". LY |Transform</3<1_;‘
g W ST Real i
b -/ S-Mamba 7
0.0 -M- Ours
iTransformer
00:00 12:00 24:00 36:00 48:00 00:00 12:00 24:00 36:00 48:00
Time of Day Time of Day
ETTm 1 - Node 8 ETTm 1 - Node 9
1.0 Real
. S-Mamba
0.8 /M-~ Ours
(0] . . M
3 -~ iTransformer
< 0.6 Y
>
0.4
i » 0.2 Y
0.
2OO:OO 12:00 24:00 36:00 48:00 00:00 12:00 24:00 36:00 48:00
Time of Day

Time of Day

Figure 13: Case study of FLDmamba in terms of multi-scale periodicity.

20

	Introduction
	Related Work
	Methodology
	FLDmamba
	Data Smoothing via the Radial Basis Function Kernel
	FMamba Encoder Layer Powered by the Fast Fourier Transform (FFT)
	Mamba Encoder Layer
	The FMamba-Mamba (FMM) Block for FLDmamba
	Inverse Laplace Transform for FLDmamba

	Evaluation
	Experimental Setup
	Overall Comparison (Q1)
	Ablation Study (Q2)
	Robustness (Q3)
	Long-term Prediction Comparison (Q4)
	Case Study (Q5)

	Conclusion
	Appendix
	Algorithms
	Preliminary
	Model Complexity
	Experiments
	Experiment Settings
	Baseline Descriptions

	Efficiency (Q6)
	Hyperparameter Study (Q7)

	Limitations and Future Work

