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APPENDIX

A GLOSSARY

Table 2: Glossary of notation and terms used in the methods section.
Symbol Description

Molecular Representation and Coordinates
G Macrocycle graph, where G = (V, E).
V Set of atom vertices in a macrocycle graph G.
E Set of edges (bonds) between the atoms in a macrocycle graph G.
C Set (ensemble) of conformers for a macrocycle, where C = {c1, c2, . . . , cK}.
D Bond distances in a conformer ensemble C.
Θ Bond angles in a conformer ensemble C.
T Dihedral (torsional) angles in a conformer ensemble C.
ξ Vector of all ring Cartesian coordinates in a conformer.
d Vector of all ring bond distances in a conformer.
θ Vector of all ring bond angles in a conformer.
τ Vector of all ring dihedral (torsional) angles in a conformer.
di,j Bond distance between atoms vi and vj .
θi,j,k Bond angle between atoms vi, vj , and vk.
τi,j,k,l Dihedral (torsional) angle between atoms vi, vj , vk, and vl.
ϕ Dihedral angle of bond between nitrogen and α-carbon.
ψ Dihedral angle of bond between α-carbon and carbonyl-carbon.
ω Dihedral angle of bond between carbonyl-carbon and nitrogen (peptide bond).

Encoder Model
ai Atom features for ring vertex vi.
θi Bond angles corresponding to ring vertex vi (1 ring & 5 side chain).
τi Dihedral (torsional) angles corresponding to ring vertex vi (1 ring & 5 side chain).
xi Internal coordinates corresponding to vertex vi, where xi = θi ⊕ τi.
vi Input/hidden representation for ring vertex vi.
zi Self-attention output for vertex vi.
αij Attention probability between vertices vi and vj .
eij Unnormalized attention score between vertices vi and vj .
dz Attention head dimensionality.
pK
ij Cyclic relative positional embedding between vertices vi and vj .

WK Key matrix.
WQ Query matrix.
WV Value matrix.
WD Graph-distance embedding matrix.

Diffusion Process
xt Noised internal coordinates (bond angles and torsions) at time step t.
q(xt | xt−1) Forward transition probability.
pΞ(xt−1 | xt) Diffusion model (reverse transition probability) parameterized by Ξ.
βt Variance from cosine variance schedule at time step t.
ϵt Noise scale at time step t.

Miscellaneous
·̂ Denotes predicted/generated quantity.
w(·) Function to wrap within [−π, π) range, w(τ) := (τ + π) mod (2π)− π.
δ Threshold for evaluating Coverage metric.
⊕ Concatenation.
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B DATASET DESCRIPTION

We leverage the recently described Conformer-Rotamer Ensembles of Macrocyclic Peptides (CREMP)
dataset (Grambow et al., 2023) that contains 36,198 unique macrocyclic peptide sequences and
their corresponding ensembles, totaling 31.3 million conformers. All conformers in CREMP were
optimized using the GFN2-xTB semi-empirical quantum chemistry method (Bannwarth et al., 2019).
GFN2-xTB incorporates physics-based terms for dispersion, electrostatics, hydrogen bonding, and
other quantum mechanical effects into a self-consistent tight-binding framework. This provides
a balance of reasonable accuracy and computational efficiency, bridging the gap between fast but
inaccurate force fields and high-level yet expensive DFT methods.

The conformational sampling was performed using CREST (Pracht et al., 2020), which combines
metadynamics enhanced sampling with GFN2-xTB for energies and forces. Metadynamics iteratively
adds biasing potentials to guide sampling to unexplored areas of conformational space, enabling
more thorough sampling than conventional molecular dynamics. By pairing metadynamics with
GFN2-xTB, CREST balances accuracy and computational efficiency when generating macrocycle
ensembles. However, metadynamics remains expensive, requiring thousands of CPU hours per
molecule. The CREMP dataset hence provides extensive high-quality training data of macrocycle
conformers. Our work builds on CREMP, by developing deep generative models to approximate
these computationally demanding physics-based methods for sampling.

Table 3: Dataset statistics for CREMP (Grambow et al., 2023).
Residues Molecules Conformers

Count Mean Median Std. Dev. Min. Max.

4 17,842 12,205,128 684 508 677 1 12,268
5 13,644 14,134,609 1,036 825 824 6 8,486
6 4,712 4,921,068 1,044 879 764 28 5,619

Total 36,198 31,260,805 864 656 768 1 12,268

C TRAINING DETAILS

We adapt a discrete-time diffusion scheme that formulates the forward transition probability using a
wrapped normal distribution,

q (xt | xt−1) = Nwrapped

(
xt;
√

1− βtxt−1, βtI
)

=
1

βt
√
2π

∑
k∈Zn

exp

(
−
∥∥xt −

√
1− βtxt−1 + 2πk

∥∥2
2β2

t

)
(4)

instead of a standard normal distribution (Wu et al., 2022; Jing et al., 2022), where xt represents
the noised internal coordinates (bond angles and torsions) at time step t. The diffusion model,
pΞ(xt−1 | xt), parameterized by Ξ, reverses the process to denoise a wrapped normal distribution
toward the data distribution. In the conditional setting, we further guide the diffusion process by
learning pΞ (xt−1 | xt,G) in order to draw samples from the ensemble for a specific macrocycle, G.
We use the same cosine variance schedule as Wu et al. (2022) and Nichol & Dhariwal (2021) for
βt ∈ (0, 1)Tt=1, but with significantly fewer time steps (T = 20). pΞ(xt−1 | xt) and pΞ (xt−1 | xt,G)
are trained using the simplified objective from Ho et al. (2020) to train a neural network, ϵΞ(xt, t),
to predict the noise present at a given time step by minimizing a smooth L1 loss (Girshick, 2015)
wrapped by w(x) = (x+ π) mod (2π)− π:

dw = w
(
ϵ− ϵΞ

(
w
(√
ᾱtx0 +

√
1− ᾱtϵ

)
, t
))

Lw =
1

N
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{
0.5

d2
w,i

βL
if |dw,i| < βL

|dw,i| − 0.5βL otherwise

(5)
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with βL = 0.1π as the transition point between L1 and L2 regimes (Wu et al., 2022), αt = 1− βt,
and ᾱt =

∏t
s=1 αs. We sample time steps uniformly from t ∼ U(0, T ) during training and shift the

bond angles and dihedrals using the element-wise means from the training data.

D SAMPLING DETAILS

During inference, we first sample xT from a wrapped normal distribution and iteratively generate x0

from t = T to t = 1 using

xt−1 = w

(
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵΞ(xt, t)

)
+ σtx

)
(6)

where σt =
√
βt(1− ᾱt−1)/(1− ᾱt) is the variance of the reverse process and z = N (0, I) if t > 1

and z = 0 otherwise (Wu et al., 2022).

E MODEL DETAILS AND HYPERPARAMETERS

Our model is a BERT transformer (Devlin et al., 2019) with graph-based, cyclic relative positional
encodings described in equation 1 and equation 2. The model input is a sequence of internal
coordinates (and atom features for the conditional model). We linearly upscale the model input (bond
angles and dihedrals) and separately upscale the atom features. Angles and atom features are then
concatenated. The time step is embedded using random Fourier embeddings (Song et al., 2021) and
added to the upscaled input. The combined embeddings are passed through the BERT transformer,
the output of which is passed through a two-layer feed-forward network with GELU activation and
layer normalization. Relevant hyperparameters are shown in Table 4.

Table 4: Hyperparameters.
Parameter Value
Angle embedding size 256
Atom feature embedding size 128
Encoder layer dimensionality (hidden size) 384
Number of hidden layers 12
Number of attention heads 12
Feed-forward layer dimensionality (intermediate size) 512

Optimizer AdamW
Learning rate 10−3 (restarted with 5× 10−4)
Maximum number of epochs 1000
Warmup epochs 10
Batch size 8192

To condition on the atom sequence, we encode each atom using features of the atom itself and
a Morgan fingerprint representation of the side chain attached to the atom (including the atom
itself). The atom features include the atomic number, a chiral tag (L, D, or no chirality), aromaticity,
hybridization, degree, valence, number of hydrogens, charge, sizes of rings that the atom is in, and
the number of rings that the atom is in. The Morgan fingerprint is a count fingerprint with radius 3
and size 32.
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F OPTIMIZATION FOR BACK CONVERSION TO CARTESIAN RING
COORDINATES
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Figure 4: Our constrained optimization procedure is robust to noise as illustrated by a synthetic test
of applying noise to the dihedral angles, recovering Cartesian coordinates using equation 3, and
comparing to the initial geometry in terms of rRMSD and rTFD.

To convert from the set of redundant internal coordinates predicted by the model back to Cartesian
coordinates, we solve the optimization in equation 3 to obtain a set of Cartesian coordinates that
exactly satisfies the known bond distances in the ring. To demonstrate that this procedure is robust
to noise, we repeatedly embed 4-, 5-, and 6-mer backbones in 3D using RDKit distance geometry,
extract their (redundant) internal coordinates, and add noise to the dihedral angles at different noise
scales (standard deviation of a normal distribution) while ensuring that angles always remain in
the [−π, π) range. This creates a set of inconsistent, redundant dihedral angles, i.e., there exists
no direct correspondence in Cartesian coordinates. We recover a possible Cartesian configuration
using equation 3 and compute rRMSD and rTFD for the ring atoms compared to the “true” internal
coordinates from the RDKit geometry. Figure 4 shows that even moderate errors (∼0.1 rad) result in
very small errors in terms of both rRMSD (∼0.1 Å) and rTFD (∼0.02).

Notably, the optimization problem in equation 3 is non-convex and requires a suitable initial guess to
perform well. We assign this initial guess by obtaining a Cartesian geometry using the approach of
sequentially setting atom positions according to the sequence of bond distances, angles, and torsions
starting from each of the atoms in the ring. We then average the so-generated nring sets of Cartesian
coordinates and use the resulting coordinates as the initial guess.
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G OVERALL METHOD OVERVIEW
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[Caption] 1. Schematic representation of how internal coordinates are assigned to each ring atom. For each atom in the macrocycle, we define a consistent 
direction based on the N-to-C directionality of the peptide backbone. Neighboring atoms then define the key vectors and planes used to calculate bond distances, 
angles, and torsions. Specifically, for an atom j, the N-to-C direction defines a set of indices (i, j, k, l) where i = j - 1, k = j + 1, and l = j + 2 along the macrocycle 
backbone. Internal coordinates are readily calculated from their Cartesian coordinates through standard geometry calculations.

Figure 6: Schematic representation of how internal coordinates are assigned to each ring atom.
For each atom in the macrocycle, we define a consistent direction based on the N-to-C directionality
of the peptide backbone. Neighboring atoms then define the key vectors and planes used to calculate
bond distances, angles, and torsions. Specifically, for an atom j, the N-to-C direction defines a set
of indices (i, j, k, l) where i = j − 1, k = j + 1, and l = j + 2 along the macrocycle backbone.
Internal coordinates are readily calculated from their Cartesian coordinates through standard geometry
calculations.
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H SOFTWARE

All experiments were performed using Python and standard numerical libraries. For cheminformatics
analysis, all molecules were processed using either OpenEye Applications and Toolkits (OpenEye,
2022) or the open-source cheminformatics library RDKit (Landrum, 2006). We implemented all
experiments in Python using PyTorch (Paszke et al., 2019) and PyTorch Lightning (Falcon & The
PyTorch Lightning team, 2019). Transformers were implemented using BERT models within
HuggingFace Transformers (Wolf et al., 2020).

I HARDWARE

Each model was trained on a single NVIDIA A100 GPU with 80 GB VRAM using 12 CPUs for data
loading and 96 GB of memory.

J EVALUATION

To measure both diversity and quality of the generated ensembles, we follow previous work and
leverage four RMSD-based metrics (Xu et al., 2021; Ganea et al., 2021). The recall-based Coverage
metric measures the percentage of correctly generated conformers at a certain RMSD threshold,
δRMSD. For a ground-truth ensemble C and a generated ensemble Ĉ:

RMSD-COV-R(Ĉ, C) = 1

|C|

∣∣∣{c ∈ C : ∃ĉ ∈ Ĉ,RMSD(ĉ, c) ≤ δRMSD

}∣∣∣ (7)

The recall-based Matching metric measures the average RMSD across the closest-matching
(minimum-RMSD) generated conformer for each ground-truth conformer:

RMSD-MAT-R(Ĉ, C) = 1

|C|
∑
c∈C

min
ĉ∈Ĉ

RMSD(ĉ, c) (8)

The other two RMSD-based metrics are precision metrics that are defined identically, except that
the ground-truth and generated ensembles are switched, and therefore constitute a measure of how
many generated conformers are of high quality. Similarly, we compute four RMSD metrics on the
ring atoms only, indicated using rRMSD.

Analogous to the RMSD-based metrics, we define four metrics based on ring torsion fingerprint
deviation (rTFD) (Schulz-Gasch et al., 2012; Wang et al., 2020) to measure diversity and quality in
terms of the torsional profiles of the generated rings:

rTFD-COV-R(Ĉ, C) = 1

|C|

∣∣∣{c ∈ C : ∃ĉ ∈ Ĉ, rTFD(ĉ, c) ≤ δrTFD

}∣∣∣ (9)

rTFD-MAT-R(Ĉ, C) = 1

|C|
∑
c∈C

min
ĉ∈Ĉ

rTFD(ĉ, c) (10)

rTFD quantifies how well the macrocycle torsion angles match between two conformers and is given
by (Wang et al., 2020):

rTFD(ĉ, c) =
1

nring

nring∑
i=1

1

π
|w (τi(ĉ)− τi(c))| (11)

where τi(c) extracts the i-th macrocycle torsion angle of conformer c and w(·) ensures that the
deviation is wrapped correctly around the [−π, π) boundary. Each torsion deviation is normalized by
the maximum (absolute) deviation, π, so that rTFD lies in [0, 1].
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For both COV and MAT we also compute an F1 score, which is defined as the harmonic mean
between precision and recall.

K CONFORMER GENERATION BASELINES

RDKit ETKDGv3 RDKit baselines used ETKDGv3 (Riniker & Landrum, 2015; Wang et al.,
2020) with macrocycle torsion preferences. We first embedded up to 2K conformers (where K is the
number of true conformers) using EmbedMultipleConfs with random coordinate initialization
(useRandomCoords=True), which has been shown to be beneficial for generating macrocycle
geometries (Wang et al., 2020). Conformers were subsequently optimized using MMFF94 (Halgren,
1996) as implemented in RDKit and sorted by energy. Finally, the sorted conformers were filtered
based on heavy-atom RMSD with a threshold of 0.1 Å.

OpenEye OMEGA: Macrocycle Mode OMEGA baselines were performed using OpenEye Ap-
plications (2022.1.1) with OMEGA (v.4.2.0) (Hawkins et al., 2010; Hawkins & Nicholls,
2012) in macrocycle mode (Spellmeyer et al., 1997). Conformational ensembles were gen-
erated with the following macrocycle settings: maxconfs=2K, ewindow=20, rms=0.1,
dielectric constant=5.0, where K corresponds to the number of ground truth conformers
from the original CREST ensemble in the CREMP dataset. The dielectric constant was set to 5.0
(chloroform) to most closely mimic the implicit chloroform solvation used in CREMP.

GeoDiff-Macro We used the original paper implementation and code of GeoDiff from Xu et al.
(2022) available at https://github.com/MinkaiXu/GeoDiff, which we retrained to convergence on the
CREMP dataset with the same data splits. We used the same experimental details as the GEOM-Drugs
model from Xu et al. (2022). As with all the other methods, we evaluated GeoDiff by sampling 2K
conformers for each molecule. Inference for GeoDiff uses 5,000 time steps, which required more
than 24 h for all test set molecules on 20 A100 GPUs.

DMCG-Macro We used the original paper implementation and code of DMCG from Zhu et al.
(2022) available at https://github.com/DirectMolecularConfGen/DMCG, which we retrained to con-
vergence on the CREMP dataset with the same data splits. After a basic hyperparameter search, we
used the same experimental details as the GEOM-Drugs model from Zhu et al. (2022). Regardless of
trainer hyperparameters, strong overfitting occurred after two cycles through the cyclic learning rate
scheduler based on the validation loss. Therefore, we selected the best checkpoint by evaluating the
first two validation loss minima using the metrics described in Appendix J and selecting the best one.
It should be noted that the DMCG model has an order of magnitude more parameters than the other
methods. As with all the other methods, we evaluated DMCG by sampling 2K conformers for each
molecule.

TorDiff-Macro We used the original paper implementation and code of TorDiff from Jing et al.
(2022) available at https://github.com/gcorso/torsional-diffusion, which we retrained to convergence
on the CREMP dataset with the same data splits. We used the same experimental details as the
GEOM-Drugs model from Jing et al. (2022) with slight modifications to improve the performance
for the macrocycle structure task: Prior to training, a conformer matching procedure is necessary to
account for the distributional shift between RDKit local structures and xTB-optimized geometries. In
order to account for this, we seeded the training local structures using the ground-truth xTB-optimized
conformers with subsequent MMFF94 force-field optimization. At inference time, we seeded the
local structures by generating RDKit conformers as described above, which very significantly
boosted performance of TorDiff. The original implementation from Jing et al. (2022) only seeds
conformers using default RDKit distance geometry embedding parameters, which generates low-
quality conformers for macrocycles and leads to very poor performance.

1-NN (Nearest Neighbor Baseline) As an instance-based baseline for evaluating macrocycle
backbones only (with rRMSD and rTFD), we use a simple 2D similarity approach to find the nearest
sequence neighbor for a test molecule within the training set. Each macrocycle is featurized using a
residue-wise RDKit Morgan fingerprint, and we calculate the maximum similarity by exhaustively
comparing all possible sequence alignments across each training set macrocycle. The backbone is
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then extracted from the training set molecules and its conformers are used for ring evaluation as
above.

L UNCONDITIONAL BACKBONE GENERATION: ADDITIONAL RESULTS AND
PLOTS

As a proof-of-concept, we trained a backbone-only unconditional model to understand whether
our approach could accurately model the complex distribution of coupled coordinates. We provide
additional plots below, split by macrocycle size, to demonstrate that our model is expressive enough
to capture the critical modes of these distributions with granularity.
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Figure 7: Bond angle distributions split by number of residues for the backbone-only unconditional
model.
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Figure 9: Ramachandran distributions split by number of residues for the backbone-only unconditional
model.
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M SEQUENCE-CONDITIONED GENERATION: BACKBONE-ONLY MODEL
RESULTS AND PLOTS

We initially investigated sequence-conditioned generation for a backbone-only model to better under-
stand the effect of key hyperparameter choices (e.g. timesteps, number of training set conformers,
etc). For completeness, we include the results of these preliminary studies below.

Table 5: Performance metrics for sequence-conditioned generation of macrocycles evaluated on
ring atoms. Coverage is evaluated at a threshold of 0.1 Å for rRMSD and 0.05 for rTFD. k is the
maximum number of lowest-energy conformers used per molecule in the training data. All test data
conformers are used for evaluation. “opt” refers to the use of equation 3 to reconstruct Cartesian
coordinates.

rRMSD – Recall rRMSD – Precision
Coverage (%) ↑ MAT (Å) ↓ Coverage (%) ↑ MAT (Å) ↓

Method k Mean Med. Mean Med. Mean Med. Mean Med.

RDKit (Wang et al., 2020) – 35.8 8.9 0.187 0.160 5.6 0.9 0.540 0.504
OMEGA (OpenEye, 2022) – 32.3 7.1 0.186 0.163 3.7 1.3 0.557 0.525
GeoDiff-Macro (Xu et al., 2022) 30 50.8 54.2 0.151 0.120 6.4 3.0 0.592 0.559
RINGER 30 77.0 84.5 0.091 0.072 61.3 69.1 0.185 0.120
RINGER (opt) 1 63.8 66.9 0.139 0.112 58.1 65.1 0.430 0.327
RINGER (opt) 30 79.7 86.3 0.084 0.065 56.4 62.7 0.441 0.356
RINGER (opt) 100 85.6 92.2 0.065 0.049 56.9 62.4 0.454 0.385

rTFD – Recall rTFD – Precision
Coverage (%) ↑ MAT ↓ Coverage (%) ↑ MAT ↓

Method k Mean Med. Mean Med. Mean Med. Mean Med.

RDKit (Wang et al., 2020) – 52.9 55.3 0.059 0.051 9.4 4.4 0.215 0.206
OMEGA (OpenEye, 2022) – 49.7 47.6 0.061 0.055 6.6 4.2 0.225 0.219
GeoDiff-Macro (Xu et al., 2022) 30 68.1 83.0 0.048 0.037 9.1 6.1 0.248 0.241
RINGER 30 90.1 95.0 0.024 0.019 74.7 86.2 0.059 0.033
RINGER (opt) 30 89.2 94.3 0.024 0.019 61.8 68.9 0.068 0.044

Table 6: Evaluating RINGER (opt) trained and sampled with different numbers of timesteps.
rRMSD – Recall rRMSD – Precision

Coverage (%) ↑ MAT (Å) ↓ Coverage (%) ↑ MAT (Å) ↓
Timesteps Mean Med. Mean Med. Mean Med. Mean Med.

20 79.7 86.3 0.084 0.065 56.4 62.7 0.441 0.356
50 80.8 88.0 0.082 0.061 60.5 68.9 0.431 0.335
100 81.5 88.9 0.080 0.060 58.0 65.2 0.443 0.365

Table 7 shows that bond angles are required in addition to dihedral angles in order for the model
to perform well. To reconstruct Cartesian geometries using the dihedral-only model, we modified
equation 3 to include inequality constraints for the bond angles where the upper and lower limit are
determined by the standard deviations of bond angles from the training data.
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Table 7: Evaluating RINGER (opt) trained only with dihedral angles.
rRMSD – Recall rRMSD – Precision

Coverage (%) ↑ MAT (Å) ↓ Coverage (%) ↑ MAT (Å) ↓
Mean Med. Mean Med. Mean Med. Mean Med.

xi = [θi, τi] 79.7 86.3 0.084 0.065 56.4 62.7 0.441 0.356
xi = [τi] 66.8 73.5 0.130 0.101 41.1 37.6 0.469 0.417

rTFD – Recall rTFD – Precision
Coverage (%) ↑ MAT ↓ Coverage (%) ↑ MAT ↓
Mean Med. Mean Med. Mean Med. Mean Med.

xi = [θi, τi] 89.2 94.3 0.024 0.019 61.8 68.9 0.068 0.044
xi = [τi] 83.2 91.0 0.035 0.024 49.2 49.3 0.144 0.114

N SEQUENCE-CONDITIONED GENERATION: ADDITIONAL RESULTS AND
PLOTS

N.1 DISTRIBUTIONS
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Figure 10: Comparison of the bond angle and dihedral distributions from the held-out test set and
in the conditionally generated samples (prior to reconstruction to Cartesian coordinates). The top
two rows show the distributions of internal coordinates in the ring and the bottom two rows show the
side-chain distributions.
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Figure 11 shows the Ramachandran plots split by number of residues for the conditional model and
illustrates the effect of equation 3 to reconstruct realizable Cartesian geometries from the set of
redundant internal coordinates predicted by the model. Notably, while the reconstructed geometries
still reproduce the joint distribution over dihedral angles well, several artifacts are introduced as
a result of the optimization, which motivates the further development of generative methods that
directly incorporate the cyclic constraints into the diffusion process itself.

Figure 11: Ramachandran distributions for conditionally generated samples split by number of
residues. The “Reconstructed” column shows the distributions after converting to Cartesian coordi-
nates using the SLSQP optimization in equation 3 followed by rejection of inadequate samples.
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Figure 12: Comparison of mean coverage when varying the threshold. Translucent error bands
correspond to 95% confidence intervals.
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N.3 MEDIAN PERFORMANCE METRICS

Table 8: Median performance metrics for sequence-conditioned generation of macrocycles. Coverage
is evaluated at a threshold of 0.75 Å for all-atom RMSD, 0.1 Å for ring-only RMSD (rRMSD), and
0.05 for ring-only TFD (rTFD). All test data conformers are used for evaluation.

RMSD – Recall RMSD – Precision RMSD - F1
Method COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓
RDKit (Wang et al., 2020) 33.0 0.830 3.7 1.357 6.7 1.030
OMEGA (OpenEye, 2022) 31.3 0.852 4.9 1.360 8.5 1.047
GeoDiff-Macro (Xu et al., 2022) 14.3 0.949 1.1 1.701 2.0 1.218
DMCG-Macro (Zhu et al., 2022) 88.0 0.496 40.6 0.889 55.6 0.636
TorDiff-Macro (Jing et al., 2022) 38.5 0.797 4.5 1.338 8.1 0.999
RINGER 64.5 0.632 90.3 0.404 72.2 0.493

rRMSD – Recall rRMSD – Precision RMSD - F1
1-NN (Seq. Sim.) 35.5 0.182 20.6 0.244 26.1 0.208
RDKit (Wang et al., 2020) 8.9 0.160 0.9 0.504 1.6 0.243
OMEGA (OpenEye, 2022) 7.1 0.163 1.3 0.525 2.2 0.249
GeoDiff-Macro (Xu et al., 2022) 54.2 0.120 3.0 0.559 5.7 0.198
DMCG-Macro (Zhu et al., 2022) 89.1 0.061 32.7 0.260 47.8 0.099
TorDiff-Macro (Jing et al., 2022) 8.9 0.160 0.9 0.504 1.6 0.243
RINGER 82.6 0.077 96.6 0.037 89.0 0.050

rTFD – Recall rTFD – Precision RMSD - F1
1-NN (Seq. Sim.) 67.7 0.054 51.1 0.078 58.2 0.064
RDKit (Wang et al., 2020) 55.3 0.051 4.4 0.206 8.2 0.082
OMEGA (OpenEye, 2022) 47.6 0.055 4.2 0.219 7.7 0.088
GeoDiff-Macro (Xu et al., 2022) 83.0 0.037 6.1 0.241 11.4 0.064
DMCG-Macro (Zhu et al., 2022) 98.2 0.017 50.6 0.097 66.8 0.029
TorDiff-Macro (Jing et al., 2022) 55.3 0.051 4.4 0.206 8.2 0.082
RINGER 90.2 0.024 98.4 0.011 94.1 0.015

N.4 CYCLIC POSITIONAL ENCODING ABLATION STUDY

To assess the impact of the cyclic relative positional encoding in equation 1 and equation 2, we
trained two models on 10% of the training data for 100 epochs: one with a standard relative positional
encoding and one with our cyclic relative positional encoding. The results in Tables 9 and 10 illustrate
how our newly designed encoding improves performance, especially for larger macrocycles.

Table 9: Ablation study comparing RINGER performance with and without cyclic relative positional
encoding defined in equation 1 and equation 2. Models trained on 10% of data for 100 epochs.

RMSD – Recall RMSD – Precision
COV ↑ MAT ↓ COV ↑ MAT ↓

Mean Med. Mean Med. Mean Med. Mean Med.

Standard encoding 33.9 26.2 0.913 0.872 10.1 3.8 1.610 1.560
Cyclic encoding 40.4 38.6 0.861 0.819 14.2 7.4 1.538 1.491

rRMSD – Recall rRMSD – Precision
Standard encoding 26.2 1.387 0.213 0.191 5.8 0.1 0.721 0.701
Cyclic encoding 32.3 13.7 0.189 0.166 9.6 0.8 0.678 0.658

rTFD – Recall rTFD – Precision
Standard encoding 47.2 50.0 0.064 0.055 11.0 5.1 0.168 0.149
Cyclic encoding 55.6 62.9 0.056 0.048 16.7 10.9 0.154 0.134
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Table 10: Ablation study comparing RINGER rTFD performance with and without cyclic relative
positional encoding across different macrocycle sizes. Models trained on 10% of data for 100 epochs.

rTFD – Recall rTFD – Precision
COV ↑ MAT ↓ COV ↑ MAT ↓

#residues Mean Med. Mean Med. Mean Med. Mean Med.

Standard encoding 4 62.2 76.5 0.056 0.038 18.0 20.1 0.175 0.143
Cyclic encoding 4 69.1 84.0 0.047 0.032 25.3 29.6 0.160 0.128
Standard encoding 5 37.1 35.6 0.066 0.062 4.1 3.0 0.151 0.141
Cyclic encoding 5 47.0 51.4 0.061 0.055 9.0 7.5 0.137 0.127
Standard encoding 6 9.8 1.2 0.090 0.080 0.3 0.1 0.186 0.178
Cyclic encoding 6 20.4 5.1 0.079 0.071 0.8 0.4 0.177 0.169

O POST HOC OPTIMIZATION WITH GFN2-XTB

To further evaluate the sampling performance as well as macrocycle conformer quality we performed
post hoc optimization with GFN2-xTB. This provides a level comparison between sampling methods.
As shown in Tables 11 and 12 below, RINGER maintains excellent performance across recall,
precision, and F1 metrics across both all-atom and backbone-only evaluations.

Table 11: Mean performance metrics for samples with post hoc optimization using GFN2-xTB.
Coverage is evaluated at a threshold of 0.75 Å for all-atom RMSD, 0.1 Å for ring-only RMSD
(rRMSD), and 0.05 for ring-only TFD (rTFD). All test data conformers are used for evaluation.

RMSD – Recall RMSD – Precision RMSD - F1
Method COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓
RDKit (xTB) 53.9 0.734 10.3 1.365 17.2 0.955
OMEGA (xTB) 44.9 0.818 8.7 1.392 14.5 1.031
GeoDiff-Macro (xTB) 29.9 0.938 3.1 1.702 5.7 1.209
DMCG-Macro (xTB) 84.9 0.415 47.4 0.856 60.8 0.559
TorDiff-Macro (xTB) 62.5 0.641 12.5 1.327 20.9 0.865
RINGER (xTB) 63.9 0.650 76.2 0.484 69.5 0.555

rRMSD – Recall rRMSD – Precision RMSD - F1
1-NN (Seq. Sim.) 43.7 0.301 40.3 0.331 41.9 0.315
RDKit (xTB) 73.0 0.098 13.4 0.508 22.7 0.164
OMEGA (xTB) 68.3 0.102 10.5 0.534 18.1 0.171
GeoDiff-Macro (xTB) 64.0 0.119 8.9 0.573 15.5 0.197
DMCG-Macro (xTB) 93.2 0.039 53.2 0.270 67.8 0.068
TorDiff-Macro (xTB) 81.4 0.075 16.8 0.495 27.9 0.130
RINGER (xTB) 78.7 0.101 78.9 0.119 78.8 0.109

rTFD – Recall rTFD – Precision RMSD - F1
1-NN (Seq. Sim.) 53.1 0.111 48.6 0.122 50.7 0.116
RDKit (xTB) 85.6 0.029 17.3 0.200 28.8 0.051
OMEGA (xTB) 83.9 0.029 13.4 0.212 23.1 0.051
GeoDiff-Macro (xTB) 79.8 0.037 11.7 0.242 20.4 0.065
DMCG-Macro (xTB) 96.9 0.012 57.5 0.099 72.2 0.021
TorDiff-Macro (xTB) 89.8 0.023 20.0 0.195 32.8 0.041
RINGER (xTB) 84.1 0.032 81.7 0.042 82.9 0.037
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Table 12: Median performance metrics for samples with post hoc optimization using GFN2-xTB.
Coverage is evaluated at a threshold of 0.75 Å for all-atom RMSD, 0.1 Å for ring-only RMSD
(rRMSD), and 0.05 for ring-only TFD (rTFD). All test data conformers are used for evaluation.

RMSD – Recall RMSD – Precision RMSD - F1
Method COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓ COV (%) ↑ MAT ↓
RDKit (xTB) 60.1 0.688 7.0 1.311 12.6 0.903
OMEGA (xTB) 45.0 0.769 7.1 1.317 12.2 0.971
GeoDiff-Macro (xTB) 21.4 0.896 1.5 1.652 2.9 1.162
DMCG-Macro (xTB) 92.2 0.371 50.0 0.788 64.8 0.505
TorDiff-Macro (xTB) 76.9 0.570 9.7 1.267 17.2 0.786
RINGER (xTB) 67.6 0.590 90.2 0.361 77.3 0.448

rRMSD – Recall rRMSD – Precision RMSD - F1
1-NN (Seq. Sim.) 35.5 0.182 20.6 0.244 26.1 0.208
RDKit (xTB) 91.2 0.057 9.8 0.466 17.6 0.102
OMEGA (xTB) 82.5 0.070 9.0 0.501 16.2 0.123
GeoDiff-Macro (xTB) 75.1 0.086 5.6 0.541 10.4 0.148
DMCG-Macro (xTB) 97.6 0.029 57.2 0.220 72.1 0.051
TorDiff-Macro (xTB) 95.9 0.041 14.3 0.454 25.0 0.075
RINGER (xTB) 85.6 0.065 91.9 0.050 88.6 0.056

rTFD – Recall rTFD – Precision RMSD - F1
1-NN (Seq. Sim.) 67.7 0.054 51.1 0.078 58.2 0.064
RDKit (xTB) 98.3 0.017 14.5 0.189 25.3 0.031
OMEGA (xTB) 95.8 0.021 11.7 0.204 20.8 0.038
GeoDiff-Macro (xTB) 94.0 0.026 9.3 0.233 17.0 0.047
DMCG-Macro (xTB) 99.6 0.008 62.1 0.085 76.5 0.015
TorDiff-Macro (xTB) 99.4 0.012 17.8 0.184 30.2 0.023
RINGER (xTB) 90.6 0.020 94.1 0.014 92.4 0.017
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Figure 13: RMSD of generated conformers before and after xTB optimization. On average, RINGER-
generated samples require less structural modification to reach xTB local minima. Outliers are not
shown for clarity.
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