
A Related works451

Answering complex queries on knowledge graphs differs from database query answering by being a452

data-driven task [37], where the open-world assumption is addressed by methods that learn from data.453

Meanwhile, learning-based methods enable faster neural approximate solutions of symbolic query454

answering problems [27].455

The prevailing way is query embedding, where the computational results are embedded and computed456

in the low-dimensional embedding space. Specifically, the query embedding over the set operator trees457

is the earliest proposed [13]. The supported set operators include projection[13], intersection [26],458

union and negation [28], and later on be improved by various designs [40, 3]. Such methods assume459

queries can be converted into the recursive execution of set operations, which imposes additional460

assumptions on the solvable class of queries [36]. These assumptions introduce additional limitations461

of such query embeddings462

Recent advancements in query embedding methods adapt query graph representation and graph463

neural networks, supporting atomics [21] and negated atomics [35]. Query embedding on graphs464

bypasses the assumptions for queries [36]. Meanwhile, other search-based inference methods [2, 39]465

are rooted in fuzzy calculus and not subject to the query assumptions [36].466

Though many efforts have been made, the datasets of complex query answering are usually subject to467

the assumptions by set operator query embeddings [36]. Many other datasets are proposed to enable468

queries with additional features, see [27] for a comprehensive survey of datasets. However, only one469

small dataset proposed by [39] introduced queries and answers beyond such assumptions [36]. It is470

questionable that this small dataset is fair enough to justify the advantages claimed in advancement471

methods [35, 39] that aim at complex query answering. The dataset [39] is still far away from the472

systematical evaluation as [36] and EFOk-CQA proposed in this paper fills this gap.473

B Details of constraint satisfaction problem474

In this section, we introduce the constraint satisfaction problem (CSP) again. One instance of CSP P475

can be represented by a triple P “ pX,D,Cq where X “ px1, ¨ ¨ ¨ , xnq is an n-tuple of variables,476

D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple of domains, meaning for each i, xi P Di. Then,477

C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSiq where Si is called478

the scope of the constraint, meaning it is a set of variables Si “ txiju and RSi is the constraint over479

those variables [29], meaning that RSi
is a subset of the cartesian product of variables in Si.480

Then the formulation of existential conjunctive formulas as CSP has already been discussed in481

Section 2.2. Additionally, for the negation of atomic formula ␣rph, tq, we note the constraint C is482

also binary with Si “ th, tu, RSi
“ tph, tq|h, t P E , ph, r, tq R KGu, this means that RSi

is a very483

large set, thus the constraint is less “strict” than the positive ones.484

C Preliminary of tree form query485

We explain the operator tree method, as well as the tree-form queries in this section, which is firstly486

introduced in [39]. The tree-form queries are defined to be the syntax closure of the operator tree487

method and are the prevailing query types in the existing datasets [28, 36], see the definition below:488

Definition 17 (Tree-Form Query). The set of the Tree-Form queries is the smallest set Φ such that:489

(i) If ϕpyq “ rpa, yq, where a P E , then ϕpyq P Φ;490

(ii) If ϕpyq P Φ,␣ϕpyq P Φ;491

(iii) If ϕpyq, ψpyq P Φ, then pϕ^ ψqpyq P Φ and pϕ_ ψqpyq P Φ;492

(iv) If ϕpyq P Φ and y1 is any variable, then ψpy1q “ Dy.rpy, y1q ^ ϕpyq P Φ.493

We note that the family of tree-form queries deviates from the targeted EFO1 query family [39]. The494

rationale of the definition is that the previous model relied on the representation of “operator tree”495

14

𝑦!

𝑦"
𝑥"

𝑐"

𝑐!

(1) (2) (3) (4)

𝑟#

𝑟!

𝑟"

𝑟$ 𝑟%

𝑦!

𝑦"
𝑥"

𝑐"

𝑐!

𝑟#

𝑟!

𝑟"

𝑟$ 𝑟%

𝑦!

𝑦"
𝑥"

𝑟#

𝑟$ 𝑟%

𝑦!

𝑦"
𝑥"

𝑟#

𝑟$

𝑟& 𝑟& 𝑟& 𝑟&

Figure 4: The four steps of enumerating the abstract query graphs. We note that the example and
representation follow Figure 3.

which addresses logical queries to simulate logical reasoning as the execution of set operators [28, 40,496

38], where each node represents a set of entities corresponding to the answer set of a sub-query [39].497

Then, logical connectives are transformed into operator nodes for set projections(Definition 17 i,iv),498

complement(Definition 17 ii), intersection, and union(Definition 17 iii) [36]. Particularly, the set499

projections are derived from the Skolemization of predicates [24]. Therefore, the operator tree500

method that has been adopted in lines of research [28, 40, 38] is just a model that neuralizes these set501

operations: projection, complement, intersection, and union. These different models basically only502

differ from each other by their parameterization while having the same expressiveness as characterized503

by the tree form query.504

Specifically, the left side of the Figure 1 shows an example of the operator tree, where “Held” and505

“Located” are treated as two projections, “N” represents set complement, and “I” represents set506

intersection. Therefore, the embedding of the root representing the answer set can be computed based507

on these set operations in a bottom-up manner [28].508

Finally, it has been noticed that tree-form query is subject to structural traceability and only has509

polynomial time combined complexity for inference while the general EFOk, or even EFO1 queries,510

is NP-complete, with detailed proof in [39]. Therefore, this result highlights the importance of511

investigating the EFOk queries as it greatly extends the previous tree-form queries.512

D Construction of the whole EFOk-CQA datset513

In this section, we provide details for the construction of the EFOk-CQA dataset.514

D.1 Enumeration of the abstract query graphs515

We first give a proposition of the property of abstract query graph:516

Proposition 18. For an abstract query graph G, if it conforms Assumption 13 and Assumption 14,517

then removing all constant entities in G will lead to only one connected component and no edge is518

connected between two constant entities.519

Proof. We prove this by contradiction. If there is an edge (whether positive or negative) between520

constant entities, then this edge is redundant, violating Assumption 13. Then, if there is more than one521

connected component after removing all constant entities in G. Suppose one connected component522

has no free variable, then this part is a sentence and thus has a certain truth value, whether 0 or 1,523

which is redundant, violating Assumption 13. Then, we assume every connected component has at524

least one free variable, we assume there is m connected component and we have:525

NodepGq “ pYm
i“1NodepGiqq YNodepGcq

where m ą 1, the Gc is the set of constant entities and each Gi is the connected component, we use526

NodepGq to denote the node set for a graph G. Then this equation describes the partition of the node527

set of the original G.528

15

Then, we construct Ga “ GrNodepG1qYGcs and Gb “ GrpYm
i“1NodepGiqqYNodepGcqs, where G529

represents the induced graph. Then we naturally have that ArIpGqs “ ArIpGaqs
Ś

ArIpGbqs, where530

the
Ś

represents the Cartesian product, violating Assumption 14.531

532

Additionally, as mentioned in Appendix B, the negative constraint is less “strict”, we formally put an533

additional assumption of the real knowledge graph as the following:534

Assumption 19. For any knowledge graph KG, with its entity set E and relations set R, we assume535

it is somewhat sparse with regard to each relation, meaning: for any r P R, |ta P E |Db.pa, r, bq P536

KG or pb, r, aq P KGu| ! E537

Then we develop another proposition for the abstract query graph:538

Proposition 20. With the knowledge graph conforming Assumption 19, for any node u in the abstract539

query graph G, if u is an existential variable or free variable, then it can not only connect with540

negative edges.541

Proof. Suppose u only connects to m negative edge e1, ¨ ¨ ¨ , em. For any grounding I , we assume
Ipeiq “ ri P R. For each ri, we construct its endpoint set

Endpointpriq “ ta P E |Db.pa, r, bq P KG or pb, r, aq P KGu

by the assumption 19, we have |Endpointpriq| ! E , then we have:

| Ym
i“1 Endpointpriq| ď Σm

i“1|Endpointpriq| ! E

since m is small due to the size of the abstract query graph. Then we have two situations about the542

type of node u:543

1.If node u is an existential variable.544

Then we construct a subgraph Gs be the induced subgraph of NodepGq ´ u, then for any possible545

grounding I , we prove that ArIpGsqs=ArIpGqs, the right is clearly a subset of the left due to it546

contains more constraints, then we show every answer of the left is also an answer on the right, we547

merely need to give an appropriate candidate in the entity set for node v, and in fact, we choose any548

entity in the set E ´Ym
i“1Endpointpriq since it suffices to satisfies all constraints of node u, and we549

have proved that |E ´Ym
i“1Endpointpriq| ą 0.550

This violates the Assumption 13.551

2.If node u is a free variable.552

Similarly, any entity in the set E ´Ym
i“1Endpointpriq will be an answer for the node u, thus violating553

the Assumption 16.554

555

We note the proposition 20 extends the previous requirement about negative queries, which is firstly556

proposed in [28] and inherited and named as “bounded negation” in [36], the “bounded negation”557

requires the negation operator should be followed by the intersection operator in the operator tree.558

Obviously, the abstract query graph that conforms to “bounded negation” will also conform to the559

requirement in Proposition 20. A vivid example is offered in Figure 2.560

Finally, we make the assumption of the distance to the free variable of the query graph:561

Assumption 21. There is a constant d, such that for every node u in the abstract query graph G, it562

can find a free variable in its d-hop neighbor.563

We have this assumption to exclude the extremely long-path queries.564

Equipped with the propositions and assumptions above, we explore the combinatorial space of the565

abstract query graph given certain hyperparameters, including: the max number of free variables,566

16

max number of existential variables, max number of constant entities, max number of all nodes, max567

number of all edges, max number of edges surpassing the number of nodes, max number of negative568

edge, max distance to the free variable. In practice, these numbers are set to be: 2, 2, 3, 6, 6, 0, 1, 3.569

We note that the max number of edges surpassing the number of nodes is set to 0, which means that570

the query graph can at most have one more edge than a simple tree, thus, we exclude those query571

graphs that are both cyclic graphs and multigraphs, making our categorization and discussion in the572

experiments in Section 5.2 and Section 5.3 much more straightforward and clear.573

Then, we create the abstract query graph by the following steps, which is a graph with three types of574

nodes and two kinds of edges:575

1. First, create a simple connected graph G1 with two types of nodes, the existential variable576

and the free variable, and one type of edge, the positive edge.577

2. We add additional edges to the simple graph G1 and make it a multigraph G2.578

3. Then, the constant variable is added to the graph G2, In this step, we make sure not too long579

existential leaves. The result is graph G3.580

4. Finally, random edges in G3 are replaced by the negation edge, and we get the final abstract581

query graph G4.582

In this way, all possible query graphs within a certain combinatorial space are enumerated, and finally,583

we filter duplicated graphs with the help of the graph isomorphism algorithm. We give an example to584

illustrate the four-step construction of an abstract query graph in Figure 4.585

D.2 Ground abstract query graph with meaningful negation586

To fulfill the Assumption 15 as discussed in Section 4.2, for an abstract query graphG “ pV,E, f, gq,587

we have two steps: (1). Sample grounding for the positive subgraph Gp and compute its answer (2).588

Ground the Gn to decrease the answer got in the first step. Then we define positive subgraph Gp to589

be defined as such, its edge set E1 “ te P E|gpeq “ positiveu, its node set V 1 “ tu|u P V, De P590

E1 and e connects to uu. Then Gp=pV 1, E1, f, gq. We note that because of Proposition 20, if a node591

u P V ´ V 1, then we know node u must be a constant entity.592

Then we sample the grounding for the positive subgraph Gp, we also compute the CSP answer Ap for593

this subgraph.594

Then we ground what is left in the positive subgraph, we split each negative edge in E ´ E1 into two595

categories:596

1. This edge e connects two nodes u, v, and u, v P V 1.597

In this case, we sample the relation r to be the grounding of e such that it negates some of the answers598

in Ap.599

2. This edge e connects two nodes u, v, where u P V 1, while v R V 1.600

In this case, we sample the relation r for e and entity a for v such that they negate some answer in601

Ap, we note we only need to consider the possible candidates for node u and it is quite efficient.602

We note that there is no possibility that neither of the endpoints is in V 1 because as we have discussed603

above, this means that both nodes are constant entities, but in Proposition 18 we have asserted that no604

edge is connected between two entities.605

D.3 The comparison to previous benchmark606

To give an intuitive comparison of our EFOk-CQA dataset against those previous datasets and607

benchmark, including the BetaE dataset in [28], the EFO-1-QA benchmark [36] that extends BetaE608

dataset, and the FIT dataset in [39] that explores 10 more new query types, we offer a new figure in609

Figure 5.610

17

Tree Form

EFOk-CQA

EFO-1-QA

FIT

EFO1

BetaE

Figure 5: Illustration of the comparison between the EFOk-CQA dataset (navy blue box) and the
previous dataset (three yellow boxes), where the BetaE and EFO-1-QA aim to investigate the tree
form query, explained in Appendix C, while the FIT dataset aims to investigate EFO1 query that
is not tree form. FIT is not a subset of EFOk-CQA because its “3pm” query is not included in
EFOk-CQA.

It can be clearly observed that EFO-1-QA covers the BetaE dataset and has provided a quite systematic611

investigation in tree form query, while FIT deviates from them and studies ten new query types that612

are in EFO1 but not tree form.613

As discussed in Section 3, the scope of the formula investigated in our EFOk-CQA dataset surpasses614

the previous EFO-1-QA benchmark and FIT dataset because of three reasons: (1). We include615

the EFOk formula with multiple free variables that has never been investigated(the bottom part of616

navy blue box in Figure 5); (2). We systematically investigate those EFO1 queries that are not tree617

form while the previous FIT dataset only discusses ten hand-crafted query types (the navy blue part618

between two white lines in Figure 5); (3) Our assumption is more systematic than previous ones as619

shown by the example in Figure 2(the top navy blue part above two white lines in Figure 5). Though620

we only contain 741 query types while the EFO-1-QA benchmark contains 301 query types, we list621

reasons for the number of query types is not significantly larger than the previous benchmark: (1).622

EFO-1-QA benchmark relies on the operator tree that contains union, which represents the logic623

conjunction(_), however, we only discuss the conjunctive queries because we always utilize the624

DNF of a query. We notice that there are only 129 query types in EFO-1-QA without the union,625

significantly smaller than the EFOk-CQA dataset. (2). In the construction of EFOk-CQA dataset,626

we restrict the query graph to have at most one negative edge to avoid the total number of query types627

growing quadratically, while in EFO-1-QA benchmark, their restrictions are different than ours and it628

contains queries that have two negative atomic formulas as indicated by the right part of yellow box629

is not contained in the navy blue box.630

D.4 EFOk-CQA statistics631

The statistics of our EFOk-CQA dataset are shown in Table 3 and Table 4, they show the statistics632

of our abstract query graph by their topology property, the statistics are split into the situation that633

the number of free variable k “ 1 and the number of free variable k “ 2, correspondingly. We634

note abstract query graphs with seven nodes have been excluded as the setting of hyperparameters635

discussed in Appendix D.1, we make these restrictions to control the quadratic growth in the number636

of abstract query graphs.637

Finally, in FB15k-237, we sample 1000 queries for an abstract query graph without negation, 500638

queries for an abstract query graph with negation; in FB15k, we sample 800 queries for an abstract639

18

Table 3: The number of abstract query graphs with one free variable. We denote e as the number of
existential variables and c as the number of constant entities. SDAG represents the Simple Directed
Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. Sum.(c) and Sum.(e) is the
total number of queries with the number of constant entities / existential variables fixed.

c
e 0 1 2 Sum.(c) Sum.

SDAG SDAG Multi SDAG Multi Cyclic

1 1 2 4 4 16 4 31
2512 2 6 6 20 40 8 82

3 2 8 8 36 72 12 138

Sum.(e) 5 16 18 60 128 24

Table 4: The number of abstract query graphs with two free variables. The notation of e, c SDAG,
Multi, and Cyclic are the same as Table 3. And "-" means that this type of abstract query graph is not
included.

c
e e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

c “ 1 1 2 7 18 4 6 32 26 96
c “ 2 4 4 20 36 8 38 108 64 282
c “ 3 4 4 32 60 12 - - - 112

query graph without negation, 400 queries for an abstract query graph with negation; in NELL,640

we sample 400 queries for an abstract query graph without negation, 100 queries for an abstract641

query graph with negation. As we have discussed in Appendix D.2, sample negative query is642

computationally costly, thus we sample less of them.643

E Evaluation details644

We explain the evaluation protocol in detail for Section 4.5.645

Firstly, we explain the computation of common metrics, including Mean Reciprocal Rank(MRR) and646

HIT@K, given the full answer A in the whole knowledge graph and the observed answer Ao in the647

observed knowledge graph, we focus on the hard answer Ah as it requires more than memorizing the648

observed knowledge graph and serves as the indicator of the capability of reasoning.649

Specifically, we rank each hard answer a P Ah against all non-answers E ´A´Ao, the reason is650

that we need to neglect other answers so that answers do not interfere with each other, finally, we get651

the ranking for a as r. Then its MRR is 1{r, and its HIT@k is 1rďk, thus, the score of a query is the652

mean of the scores of every its hard answer. We usually compute the score for a query type (which653

corresponds to an abstract query graph) as the mean score of every query within this type.654

As the marginal score and the multiply score have already been explained in Section 4.5, we only655

mention one point that it is possible that every free variable does not have marginal hard answer.656

Assume that for a query with two free variables, its answer set A “ tpa1, a2q, pa1, a3q, pa4, a2qu and657

its observed answer set Ao “ tpa1, a3q, pa4, a2qu. In this case, a1 is not the marginal hard answer for658

the first free variable and a2 is not the marginal hard answer for the second free variable, in general,659

no free variable has its own marginal hard answer.660

Then we only discuss the joint metric, specifically, we only explain how to estimate the joint ranking661

by the individual ranking of each free variable. For each possible k-tuple pa1, ¨ ¨ ¨ , akq, if ai is ranked662

as ri among the whole entity set E , we compute the score of this tuple as Σk
i“1ri, then we sort663

the whole Ek k-tuple by their score, for the situation of a tie, we just use the lexicographical order.664

After the whole joint ranking is got, we use the standard evaluation protocol that ranks each hard665

19

Algorithm 1 Embedding computation on the query graph.
Require: The query graph G.

Compute the ordering of the nodes as explained in Algorithm 2.
Create a dictionary E to store the embedding for each node in the query graph
for iÐ 1 to n do

if node ui is a constant entity then
The embedding of ui, Eris is gotten from the entity embedding

else
Then we know node ui is either free variable or existential variable
Compute the set of nodes tuiju

t
j“1 that are previous to i and adjacency to node ui.

Create a list to store projection embedding L.
for j Ð 1 to t do

Find the relation r between node ui and uij , get the embedding of node uij as Erijs.
if Erijs is not None then

if The edge between ui and uiJ is positive then
Compute the embedding of projection(Erijs, r), add it to the list L.

else
Compute the embedding of the negation of the projection(Erijs, r), add it to the list
L.

end if
end if

end for
if The list L has no element then
Eris is set to none.

else if The list L has one element then
Eris “ Lr0s

else
Compute the embedding as the intersection of the embedding in the list L, and set Eris as
the outcome.

end if
end if

end for
return The embedding dictionary E for each node in the query graph.

answer against all non-answers. It can be confirmed that this estimation method admits a closed-form666

solution for the sorting in Ek space, thus the computation cost is affordable.667

We just give the closed-form solution when there are two free variables:668

for the tuple pr1, r2q, the possible combinations that sum less than r1 ` r2 is
`

r1`r2´1
2

˘

, then, there669

is r1 ´ 1 tuple that ranks before pr1, r2q because of lexicographical order, thus, the final ranking for670

the tuple pr1, r2q is just
`

r1`r2´1
2

˘

` r1 that can be computed efficiently.671

F Implementation details of CQA models672

In this section, we provide implementation details of CQA models that have been evaluated in our673

paper. For query embedding methods that rely on the operator tree, including BetaE [28], LogicE [24],674

and ConE [40], we compute the ordering of nodes in the query graph in Algorithm 2, then we compute675

the embedding for each node in the query graph Algorithm 1, the final embedding of every free676

node are gotten to be the predicted answer. Especially, the node ordering we got in Algorithm 2677

coincides with the natural topology ordering induced by the directed acyclic operator tree, so we can678

compute the embedding in the same order as the original implementation. Then, in Algorithm 1, we679

implement each set operation in the operator tree, including intersection, negation, and set projection.680

By the merit of the Disjunctive Normal Form (DNF), the union is tackled in the final step. Thus, our681

implementation can coincide with the original implementation in the original dataset [28].682

20

Algorithm 2 Node ordering on the abstract query graph.
Require: The abstract query graph G “ pV,E, f, gq, V consists m nodes, u1, ¨ ¨ ¨ , um.

Creates an empty list L to store the ordering of the node.
Creates another two set S1 and S2 to store the nodes that are to be explored next.
for iÐ 1 to m do

if The type of node fpuiq is constant entity then
list L append the node ui
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for

end if
while Not all node is included in L do

if Set S1 is not empty then
We sort the set S1 by the sum of their distance to every free variable in G, choose the most
remote one, and if there is a tie, randomly choose one node, ui to be the next to explore.
We remove ui from set S1.

else
In this case, we know set S2 is not empty because of the connectivity of G.
We randomly choose a node ui P S2 to be the next node to explore.
We remove ui from set S2.

end if
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for
List L append the node ui

end while
end for
return The list L as the ordering of nodes in the whole abstract query graph G

For CQD [2] and LMPNN [35], their original implementation does not require the operator tree, so683

we just use their original implementation. Specifically, in a query graph with multiple free variables,684

for CQD we predict the answer for each free variable individually as taking others free variables as685

existential variables, for LMPNN, we just got all embedding of nodes that represent free variables.686

For FIT [39], though it is proposed to solve EFO1 queries, it is computationally costly: it has a687

complexity of OpE2q in the acyclic graphs and is even not polynomial in the cyclic graphs, the688

reason is that FIT degrades to enumeration to deal with cyclic graph. In our implementation, we689

further restrict FIT to at most enumerate 10 possible candidates for each node in the query graph, this690

practice has allowed FIT to be implemented in the dataset FB15k-237 [32]. However, it cost 20 hours691

to evaluate FIT on our EFOk-CQA dataset while other models only need no more than two hours.692

Moreover, for larger knowledge graph, including NELL [7] and FB15k [5], we have also encountered693

an out-of-memory error in a Tesla V100 GPU with 32G memory when implementing FIT, thus, we694

omit its result in these two knowledge graphs.695

G Further outlook to more complex query answering696

In this section, we discuss possible further development in the task of complex query answering and697

how our work, especially our framework proposed in Section 4 can help with future development.698

21

We list some new features that may be of interest and show the maximum versatility our framework699

can reach. Our analysis and characterization of future queries inherit the outlook in [37] and also is700

based on the current development.701

Inductive Reasoning Inductive reasoning is a new trend in the field of complex query answering.702

Some entities [9] or even relations [15] are not seen in the training period, namely they can not be703

found by the observed knowledge graph Go therefore, the inductive generalization is essential for the704

model to infer answers. We note that our framework is powerful enough to sample inductive queries705

with the observed knowledge graph Go given. Therefore, the functionality of sampling inductive706

query is already contained and implemented in our framework, see https://anonymous.4open.707

science/r/EFOK-CQA/README.md.708

N-ary relation N-ary relation is a relation that has n ą 2 corresponding entities, therefore, the factual709

information in the knowledge graph is not a triple but a pn` 1q-tuple. Moreover, the query graph is710

also a hypergraph, making the corresponding CSP problem even harder. This is a newly introduced711

topic [23, 1] in complex query answering, which our framework has limitations in representing.712

Knowledge graph with attribute Currently, there has been some research that has taken the713

additional attribute of the knowledge graph into account. Typical attributes include entity types [14],714

numerical literals [4],triple timestamps [16, 30], and triple probabilities [7]. We note that attributes715

expand the entity set E from all entities to entities with attribute values, it is also possible that the716

relation set R is also extended to contain corresponding relations, like “greater”, “less” when dealing717

with numerical literals. Then, our framework can represent queries on such extended knowledge718

graphs like in [4], where no function like “plus”, or “minus” is considered and the predicates are also719

binary.720

Overall, our framework can be applied to some avant-garde problem settings given certain properties,721

thus those functionalities proposed in Section 4 can be useful. We hope our discussion helps with the722

future development of complex query answering.723

H Additional experiment result and analysis724

In this section, we offer another experiment result not available to be shown in the main paper. For the725

purpose of supplementation, we select some representative experiment result as the experiment result726

is extremely complex to be categorized and be shown. we present the further benchmark result of the727

following: the analysis of benchmark result in detail, more than just the averaged score in Table 1 and728

Table 2, which is provided in Appendix H.1; result of different knowledge graphs, including NELL729

and FB15k, which is provided in Appendix H.2 and H.3, the situation of more constant entities since730

we only discuss when there are two constant entities in Table 2, the result is provided in Appendix H.4,731

and finally, all queries(including the queries without marginal hard answers), in Appendix H.5.732

We note that we have explained in Section 4.5 and Appendix E that for a query with multiple free733

variables, some or all of the free variables may not have their marginal hard answer and thus the734

marginal metric can not be computed. Therefore, in the result shown in Table 2 in Section 5.3, we735

only conduct evaluation on those queries that both of their free variables have marginal hard answers,736

and we offer the benchmark result of all queries in Appendix H.5 where only two kinds of metrics737

are available.738

H.1 Further result and analysis of the experiment in main paper739

To supplement the experiment result already shown in Section 5.2 and Section 5.3, we have included740

more benchmark results in this section. Though the averaged score is a broadly-used statistic to741

benchmark the model performance on our EFOk queries, this is not enough and we have offered742

much more detail in this section.743

Whole combinatorial space helps to develop trustworthy machine learning models. Firstly, we744

show more detailed benchmark results of the relative performance between our selected six CQA745

22

https://anonymous.4open.science/r/EFOK-CQA/README.md
https://anonymous.4open.science/r/EFOK-CQA/README.md
https://anonymous.4open.science/r/EFOK-CQA/README.md

0 50 100 150 200 250
Ranking of query types

0

20

40

60

80

HI
T@

10
(%

)

BetaE
LogicE
ConE
CQD
LMPNN
FIT
AVG.

Figure 6: Relative performance of the six representative CQA models in referring queries with one
free variable, where the ranking of query types is determined by the average HIT@10 score. A
Gaussian filter with sigma=1 is added to smooth the curve. We also use the red box to highlight the
easiest queries and the black box to highlight the most challenging ones.

models, the result is shown in Table 6. Specifically, we plot two boxes, the black one, including the746

most difficult query types, and the red box, including the easiest query types. In the easiest part, we747

find that even the worst model and the best model have pretty similar performance despite that they748

may differ greatly in other query types. The performance in the most difficult query types is more749

important when the users are risk-sensitive and desire a trustworthy machine-learning model that750

does not crash in extreme cases [33] and we highlight it in the black box. In the black box, we note751

that CQD [2], though designed in a rather general form, is pretty unstable when comes to empirical752

evaluation, as it has a clear downward curve and deviates from other model’s performance enormously753

in the most difficult query types. Therefore, though its performance is better than LMPNN and754

comparable to BetaE on average as reported in 1, its unsteady performance suggests its inherent755

weakness. On the other hand, ConE [40] is much more steady and outperforms BetaE and LogicE756

consistently. We also show the result when there are two free variables in Figure 7, where the model757

performance is much less steady but the trend is similar to the EFO1 case in general.758

Empirical hardness of query types and incomplete discussion of the previous dataset. Moreover,759

we also discuss the empirical hardness of query types themselves and compare different datasets760

accordingly in Figure 8. We find the standard deviation of the six representative CQA models761

increases in the most difficult part and decreases in the easiest part, corroborating our discussion in762

the first paragraph. We also highlight those query types that have already been investigated in BetaE763

dataset [28] and FIT dataset [39]. We intuitively find that the BetaE dataset does not include very764

challenging query types while the FIT dataset mainly focuses on them. This can be explained by the765

fact that nine out of ten most challenging query types correspond to multigraph, which the BetaE766

dataset totally ignores while the FIT dataset highlights it as a key feature. To give a quantitative767

analysis of whether their hand-crafted query types are sampled from the whole combinatorial space,768

we have adopted the Kolmogorov–Smirnov test to test the distribution discrepancy between their769

distribution and the query type distribution in EFOk-CQA since EFOk-CQA enumerates all possible770

query types in the given combinatorial space and is thus unbiased. We find that the BetaE dataset771

is indeed generally easier and its p-value is 0.78, meaning that it has a 78 percent possibility to be772

23

0 100 200 300 400 500
Ranking of query types

0

20

40

60

M
ul

tip
ly

 H
IT

@
10

(%
)

BetaE
LogicE
ConE
CQD
LMPNN
FIT
AVG.

Figure 7: Relative performance of the six representative CQA models in referring queries with two
free variables, the ranking of query types is determined by the average Multiply HIT@10 score. A
Gaussian filter with sigma=1 is added to smooth the curve.

unbiased, while the FIT dataset is significantly harder and its p-value is 0.27. Therefore, there is773

no significant statistical evidence to prove they are sampled from the whole combinatorial space774

unbiasedly.775

H.2 Further benchmark result of k=1776

Firstly, we present the benchmark result when there is only one free variable, since the result in777

FB15k-237 is provided in Table 1, we provide the result for other standard knowledge graphs, FB15k778

and NELL, their result is shown in Table 6 and Table 7, correspondingly. We note that FIT is out779

of memory with the two large graphs FB15k and NELL as explained in Appendix F and we do780

not include its result. As FB15k and NELL are both reported to be easier than FB15k-237, the781

models have better performance. The trend and analysis are generally similar to our discussion in782

Section 5.2 with some minor, unimportant changes that LogicE [24] has outperformed ConE [40] in783

the knowledge graph NELL, indicating one model may not perform identically well in all knowledge784

graphs.785

H.3 Further benchmark result for k=2 in more knowledge graphs786

Then, similar to Section 5.3, we provide the result for other standard knowledge graphs, FB15k and787

NELL, when the number of constant entities is fixed to two, their result is shown in Table 8 and788

Table 9, correspondingly.789

We note that though in some breakdowns, the marginal score is over 90 percent, almost close to 100790

percent, the joint score is pretty slow, which further corroborates our findings that joint metric is791

significantly harder and more challenging in Section 5.3.792

H.4 Further benchmark result for k=2 with more constant numbers.793

As the experiment in Section 5.3 only contains the situation where the number of constant entity is794

fixed as one, we offer the further experiment result in Table 10.795

24

0 50 100 150 200 250
Ranking of EFO1 query types

0

10

20

30

40

50

60

70

80

90

HI
T@

10
(%

)

Mean
Standard deviation

0 5 10 15 20 25 30
Dataset distribution(%)

BetaE query types
FIT query types
EFO1 query types

Figure 8: Query type distribution in three different datasets, BetaE one, FIT one, and the EFO1 part
in our EFOk-CQA dataset. The left part shows the histogram that represents the probability density
function of each dataset. The ranking of query types is also determined by the mean HIT@10 score
as in Figure 6, with the standard deviation of the performance of the six CQA models shown as the
light blue error bar.

The result shows that models perform worse with fewer constant variables when compares to the796

result in Table 2, this observation is the same as the previous result with one free variable that has797

been discussed in Section 5.2.798

H.5 Further benchmark result for k=2 including all queries799

Finally, as we have explained in Section 4.5 and Appendix E, there are some valid EFOk queries800

without marginal hard answers when k ą 1. Thus, there is no way to calculate the marginal scores,801

all our previous experiments are therefore only conducted on those queries that all their free variables802

have marginal hard answers. In this section, we only present the result of the Multiply and Joint score,803

as they can be computed for any valid EFOk queries, and therefore this experiment is conducted on804

the whole EFOk-CQA dataset.805

We follow the practice in Section 5.3 that fixed the number of constant entities as two, as the impact806

of constant entities is pretty clear, which has been further corroborated in Appendix H.4. The807

experiments are conducted on all three knowledge graphs, FB15k-237, FB15k, and NELL, the result808

is shown in Table 11, Table 12, and Table 13, correspondingly.809

Interestingly, comparing the result in Table 2 and Table 11, the multiple scores actually increase810

through the joint scores are similar. This may be explained by the fact that if one free variable has no811

marginal hard answer, then it can be easily predicted, leading to a better performance for the whole812

query.813

25

Table 5: MRR scores(%) for inferring queries with one free variable on FB15k-237. We denote e as
the number of existential variables and c as the number of constant entities. SDAG represents the
Simple Directed Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. AVG.(c) and
AVG.(e) is the average score of queries with the number of constant entities / existential variables
fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 16.2 17.9 10.9 10.6 8.5 16.5 11.1
20.72 35.6 20.2 19.1 15.7 15.7 27.1 17.8

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 37.4 25.7 23.5 18.8 18.1 30.5

LogicE

1 17.4 19.0 11.5 11.0 8.5 16.8 11.5
21.32 36.7 21.2 19.8 16.5 16.1 27.3 18.4

3 55.5 34.6 34.5 22.3 22.0 37.5 25.4

AVG.(e) 38.9 27.3 24.5 19.4 18.5 30.6

ConE

1 18.6 19.9 11.8 11.4 9.3 18.7 12.3

23.12 39.1 22.4 20.8 18.1 17.6 30.7 20.1
3 58.8 36.4 37.0 24.6 23.8 41.7 27.6

AVG.(e) 41.4 28.7 26.0 21.3 20.1 34.2

CQD

1 22.2 19.5 9.0 9.2 6.4 15.6 10.0

21.92 35.3 20.1 19.1 16.4 16.2 27.6 18.4
3 40.3 32.9 34.3 24.4 24.0 40.2 26.8

AVG.(e) 33.9 26.2 23.7 20.5 19.4 31.9

LMPNN

1 20.5 21.4 11.2 11.6 8.7 17.0 11.9

20.52 42.0 22.6 18.5 16.5 14.9 26.5 17.9
3 62.3 35.9 31.6 22.1 19.8 35.5 24.0

AVG.(e) 44.2 28.8 22.7 19.4 16.9 29.4

FIT

1 22.2 25.0 17.4 13.9 11.7 23.3 15.6

30.32 45.3 29.6 28.5 23.8 24.3 35.5 26.5
3 64.5 44.8 45.4 33.3 33.5 44.4 36.2

AVG.(e) 46.7 36.2 33.6 28.6 27.9 37.9

26

Table 6: MRR scores(%) for inferring queries with one free variable on FB15k. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 38.6 30.4 29.2 21.7 21.7 24.1 24.3
34.02 49.7 34.0 37.2 28.3 29.2 35.5 31.0

3 63.5 46.4 48.6 33.9 36.1 45.8 38.1

AVG.(e) 63.5 46.4 48.6 33.9 36.1 45.8 38.1

LogicE

1 46.0 33.8 32.1 23.3 22.8 25.6 26.2
35.62 51.2 35.9 39.0 30.6 30.5 36.9 32.7

3 64.5 48.6 49.8 35.4 37.5 47.7 39.6

AVG.(e) 54.9 41.7 42.3 32.8 33.4 40.4

ConE

1 52.5 35.8 34.9 25.9 25.9 29.5 29.3

39.52 57.0 40.0 43.4 33.2 34.2 40.8 36.3
3 70.6 53.1 55.3 39.3 41.8 52.5 43.9

AVG.(e) 61.0 45.6 46.8 36.1 37.4 44.8

CQD

1 74.6 36.1 32.7 17.6 16.7 25.4 23.7
37.22 52.2 35.2 40.9 29.2 31.5 39.2 33.2

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 59.4 41.5 44.6 33.3 35.3 43.3

LMPNN

1 63.7 39.9 35.3 28.7 26.4 28.7 30.7

37.72 65.0 41.9 38.8 34.4 31.7 38.4 35.1
3 79.8 54.0 49.5 38.9 37.1 48.0 40.8

AVG.(e) 70.2 47.4 42.8 36.6 34.1 41.6

Table 7: MRR scores(%) for inferring queries with one free variable on NELL. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 13.9 26.4 35.0 8.6 14.9 19.1 17.5
33.62 58.8 31.5 43.8 22.4 30.6 34.7 30.7

3 78.8 48.6 58.3 29.6 39.0 47.0 39.5

AVG.(e) 53.1 38.5 48.3 25.2 33.3 38.2

LogicE

1 18.3 29.2 39.6 12.1 19.0 20.4 21.1
36.92 63.5 34.4 47.3 26.4 34.0 37.6 34.2

3 79.6 51.2 59.3 33.1 42.2 50.1 42.6

AVG.(e) 56.3 41.3 50.9 28.8 36.7 41.0

ConE

1 16.7 26.9 36.6 11.1 16.9 22.3 19.6

36.62 60.5 33.6 46.6 25.3 33.1 40.1 33.6
3 79.9 50.6 59.2 33.2 42.2 52.6 42.8

AVG.(e) 54.9 40.3 50.0 28.4 36.2 43.4

CQD

1 22.3 30.6 37.3 13.3 17.9 20.7 20.9
38.22 59.8 34.0 45.2 28.8 35.4 38.9 35.3

3 62.7 48.8 59.9 36.4 44.1 52.6 44.3

AVG.(e) 50.1 40.2 49.9 31.6 38.1 42.7

LMPNN

1 20.7 29.8 33.3 13.4 16.5 21.8 19.8

35.12 63.5 35.4 43.3 27.0 30.2 37.6 32.3
3 80.8 50.7 56.0 33.6 39.2 47.6 40.7

AVG.(e) 57.4 41.5 46.7 29.4 33.6 40.0

27

Table 8: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 76.9 77.2 68.9 69.3 75.1 55.0 57.4 73.6 63.6
Multiply 41.7 41.6 31.7 31.0 38.7 25.2 25.9 36.1 29.7

Joint 11.6 13.7 8.7 8.6 17.8 4.9 5.4 14.3 8.4

LogicE
Marginal 82.9 80.9 73.6 72.9 76.6 58.9 60.7 75.7 66.9
Multiply 47.5 45.0 36.3 34.1 40.4 28.5 29.0 38.0 32.7

Joint 12.7 13.9 10.0 9.9 19.2 6.1 6.5 15.9 9.6

ConE
Marginal 84.1 84.8 76.5 76.3 81.4 61.8 63.8 79.7 70.2
Multiply 48.7 48.1 37.7 35.9 44.2 29.9 30.4 41.4 34.6

Joint 14.2 15.6 10.3 10.4 20.6 6.2 6.6 16.9 10.1

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 45.0 46.6 37.4 36.9 43.9 28.1 29.2 41.9 34.0

Joint 17.1 19.0 13.1 13.0 20.6 7.7 8.6 18.1 11.9

LMPNN
Marginal 89.2 80.1 80.3 78.2 84.2 65.6 63.7 80.2 71.3
Multiply 56.6 50.5 45.7 42.4 49.0 37.6 34.8 44.6 39.7

Joint 18.9 17.2 12.9 12.4 22.4 8.0 7.5 16.9 11.2

Table 9: HIT@10 scores(%) of three different types for answering queries with two free variables on
NELL. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 81.3 95.9 72.8 85.5 79.9 57.2 66.7 77.0 71.2
Multiply 48.2 56.7 41.3 46.1 47.6 33.1 36.5 42.9 39.6

Joint 19.2 31.8 21.2 26.5 21.7 13.8 17.5 18.5 18.8

LogicE
Marginal 87.1 99.8 81.0 91.8 83.2 65.7 74.0 81.0 77.7
Multiply 52.5 60.3 47.6 51.7 50.2 39.4 42.6 46.0 44.8

Joint 21.1 32.8 25.4 30.5 23.3 18.0 21.5 20.5 22.3

ConE
Marginal 82.6 96.4 76.0 87.8 88.1 60.0 69.3 83.0 74.7
Multiply 48.7 56.9 41.9 46.3 52.2 34.5 38.1 47.7 41.7

Joint 17.0 30.9 19.3 25.0 24.9 12.9 17.2 20.3 18.8

CQD
Marginal 79.5 96.3 83.2 92.2 83.5 65.8 75.7 84.8 79.4
Multiply 49.2 57.8 51.1 53.1 51.4 40.6 45.1 50.6 47.4

Joint 23.0 38.0 29.7 34.2 26.4 21.4 25.4 24.0 26.0

LMPNN
Marginal 88.5 96.6 81.5 90.9 85.3 65.0 70.7 83.1 76.7
Multiply 55.7 62.4 50.3 53.3 54.0 40.8 42.6 50.3 46.5

Joint 23.4 36.4 25.5 29.4 24.0 16.6 19.7 21.5 21.5

28

Table 10: HIT@10 scores(%) of three different types for answering queries with two free variables
on FB15k-237. The constant number is fixed to be one. The notation of e, SDAG, Multi, and Cyclic
is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 37.5 29.7 33.4 28.1 35.6 30.0 25.9 41.2 31.2
Multiply 18.9 13.7 15.3 10.3 15.2 17.7 13.3 17.2 14.3

Joint 0.9 1.1 1.4 0.9 3.3 1.1 0.9 3.9 1.7

LogicE
Marginal 40.6 30.7 36.0 29.1 34.6 29.8 25.3 41.5 31.4
Multiply 21.1 14.3 17.2 10.9 16.3 17.8 13.3 17.5 14.7

Joint 1.4 1.4 1.6 0.9 3.7 1.4 1.0 4.3 1.9

ConE
Marginal 40.8 32.4 37.3 30.4 40.7 31.1 26.9 45.0 33.5
Multiply 22.1 15.2 18.4 11.7 19.3 18.5 14.8 20.9 16.5

Joint 1.4 1.0 1.7 1.0 4.3 1.4 1.0 4.4 2.0

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 23.3 9.1 18.5 9.2 16.2 14.6 9.2 19.1 12.9

Joint 1.5 0.6 2.0 1.1 3.4 1.5 0.9 4.4 1.9

LMPNN
Marginal 39.0 27.6 40.0 29.5 39.3 30.6 24.8 42.7 32.0
Multiply 25.1 13.9 24.3 13.3 21.6 20.0 14.0 21.1 17.1

Joint 1.6 1.3 2.5 1.3 3.9 1.5 1.0 4.0 2.0

Table 11: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k-237(including queries without the marginal hard answer). The constant number is fixed to be
two. The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 29.1 29.1 18.3 37.5 10.4 28.0 93.6 74.6 24.1

Joint 2.1 2.2 1.7 3.0 2.4 1.8 5.8 14.2 4.6

LogicE
Multiply 31.6 32.9 19.8 39.6 10.9 28.7 96.3 73.8 25.4

Joint 2.6 2.5 2.1 3.1 2.5 2.2 6.4 15.6 5.0

ConE
Multiply 32.6 31.9 20.5 41.0 12.6 29.0 99.7 86.8 27.0

Joint 3.0 2.1 1.9 3.3 2.7 2.2 6.6 16.8 5.4

CQD
Multiply 34.5 23.4 22.3 36.8 10.6 26.4 75.3 77.3 25.6

Joint 2.9 1.4 2.1 3.3 2.3 2.0 5.0 15.0 5.6

LMPNN
Multiply 36.8 29.3 27.5 45.8 13.9 31.2 97.0 86.5 27.9

Joint 2.7 2.2 2.7 3.9 2.5 2.1 5.8 14.6 5.0

FIT
Multiply 41.5 44.4 28.9 56.8 10.2 39.4 139.7 100.3 35.0

Joint 2.4 2.3 2.1 3.4 1.6 2.2 7.4 15.4 5.9

29

Table 12: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 42.1 57.2 26.5 66.5 15.5 34.6 134.9 100.0 35.0

Joint 6.6 9.4 4.5 10.2 4.6 4.3 16.7 26.0 9.2

LogicE
Multiply 48.2 65.6 31.0 71.6 16.8 37.8 143.9 105.8 38.1

Joint 7.5 11.2 5.6 12.5 5.3 5.6 20.4 28.5 10.5

ConE
Multiply 50.2 72.2 32.8 74.6 18.3 38.3 149.3 114.3 40.4

Joint 6.8 10.0 5.2 12.5 5.5 5.2 19.4 30.4 11.0

CQD
Multiply 48.1 55.9 31.9 69.0 15.8 29.5 93.5 103.2 37.6

Joint 9.4 11.4 6.6 14.8 4.8 5.5 17.5 27.2 12.0

LMPNN
Multiply 58.4 79.5 43.1 94.6 21.3 40.9 146.2 135.9 45.0

Joint 8.6 12.9 6.8 15.6 6.2 5.4 19.3 31.7 11.6

Table 13: HIT@10 scores(%) of two different types for answering queries with two free variables on
NELL(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 21.2 47.3 22.0 51.9 14.7 24.1 80.5 79.7 33.4

Joint 4.2 19.6 6.8 19.1 5.1 6.8 26.7 24.0 14.1

LogicE
Multiply 26.6 52.8 28.8 63.4 16.0 32.8 103.1 88.5 38.9

Joint 3.8 21.5 9.7 26.0 5.9 11.5 36.9 27.3 16.5

ConE
Multiply 25.3 51.4 23.9 53.9 16.9 27.3 90.7 90.6 36.7

Joint 3.4 20.2 6.4 17.0 6.1 7.2 27.0 27.1 14.2

CQD
Multiply 30.3 48.9 30.6 64.3 15.9 33.1 88.9 91.2 40.9

Joint 4.4 21.9 9.8 27.5 5.6 12.0 37.6 28.1 18.0

LMPNN
Multiply 33.4 58.3 33.7 65.3 19.4 30.7 85.1 105.0 41.8

Joint 4.4 23.7 10.0 21.9 5.8 8.2 23.2 28.8 15.7

30

	Related works
	Details of constraint satisfaction problem
	Preliminary of tree form query
	Construction of the whole EFOk-CQA datset
	Enumeration of the abstract query graphs
	Ground abstract query graph with meaningful negation
	The comparison to previous benchmark
	EFOk-CQA statistics

	Evaluation details
	Implementation details of CQA models
	Further outlook to more complex query answering
	Additional experiment result and analysis
	Further result and analysis of the experiment in main paper
	Further benchmark result of k=1
	Further benchmark result for k=2 in more knowledge graphs
	Further benchmark result for k=2 with more constant numbers.
	Further benchmark result for k=2 including all queries

