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Appendix
Al Extended Related Work

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line
of work identifying simulation parameters that match the robot and environment dynamics in the real
environment before task policy training. BayesSim [6] and follow-up work [16, 17] applies Bayesian
inference to iteratively search for a posterior distribution of the simulation parameters based on simulation
and real-world trajectories. The inference problem has also been formulated using RL to minimize
trajectory discrepancies [30]. A different approach [31, 32, 33] learns a residual model of dynamics (often
parameterized with a neural network) to match simulation or an ideal physics model with reality. However,
all these methods consider relatively well-modeled environment parameterizations such as object mass or
friction coefficient during planar contact; Sys-ID approaches have been shown to fail in cases where the
simulation does not closely approximate the real world [13, 18]. There is also work that avoids inferring
the full dynamics but adapts with a low-dimensional latent representation online [34, 35, 36], but the
representation is still trained with regression to match dynamics or simulation parameters. Importantly,
the Sys-ID approaches highlighted above are all task-agnostic; this can lead to poor performance when
trained task policies are sensitive to mismatches in dynamics between simulation and reality. Chi et al.
[18] address the issue by using simulation to predict changes to trajectories from changes in actions as
an implicit policy, but it requires the environment to be resettable, while AdaptSim works with randomly
initialized object states.

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find
simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply
Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping
coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only
[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target
environments (e.g., 700 in [19]), which is very time-consuming for many tasks requiring human reset.
AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference
(e.g., 20 in our pushing experiments). Liang et al. [37] apply the same task-driven objective to learn an
exploration policy in manipulation tasks, but the task policy is synthesized using estimated simulation
parameters via Sys-ID. Jin et al. [38] applies task-drived reduced-order model for dexterous manipulation
tasks, but again the model is identified with Sys-ID and no vision-based control is involved. Ren et al.
[39] search for adversarial environments (e.g., objects) given the current task performance to robustify the
policy, but unlike AdaptSim, the adversarial metric is measured in simulated domain only without real data.

Learn to search/optimize. Our work involves learning optimization strategies through meta-learning
across a distribution of relevant problems, allowing for customization to the specific setting and increased
sample efficiency [40, 41]. Chen et al. [42] meta-learns an RNN optimizer for black-box optimization.
Volpp et al. [43] meta-learns the acquisition function in BO with RL; it is able to learn new exploration
strategies for black-box optimization and tuning controller gains in sim-to-real transfer. Meta RL trains the
task policy directly to optimize performance in new environments [44, 45, 46] — AdaptSim applies meta
RL to optimize simulation parameters instead.

A2 Additional details on approach
A2.1 Sparse adaptation reward

In practice, we are only concerned with the reward if it reaches some minimum threshold — a bad task
policy is not useful. Thus we use a sparse—reward version of Eq. (2),

]l B> P D Al

E°~Z/I§z &)NMP X;FY 7T€ ' R)R(ﬂ-SN ), D

where 1() is the indicator function and R is the sparse-reward threshold. Using a sparse reward also
discourages the adaptation policy from being myopic and getting trapped at a sub-optimal solution,
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especially since we use a relatively small I (e.g., 5-10) in order to minimize the amount of real data, and
use a small discount factor v (=0.9).

A2.2 Task policy reuse across parameter distributions

Algorithm 1 requires training the task policy for each £, which can be expensive with the two manipulation
tasks. Our intuition is that we can share the task policy between parameter distributions of close distance,
with the following heuristics:

* Record the total budget (i.e., number of trajectories), and j, the number of simulation parameter
distributions that a task policy has been trained with.

¢ Define distance between two parameter distribution D(-,-) such as L2 distance between the mean. If £;
is within a threshold D from a previously seen distribution, re-use the task policy. If the policy is already
trained with M., budget total, do not train again; otherwise train with max (M, ol 1M ) budget,
where oo <1 and M is the budget for training the policy for the first time.

* If the nearby parameter distribution re-uses a task policy, do not re-use the same policy again. This
prevents the same task policy being used for too many .

Remark 1 re-using task policies between parameter distributions makes the reward R depend on the
adaptation history, as 73 depends on previous £ that are used for training. We choose not to model this
history dependency in f, as the reward should be largely dominated by the current E.

A3 Additional details of adaptation policies

Hyperparameters. Table A1 shows the hyperparameters used for the adaptation policy training in Phase 1,
including those defining the heuristics for re-using task policies among simulation parameter distributions.
We generally use smaller adaptation step § for smaller dimensional €.

Task
Parameter Pendulum Pushing Scooping
Total adaptation steps, K led led led
Adaptation horizon, 1 10 8 8
Adaptation step size, ¢ 0.10 0.15 0.15

Adaptation discount factor, v 0.9 0.9 0.9
Sprase reward threshold, R 0.95 0.8 0.5

Task policy reuse threshold, D - 0.16 0.16

Task policy max budget, Mmax - 3e4 4e3

Task policy budget discount, o - 0.9 0.9
Task policy init budget, M - led 1.2e3

Table Al: Hyperparameters used in adaptation policy training for the three tasks.

Trajectory observations. We detail the trajectory observation (as input to the adaptation policy) used in
the three tasks.

 Pendulum task: each trial is 2.5 seconds long, and we use 12 evenly spaced points along the trajectories of
the two joints, and thus each trajectory is 24 dimensional. For AdaptSim-State, SysID-Bayes-State, and
SysID-Bayes-Point, again 12 points are used but sampled from the last 0.5 second only. One trajectory is
used at each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.

* Pushing task: each trial is 1.3 seconds long, and we use 6 evenly spaced points along the X-Y trajectory
of the bottle, and thus each trajectory is also 12 dimensional. For AdaptSim-State, SysID-Bayes-State,
and SysID-Bayes-Point, only the final X-Y position of the bottle is used. Two trajectories are used at
each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.
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* Scooping task: each trial is 1 second long, and we use X-Y position of the food piece at the time step
[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0]s (more sampling around the initial contact between the spatula and the
piece), and thus each trajectory is 16 dimensional. Two trajectories are used at each adaptation iteration

— the trajectory input to the adaptation policy is 32 dimensional.

In real experiments, we track the bottle position in the pushing task using 3D point cloud information from
a Azure Kinect RGB-D camera, which we find accurate. In the scooping task, the food pieces are too
small and thin to be reliably tracked with point cloud, and thus we resort to extracting the contours from
the RGB image and then finding the corresponding depth values at the same pixels in the depth image.
During fast contact there can be motion blur around the food piece, and thus we add Gaussian noise with
0.2cm mean for X position and zero mean for Y position, and 0.2cm covariance for both, to the points in
the ground-truth trajectories in simulation. We use positive mean in X since the motion blur tends to occur
in the forward direction.

A4 Additional details of the task setup and task policies

Trajectory observation First, we remove the action sequence from the task-policy trajectory and keep
the state sequence only. Since the dynamics in real environments can be OOD, in order to achieve similar
high-reward states as in simulated environments, the robot would need to use some actions not seen during
training (or not seen for the particular state), hindering the adaptation policy to generalize if action sequence
were included in the task policy trajectory. We assume that the task-relevant state sequence is covered by
T if the task policy performs reasonably well in the real environment. This choice is also present in the
state-only inverse RL literature [47] that addresses train-test dynamics mismatch. See Fig. A4 and related
discussions in Sec. 6.3.

A4.1 Dynamic pushing of a bottle

Trajectory parameterization. Here we detail the trajectory of the end-effector pusher designed for the
task (Fig. Al). The trajectory is parameterized with two parameters: (1) planar pushing angle, which is
the yaw orientation of the pusher relative to the forward direction that controls the direction of the bottle
being pushed, and (2) forward speed (of the end-effector), in the direction specified by the pushing angle.
The pushing angle varies between —0.3rad and 0.3rad, and the forward speed varies between 0.4m/s and
0.8m/s. We find 0.8m/s roughly the upper speed limit of the Franka Panda arm used. The pusher also
pitches upwards during the motion and the speed is fixed to 0.8rad/s. We design such trajectories to
maximize the pushing distance at the hardware limit.

Initial and goal states. The bottle is placed at the fixed location (x=0.56m,y=0, relative to the arm base)
on the table before the trial starts. The goal location is sampled from a region where the X location is
between 0.7 and 1.0m and Y location is at most 10 degrees off from the centerline (Fig. A1 top-right). The
patch, a 10cm by 10cm square, is placed at x=0.75m with its center (lateral position is varied as one of
the simulation parameter).

Task policy parameterization. The task policy is parameterized using a Normalized Advantage Function
(NAF) [48] that allows efficient Q Learning with continuous action output by restricting the Q value as
a quadratic function of the action, and thus the action that maximizes the Q value can be found exactly
without sampling. In this task, it maps the desired 2D goal location of the bottle to the two action parameters,
planar pushing angle and forward speed. The policy is open-loop — the actions are determined before the
trial starts and there is no feedback using camera observations.

Hardware setup. A 3D-printed, plate-like pusher is mounted at the end-effector instead of the paralle-jaw
gripper in both simulation and reality. We also wrap elastic rubber bands around the bottom of the pusher
and contact regions of the bottle to induce more elastic collision, which we find increases the sliding
distance of the bottle.
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Figure A1l: Visualization of the pushing trajectory and goal locations in the Drake simulator. There are two action

parameters: (1) forward speed (of the end-effector) and (2) planar pushing angle (i.e., yaw orientation of the end-
effector). The patch is not visualized.
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Figure A2: Visualization of the scooping trajectory and initial positions of the food piece in the Drake simulator. There
are three action parameters: (1) initial distance (between the spatula and food piece), (2) initial pitch angle (of the
spatula from the table), and (3) pitch rate (of the end-effector at time step ¢t =0.25).

A4.2 Dynamic scooping of food pieces

Trajectory parameterization. Here we detail the trajectory of the end-effector with the spatula designed
for the task (Fig. A2). The end-effector velocity trajectory is generated using cubic spline with values
clamped at five timesteps. The trajectory only varies in the X and pitch direction (in the world frame),
while remaining zero in the other directions. The only value defining the trajectory that the task policy
learns is the pitch rate, which is the pitch speed at the time ¢=0.25s and varies between —0.2rad/s and
0.2rad/s. A positive pitch rate means the spatula lifting off the table late, while a negative one means lifting
off early (see the effects in Fig. 8). The other two values that the task policy outputs are the initial pitch
angle of the spatula from the table (varying from 2 to 10 degrees), and the initial distance between the
spatula and the food piece (varying between 0.5cm to 2cm). Generally a higher initial pitch angle can help
scoop under food pieces with flat bottom, and a smaller angle helps scoop under ellipsoidal shapes. We
design such trajectories after extensive testing with food pieces of diverse geometric shapes and physical
properties in both simulation and reality.

Initial states. The food piece is randomly placed in a box area of 8x6cm in front of the spatula; the initial
distance is relative to the initial food piece location.

Task policy parameterization. The task policy is parameterized using a NAF again. In this task, it maps
the initial 2D position of the food piece to the three action parameters: pitch rate, initial pitch angle, and
initial distance.

Hardware setup. We use the commercially available OXO Nylon Square Turner' as the spatula used
for scooping. It has a relatively thin edge (about 1.2mm) that helps scoop under thin pieces. A box-like,
3D-printed adapter with high-friction tape is mounted on the handle to help the parallel-jaw gripper grasp
the spatula firmly. The exact 3D model of the spatula with the adapter is designed and used in the Drake
simulator; the deformation effect as it bends against the table is not modeled in simulation.

"ink: https://www.amazon . com/0X0-11107900LOW-Grips-Square-Turner/dp/B003LO00SU
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A5 Additional details of experiments
AS5.1 Simulated adaptation

Table A2 shows the simulation parameters used in different simulated target environments for the three
tasks (results shown in Table 3).

Setting
Task  Parameter WD OOD-1 OOD-2 OOD-3 OOD-4 Range

mi 18 18 05 12 04 [L2
my 12 03 18 18 26  [12]

Pendulum " 15 15 15 100 10 [12]

b 15 15 15 100 20  [12]

Iz 0.1 025 005 015 030 [0.050.2]

Pushin e le5 5e4  1le5 5¢6  1le5 [led,le6)

€ 4 06 01 09 01 015 [0.208]

yp 005 01 005 015 01 [-0.1,0.1]

030 045 020 030 040 [0.25,04]

. S5e4 led  5e4  1e6  1e5 [led,5eh)
Scooping

o
e
g 1 0 1 0o 2 {01}
ho 20 14 22 28 19 [1525

Table A2: Simulation parameters used in different simulated target environments for the three tasks. OOD parameters
(outside the range used in adaptation policy training) are bolded. For g in the scooping task, O stands for ellipsoid, 1 for
cylinder, and 2 for box.

AS5.2 Real adaptation

In Fig. A7 and Fig. A9 we demonstrate additional visualizations of the pushing and scooping results with
AdaptSim.

A5.3 Additional studies

Choice of the simulation parameter space. To answer Q3, we perform a sensitivity analysis by fixing the
target environment (OOD-1 in the double pendulum task) and varying the simulation parameter space. In
OOD-1, the OOD parameter is my =0.3 while the range in Q2 is [1,2]. Fig. A3 shows the results of reward
achieved after adaptation for AdaptSim and the two Sys-ID baselines, as the range shifts further away from
me=0.3to [1.1,2.1], [1.2,2.2], and [1.3,2.3]. Sys-ID performance degrades rapidly, while AdaptSim is
more robust.

_01-0 = AdaptSim  mmm SysiD-Bayes-State SysID-Point-State
Zo.s
g
- 0.6
9]
N
0.4
£
00.2
=
0.0
[1.0, 2.0] [1.1,2.1] [1.2,2.2] [1.3,2.3]

Figure A3: Adaptation results for AdaptSim and Sys-ID baselines in OOD-1 setting of the double pendulum task, with
different mo ranges in {2 while m2 =0.3 in the target environment.

Pitfalls of Sys-ID approaches. Fig. A4 demonstrates the dynamics mismatch between simulation and
reality, which illustrates the pitfall of SysID approaches. We plot a set of bottle trajectories from randomly
sampled simulation parameters from €2 with a fixed robot action. We also plot the trajectories of Heavy
bottle being pushed with the same action in reality. There are segments of real trajectories that are not well
matched by the simulated ones, and a slight mismatch can lead to diverging final states (and hence different
task rewards).
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Figure A4: Comparison of trajectories from the simulation domain (green, simulated with randomly sampled simulation
parameter settings) and from Heavy bottle in reality (red), with the same robot action applied. The real dynamics can
be OOD from simulation (black boxes) while the final position of the bottle can be WD.

Trade-off between real data budget and task performance convergance. In Sec. 4.2 we introduce N,
the number of initial simulation parameter distributions that are sampled at the beginning of Phase 2 and
then adapt independently. There is a trade-off between the real data budget (linear to V) and convergence
of task performance. Adapting more simulation parameter distributions simultaneously can potentially help
the task performance converge faster but also require more real data. Fig. AS shows the effect with the
Light bottle in the pushing task. We vary IV from 1 to 4 — each simulation parameter distribution takes 2
trajectories at each iteration. /N =1 shows slow and also worse asymptotic convergence, which shows that
the parameter distribution can be trapped in a low-reward regime. N = 2 performs the best with fastest
convergence in terms of number of real trajectories used. Using higher /N shows slower convergence. Note
that the convergence also depends on the dimension of the simulation parameter space {2 — we expect
N > 2 is needed for the best convergence rate once the dimension increases from 4 used in the pushing
task.
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Figure AS: Task performance convergence with respect to the number of real trajectories used with varying NV, the
number of simulation parameter distributions adapting simultaneously in Phase 2 with the Light bottle in the pushing
task.

Sensitivity analysis on adaptation step size. Adaption step size J can affect the task performance
convergence too — § being too low can cause slow convergence, while § being too high can prevent
convergence since the simulation parameter distribution can “overshoot” the optimal one by a large margin.
Fig. A6 shows the effect of adaptation step size ranging from 0.05 to 0.20 in OOD-1 setting of the double
pendulum task. § = 0.10 performs the best while 6 = 0.05 shows slower convergence. § = 0.15 also
achieves similar asymptotic performance but the reward is less unstable during adaptation, while with
0=0.20 the reward does not converge at all.

Comparison of simulation runtime. Compared to Sys-ID baselines, AdaptSim requires significantly
longer simulation runtime for training the adaptation policy in Phase 1. For example: SysID-Bayes uses
roughly 6 hours of simulation walltime to perform 10 iterations of adaptation in the scooping task while
AdaptSim would take 36 hours for Phase 1, and 30 minutes for Phase 2 (i.e., 3 minutes per iteration), using
the same computation setup. However, we re-use the same adaptation policy for different food pieces in
the scooping task, which amortizes the simulation cost.
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Figure A6: Normalized reward at each adaptation iteration using different adaptation step size §, in OOD-1 setting of
the pendulum task.
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Figure A7: Adaptation results of the pushing task with two different target locations (yellow cross, top and bottom
rows) over iterations. The right figure shows the inferred simulation parameter distribution (mean only).

Figure A8: AdaptSim fails to synthesize a task policy for scooping up Brussels sprout. We consider such environment
extremely OOD from the simulation domain.
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Figure A9: Adaptation results of scooping up (top) chocolate raisins, (middle) mushroom slice, and (bottom) Oreo
cookie with AdaptSim.
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