
Appendix427

A1 Extended Related Work428

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line429

of work identifying simulation parameters that match the robot and environment dynamics in the real430

environment before task policy training. BayesSim [6] and follow-up work [16, 17] applies Bayesian431

inference to iteratively search for a posterior distribution of the simulation parameters based on simulation432

and real-world trajectories. The inference problem has also been formulated using RL to minimize433

trajectory discrepancies [30]. A different approach [31, 32, 33] learns a residual model of dynamics (often434

parameterized with a neural network) to match simulation or an ideal physics model with reality. However,435

all these methods consider relatively well-modeled environment parameterizations such as object mass or436

friction coefficient during planar contact; Sys-ID approaches have been shown to fail in cases where the437

simulation does not closely approximate the real world [13, 18]. There is also work that avoids inferring438

the full dynamics but adapts with a low-dimensional latent representation online [34, 35, 36], but the439

representation is still trained with regression to match dynamics or simulation parameters. Importantly,440

the Sys-ID approaches highlighted above are all task-agnostic; this can lead to poor performance when441

trained task policies are sensitive to mismatches in dynamics between simulation and reality. Chi et al.442

[18] address the issue by using simulation to predict changes to trajectories from changes in actions as443

an implicit policy, but it requires the environment to be resettable, while AdaptSim works with randomly444

initialized object states.445

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find446

simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply447

Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping448

coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only449

[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target450

environments (e.g., 700 in [19]), which is very time-consuming for many tasks requiring human reset.451

AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference452

(e.g., 20 in our pushing experiments). Liang et al. [37] apply the same task-driven objective to learn an453

exploration policy in manipulation tasks, but the task policy is synthesized using estimated simulation454

parameters via Sys-ID. Jin et al. [38] applies task-drived reduced-order model for dexterous manipulation455

tasks, but again the model is identified with Sys-ID and no vision-based control is involved. Ren et al.456

[39] search for adversarial environments (e.g., objects) given the current task performance to robustify the457

policy, but unlike AdaptSim, the adversarial metric is measured in simulated domain only without real data.458

Learn to search/optimize. Our work involves learning optimization strategies through meta-learning459

across a distribution of relevant problems, allowing for customization to the specific setting and increased460

sample efficiency [40, 41]. Chen et al. [42] meta-learns an RNN optimizer for black-box optimization.461

Volpp et al. [43] meta-learns the acquisition function in BO with RL; it is able to learn new exploration462

strategies for black-box optimization and tuning controller gains in sim-to-real transfer. Meta RL trains the463

task policy directly to optimize performance in new environments [44, 45, 46] — AdaptSim applies meta464

RL to optimize simulation parameters instead.465

A2 Additional details on approach466

A2.1 Sparse adaptation reward467

In practice, we are only concerned with the reward if it reaches some minimum threshold — a bad task468

policy is not useful. Thus we use a sparse-reward version of Eq. (2),469

E
Es∼UΩ

E
E0∼UP

I∑
i=0

γi1
(
R(π∗

Ei
;Es)≥R

)
R(π∗

Ei
;Es), (A1)

where 1() is the indicator function and R is the sparse-reward threshold. Using a sparse reward also470

discourages the adaptation policy from being myopic and getting trapped at a sub-optimal solution,471

12



especially since we use a relatively small I (e.g., 5-10) in order to minimize the amount of real data, and472

use a small discount factor γ (=0.9).473

A2.2 Task policy reuse across parameter distributions474

Algorithm 1 requires training the task policy for each E, which can be expensive with the two manipulation475

tasks. Our intuition is that we can share the task policy between parameter distributions of close distance,476

with the following heuristics:477

• Record the total budget (i.e., number of trajectories), and j, the number of simulation parameter478

distributions that a task policy has been trained with.479

• Define distance between two parameter distribution D(·,·) such as L2 distance between the mean. If Ei480

is within a threshold D from a previously seen distribution, re-use the task policy. If the policy is already481

trained with Mmax budget total, do not train again; otherwise train with max(Mmin, α
j−1M) budget,482

where α<1 and M is the budget for training the policy for the first time.483

• If the nearby parameter distribution re-uses a task policy, do not re-use the same policy again. This484

prevents the same task policy being used for too many E.485

Remark 1 re-using task policies between parameter distributions makes the reward R depend on the486

adaptation history, as π∗
E depends on previous E that are used for training. We choose not to model this487

history dependency in f , as the reward should be largely dominated by the current E.488

A3 Additional details of adaptation policies489

Hyperparameters. Table A1 shows the hyperparameters used for the adaptation policy training in Phase 1,490

including those defining the heuristics for re-using task policies among simulation parameter distributions.491

We generally use smaller adaptation step δ for smaller dimensional Ω.492

Task

Parameter Pendulum Pushing Scooping

Total adaptation steps, K 1e4 1e4 1e4
Adaptation horizon, I 10 8 8
Adaptation step size, δ 0.10 0.15 0.15

Adaptation discount factor, γ 0.9 0.9 0.9
Sprase reward threshold, R 0.95 0.8 0.5

Task policy reuse threshold, D - 0.16 0.16
Task policy max budget, Mmax - 3e4 4e3
Task policy budget discount, α - 0.9 0.9

Task policy init budget, M - 1e4 1.2e3

Table A1: Hyperparameters used in adaptation policy training for the three tasks.

Trajectory observations. We detail the trajectory observation (as input to the adaptation policy) used in493

the three tasks.494

• Pendulum task: each trial is 2.5 seconds long, and we use 12 evenly spaced points along the trajectories of495

the two joints, and thus each trajectory is 24 dimensional. For AdaptSim-State, SysID-Bayes-State, and496

SysID-Bayes-Point, again 12 points are used but sampled from the last 0.5 second only. One trajectory is497

used at each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.498

• Pushing task: each trial is 1.3 seconds long, and we use 6 evenly spaced points along the X-Y trajectory499

of the bottle, and thus each trajectory is also 12 dimensional. For AdaptSim-State, SysID-Bayes-State,500

and SysID-Bayes-Point, only the final X-Y position of the bottle is used. Two trajectories are used at501

each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.502

13



• Scooping task: each trial is 1 second long, and we use X-Y position of the food piece at the time step503

[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0]s (more sampling around the initial contact between the spatula and the504

piece), and thus each trajectory is 16 dimensional. Two trajectories are used at each adaptation iteration505

— the trajectory input to the adaptation policy is 32 dimensional.506

In real experiments, we track the bottle position in the pushing task using 3D point cloud information from507

a Azure Kinect RGB-D camera, which we find accurate. In the scooping task, the food pieces are too508

small and thin to be reliably tracked with point cloud, and thus we resort to extracting the contours from509

the RGB image and then finding the corresponding depth values at the same pixels in the depth image.510

During fast contact there can be motion blur around the food piece, and thus we add Gaussian noise with511

0.2cm mean for X position and zero mean for Y position, and 0.2cm covariance for both, to the points in512

the ground-truth trajectories in simulation. We use positive mean in X since the motion blur tends to occur513

in the forward direction.514

A4 Additional details of the task setup and task policies515

Trajectory observation First, we remove the action sequence from the task-policy trajectory and keep516

the state sequence only. Since the dynamics in real environments can be OOD, in order to achieve similar517

high-reward states as in simulated environments, the robot would need to use some actions not seen during518

training (or not seen for the particular state), hindering the adaptation policy to generalize if action sequence519

were included in the task policy trajectory. We assume that the task-relevant state sequence is covered by520

T if the task policy performs reasonably well in the real environment. This choice is also present in the521

state-only inverse RL literature [47] that addresses train-test dynamics mismatch. See Fig. A4 and related522

discussions in Sec. 6.3.523

A4.1 Dynamic pushing of a bottle524

Trajectory parameterization. Here we detail the trajectory of the end-effector pusher designed for the525

task (Fig. A1). The trajectory is parameterized with two parameters: (1) planar pushing angle, which is526

the yaw orientation of the pusher relative to the forward direction that controls the direction of the bottle527

being pushed, and (2) forward speed (of the end-effector), in the direction specified by the pushing angle.528

The pushing angle varies between −0.3rad and 0.3rad, and the forward speed varies between 0.4m/s and529

0.8m/s. We find 0.8m/s roughly the upper speed limit of the Franka Panda arm used. The pusher also530

pitches upwards during the motion and the speed is fixed to 0.8rad/s. We design such trajectories to531

maximize the pushing distance at the hardware limit.532

Initial and goal states. The bottle is placed at the fixed location (x=0.56m,y=0, relative to the arm base)533

on the table before the trial starts. The goal location is sampled from a region where the X location is534

between 0.7 and 1.0m and Y location is at most 10 degrees off from the centerline (Fig. A1 top-right). The535

patch, a 10cm by 10cm square, is placed at x=0.75m with its center (lateral position is varied as one of536

the simulation parameter).537

Task policy parameterization. The task policy is parameterized using a Normalized Advantage Function538

(NAF) [48] that allows efficient Q Learning with continuous action output by restricting the Q value as539

a quadratic function of the action, and thus the action that maximizes the Q value can be found exactly540

without sampling. In this task, it maps the desired 2D goal location of the bottle to the two action parameters,541

planar pushing angle and forward speed. The policy is open-loop — the actions are determined before the542

trial starts and there is no feedback using camera observations.543

Hardware setup. A 3D-printed, plate-like pusher is mounted at the end-effector instead of the paralle-jaw544

gripper in both simulation and reality. We also wrap elastic rubber bands around the bottom of the pusher545

and contact regions of the bottle to induce more elastic collision, which we find increases the sliding546

distance of the bottle.547

14



Figure A1: Visualization of the pushing trajectory and goal locations in the Drake simulator. There are two action
parameters: (1) forward speed (of the end-effector) and (2) planar pushing angle (i.e., yaw orientation of the end-
effector). The patch is not visualized.

Figure A2: Visualization of the scooping trajectory and initial positions of the food piece in the Drake simulator. There
are three action parameters: (1) initial distance (between the spatula and food piece), (2) initial pitch angle (of the
spatula from the table), and (3) pitch rate (of the end-effector at time step t=0.25).

A4.2 Dynamic scooping of food pieces548

Trajectory parameterization. Here we detail the trajectory of the end-effector with the spatula designed549

for the task (Fig. A2). The end-effector velocity trajectory is generated using cubic spline with values550

clamped at five timesteps. The trajectory only varies in the X and pitch direction (in the world frame),551

while remaining zero in the other directions. The only value defining the trajectory that the task policy552

learns is the pitch rate, which is the pitch speed at the time t=0.25s and varies between −0.2rad/s and553

0.2rad/s. A positive pitch rate means the spatula lifting off the table late, while a negative one means lifting554

off early (see the effects in Fig. 8). The other two values that the task policy outputs are the initial pitch555

angle of the spatula from the table (varying from 2 to 10 degrees), and the initial distance between the556

spatula and the food piece (varying between 0.5cm to 2cm). Generally a higher initial pitch angle can help557

scoop under food pieces with flat bottom, and a smaller angle helps scoop under ellipsoidal shapes. We558

design such trajectories after extensive testing with food pieces of diverse geometric shapes and physical559

properties in both simulation and reality.560

Initial states. The food piece is randomly placed in a box area of 8x6cm in front of the spatula; the initial561

distance is relative to the initial food piece location.562

Task policy parameterization. The task policy is parameterized using a NAF again. In this task, it maps563

the initial 2D position of the food piece to the three action parameters: pitch rate, initial pitch angle, and564

initial distance.565

Hardware setup. We use the commercially available OXO Nylon Square Turner1 as the spatula used566

for scooping. It has a relatively thin edge (about 1.2mm) that helps scoop under thin pieces. A box-like,567

3D-printed adapter with high-friction tape is mounted on the handle to help the parallel-jaw gripper grasp568

the spatula firmly. The exact 3D model of the spatula with the adapter is designed and used in the Drake569

simulator; the deformation effect as it bends against the table is not modeled in simulation.570

1link: https://www.amazon.com/OXO-11107900LOW-Grips-Square-Turner/dp/B003L0OOSU

15

https://www.amazon.com/OXO-11107900LOW-Grips-Square-Turner/dp/B003L0OOSU


A5 Additional details of experiments571

A5.1 Simulated adaptation572

Table A2 shows the simulation parameters used in different simulated target environments for the three573

tasks (results shown in Table 3).574

Setting

Task Parameter WD OOD-1 OOD-2 OOD-3 OOD-4 Range

Pendulum

m1 1.8 1.8 0.5 1.2 0.4 [1,2]
m2 1.2 0.3 1.8 1.8 2.6 [1,2]
b1 1.5 1.5 1.5 10.0 1.0 [1,2]
b2 1.5 1.5 1.5 10.0 2.0 [1,2]

Pushing

µ 0.1 0.25 0.05 0.15 0.30 [0.05,0.2]
e 1e5 5e4 1e5 5e6 1e5 [1e4,1e6]
µp 0.6 0.1 0.9 0.1 0.15 [0.2,0.8]
yp 0.05 -0.1 0.05 -0.15 0.1 [−0.1,0.1]

Scooping

µ 0.30 0.45 0.20 0.30 0.40 [0.25,0.4]
e 5e4 1e4 5e4 1e6 1e5 [1e4,5e5]
g 1 0 1 0 2 {0,1}
h 2.0 1.4 2.2 2.8 1.9 [1.5,2.5]

Table A2: Simulation parameters used in different simulated target environments for the three tasks. OOD parameters
(outside the range used in adaptation policy training) are bolded. For g in the scooping task, 0 stands for ellipsoid, 1 for
cylinder, and 2 for box.

A5.2 Real adaptation575

In Fig. A7 and Fig. A9 we demonstrate additional visualizations of the pushing and scooping results with576

AdaptSim.577

A5.3 Additional studies578

Choice of the simulation parameter space. To answer Q3, we perform a sensitivity analysis by fixing the579

target environment (OOD-1 in the double pendulum task) and varying the simulation parameter space. In580

OOD-1, the OOD parameter is m2=0.3 while the range in Ω is [1,2]. Fig. A3 shows the results of reward581

achieved after adaptation for AdaptSim and the two Sys-ID baselines, as the range shifts further away from582

m2=0.3 to [1.1,2.1], [1.2,2.2], and [1.3,2.3]. Sys-ID performance degrades rapidly, while AdaptSim is583

more robust.584

Figure A3: Adaptation results for AdaptSim and Sys-ID baselines in OOD-1 setting of the double pendulum task, with
different m2 ranges in Ω while m2=0.3 in the target environment.

Pitfalls of Sys-ID approaches. Fig. A4 demonstrates the dynamics mismatch between simulation and585

reality, which illustrates the pitfall of SysID approaches. We plot a set of bottle trajectories from randomly586

sampled simulation parameters from Ω with a fixed robot action. We also plot the trajectories of Heavy587

bottle being pushed with the same action in reality. There are segments of real trajectories that are not well588

matched by the simulated ones, and a slight mismatch can lead to diverging final states (and hence different589

task rewards).590

16



Figure A4: Comparison of trajectories from the simulation domain (green, simulated with randomly sampled simulation
parameter settings) and from Heavy bottle in reality (red), with the same robot action applied. The real dynamics can
be OOD from simulation (black boxes) while the final position of the bottle can be WD.

Trade-off between real data budget and task performance convergance. In Sec. 4.2 we introduce N ,591

the number of initial simulation parameter distributions that are sampled at the beginning of Phase 2 and592

then adapt independently. There is a trade-off between the real data budget (linear to N) and convergence593

of task performance. Adapting more simulation parameter distributions simultaneously can potentially help594

the task performance converge faster but also require more real data. Fig. A5 shows the effect with the595

Light bottle in the pushing task. We vary N from 1 to 4 — each simulation parameter distribution takes 2596

trajectories at each iteration. N=1 shows slow and also worse asymptotic convergence, which shows that597

the parameter distribution can be trapped in a low-reward regime. N=2 performs the best with fastest598

convergence in terms of number of real trajectories used. Using higher N shows slower convergence. Note599

that the convergence also depends on the dimension of the simulation parameter space Ω — we expect600

N>2 is needed for the best convergence rate once the dimension increases from 4 used in the pushing601

task.602

Figure A5: Task performance convergence with respect to the number of real trajectories used with varying N , the
number of simulation parameter distributions adapting simultaneously in Phase 2 with the Light bottle in the pushing
task.

Sensitivity analysis on adaptation step size. Adaption step size δ can affect the task performance603

convergence too — δ being too low can cause slow convergence, while δ being too high can prevent604

convergence since the simulation parameter distribution can “overshoot” the optimal one by a large margin.605

Fig. A6 shows the effect of adaptation step size ranging from 0.05 to 0.20 in OOD-1 setting of the double606

pendulum task. δ = 0.10 performs the best while δ = 0.05 shows slower convergence. δ = 0.15 also607

achieves similar asymptotic performance but the reward is less unstable during adaptation, while with608

δ=0.20 the reward does not converge at all.609

Comparison of simulation runtime. Compared to Sys-ID baselines, AdaptSim requires significantly610

longer simulation runtime for training the adaptation policy in Phase 1. For example: SysID-Bayes uses611

roughly 6 hours of simulation walltime to perform 10 iterations of adaptation in the scooping task while612

AdaptSim would take 36 hours for Phase 1, and 30 minutes for Phase 2 (i.e., 3 minutes per iteration), using613

the same computation setup. However, we re-use the same adaptation policy for different food pieces in614

the scooping task, which amortizes the simulation cost.615

17



Figure A6: Normalized reward at each adaptation iteration using different adaptation step size δ, in OOD-1 setting of
the pendulum task.

Figure A7: Adaptation results of the pushing task with two different target locations (yellow cross, top and bottom
rows) over iterations. The right figure shows the inferred simulation parameter distribution (mean only).

Figure A8: AdaptSim fails to synthesize a task policy for scooping up Brussels sprout. We consider such environment
extremely OOD from the simulation domain.

18



Figure A9: Adaptation results of scooping up (top) chocolate raisins, (middle) mushroom slice, and (bottom) Oreo
cookie with AdaptSim.

19


	Introduction
	Related Work
	Problem Formulation
	Approach
	Phase 1: meta-learning the adaptation policy in sim
	Phase 2: iteratively adapt sim parameters with real data

	Tasks
	Swing-up of a linearized double pendulum
	Dynamic table-top pushing of a bottle
	Dynamic scooping of food pieces with a spatula

	Experiments
	AdaptSim achieves better task performance through adaptation
	AdaptSim improves real data efficiency
	AdaptSim finds sim parameters that are different from ones from SysID

	Discussions
	Extended Related Work
	Additional details on approach
	Sparse adaptation reward
	Task policy reuse across parameter distributions

	Additional details of adaptation policies
	Additional details of the task setup and task policies
	Dynamic pushing of a bottle
	Dynamic scooping of food pieces

	Additional details of experiments
	Simulated adaptation
	Real adaptation
	Additional studies



