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Figure 11. LM optimization experiment. We show how LM op-
timization improves results in terms of L2 Chamfer distance across
a variable number of rounds. We report results both for in-category
experiments and out-of-category ones.

6. Additional Results
Does LM improve our final predictions? In our ap-
proach we use LM optimization as a post processing step. In
this experiment (Fig. 11) we want to assess how a different
number of LM optimization rounds affects the final predic-
tions in terms of L2 Chamfer Distance. In order to evaluate
this aspect, we report L2 loss after different numbers of LM
optimization steps, evaluating both in-category and out-of-
category. From this experiment we can notice two main as-
pects. Firstly, we see that it leads to larger improvements in
the out-of-category rather than in the in-category one. This
is probably due to the less accurate initial predictions of our
feedforward model in this setting and it shows that our op-
timization step can be used to decrease the gap between in-
category and out-category. Secondly, we see that even if
LM optimization improves our final predictions, it does not
lead to substantial improvements. This suggests that the so-
lutions predicted by our method are located in local minima
and that a diverse type of optimization should be resorted to
improve the predictions further.

Why superquadrics? While our architecture can be eas-
ily adapted to segment and predict in an unsupervised man-
ner other types of geometric primitives - in SUPERDEC we
decided to use superquadrics. When looking for a suit-
able geometric primitive for our approach we were keeping
in mind two main criteria. First, we wanted the primitive
to be represented by a compact parameterization so that it
can be described by only using a few parameters. Second,
we wanted the representation to be expressive, in order to
be able to describe real-world objects by only using a few
primitives. Inspired by 3DGS [18], the first parameteriza-
tion we took into consideration were the ellipsoids. Ellip-

soids have a very compact parameterization as their shape
can be represented using the following implicit equation:
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where the only free variables are sx, sy , sz , which are the
lengths of the three main semi-axis. However, if we start
thinking about which objects and object parts can be effec-
tively fitted using a single ellipsoid, we realize that their
representational capabilities are not enough. In order to ob-
tain higher representational capabilities while still keeping
a simple representation, a natural extension are generalized

ellipsoids. In this representation, we not only allow the
length of the semi-axis to be variable, but their roundness
controlled by the three exponents, which previously were
fixed to 2. In that way, we obtain the following implicit
function:
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Using generalized ellipsoids with high exponents it be-
comes possible to also represent cuboidal shapes. While
having suitable representational capabilities, these primi-
tives do not allow to compute distance to their surface in
a closed form, a property which can be extremely useful for
various downstream applications. This drawback is over-
come by superquadrics, at the cost of one less degree of
freedom, which however does not substantially impact ex-
pressivity. Unlike generalized ellipsoids, which assign a
separate roundness parameter to each axis, superquadrics
share the same roundness for the x and y axes while al-
lowing a distinct parameter for the z axis. Their shape is
represented in implicit form by the equation:
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and the euclidean radial distance to their surface can be
computed in closed form, as shown in Eq. 2.

7. Robot Experiment
In this section we introduce the key methods and parame-
ters used in our robot experiments. We also present more
detailed qualitative and quantitative evaluation results.

7.1. Setup
For path planning in both ScanNet++ [56] and real-world
scenarios, we use the Python binding of the Open Motion
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Planning Library (OMPL). The state space is defined as a
3D RealVectorStateSpace, with boundaries extracted from
the 3D bounding box of the input point cloud. We employ a
sampling-based planner (RRT*), setting a maximum plan-
ning time of 2 seconds per start-goal pair.
In ScanNet++ scenes, the occupancy grid and voxel grid
are both set to a 10 cm resolution, with voxels generated
from the original point cloud. The collision radius is 25
cm. For dense occupancy grid planning, we enforce an ad-
ditional constraint in the validity checking to ensure that
paths remain within 25 cm of free space, preventing them
from extending outside the scene or penetrating walls. And
the planned occupancy grid path serves as a reference for
computing relative path optimality in our evaluation. Start
and goal points are sampled within a 0.4m-0.6m height
range in free space, as most furniture and objects are within
this range. This allows for a fair evaluation of how differ-
ent representations capture collisions for valid path plan-
ning. During evaluation, we further validate paths by in-
terpolating them into 5 cm waypoint intervals. Each way-
point is checked against the occupancy grid to ensure that
its nearest occupied grid is beyond 25 cm and its nearest
free grid is within 25 cm. A path is considered unsuccess-
ful if more than 10% of waypoints fail this check. This
soft constraint accounts for the sampling-based nature of
RRT*, which does not enforce voxel-level validity but in-
stead checks waypoints along the tree structure, leading to
occasional minor violations. In the real-world path plan-
ning, we set the collision radius to 60 cm to approximate
the size of the Boston Dynamics Spot robot. Spot follows
the planned path using its Python API for execution.
For grasping in real-world experiments, we use the
superquadric-library to compute single-hand grasping poses
based on superquadric parameters. The process begins by
identifying the object of interest and its corresponding su-
perquadric decomposition. One of the superquadrics is se-
lected and fed into the grasping estimator. To execute the
grasp, the robot first navigates to the object’s location dur-
ing the planning stage. Then, using its built-in inverse
kinematics planner and controller, the robot moves its end-
effector to the estimated grasping pose for object manipula-
tion.

7.2. Planning Results
In Tab. 4 we report the complete planning results on 15
Scannet++ [56] scenes.
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Method 0a76e06478 0c6c7145ba 0f0191b10b 1a8e0d78c0 1a130d092a
Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem.

Occupancy 0.05 100 1.00 960KB 0.06 100 1.00 667KB 0.06 100 1.00 1031KB 0.05 100 1.00 926KB 0.05 100 1.00 803KB
PointCloud 0.07 86 0.98 18MB 0.09 91 0.99 12MB 0.03 77 0.99 19MB 0.05 91 0.99 18MB 0.05 89 0.98 18MB
Voxels 0.03 100 0.97 91KB 0.03 100 1.00 65KB 0.03 100 0.99 99KB 0.03 100 1.01 91KB 0.03 100 1.09 99KB
Cuboids [37] 0.11 32 0.98 22KB 0.10 18 1.02 19KB 0.14 85 1.03 34KB 0.10 50 1.06 21KB 0.12 79 1.00 27KB
SUPERDEC 0.17 100 0.99 52KB 0.16 100 0.97 48KB 0.17 92 0.94 51KB 0.14 91 0.99 39KB 0.13 100 0.98 35KB

Method 0a76e06478 0b031f3119 0dce89ab21 0e350246d4 0eba3981c9
Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem.

Occupancy 0.05 100 1.00 916KB 0.06 100 1.00 1760KB 0.05 100 1.00 1070KB 0.06 100 1.00 366KB 0.06 100 1.00 473KB
PointCloud 0.05 86 1.02 18MB 0.06 96 1.04 25MB 0.05 84 1.13 19MB 0.06 88 1.22 10MB 0.14 80 0.98 45MB
Voxels 0.03 100 1.01 99KB 0.03 100 1.00 160KB 0.03 100 1.19 104KB 0.03 100 1.00 51KB 0.03 100 1.12 199KB
Cuboid[37] 0.14 71 1.12 32KB 0.11 78 1.03 24KB 0.11 35 1.00 23KB 0.09 62 1.00 15KB 0.17 87 1.17 41KB
SuperDec 0.16 86 1.17 46KB 0.16 93 0.98 46KB 0.13 100 1.07 33KB 0.15 88 1.22 40KB 0.19 57 1.10 58KB

Method 7cd2ac43b4 1841a0b525 25927bb04c e0abd740ba 0f25f24a4f
Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem. Time(ms) Suc.(%) Opt. Mem.

Occupancy 0.06 100 1.00 1241KB 0.05 100 1.00 1053KB 0.06 100 1.00 407KB 0.06 100 1.00 554KB 0.05 100 1 7MB
PointCloud 0.05 100 1.09 25MB 0.04 89 0.98 16MB 0.06 100 1.01 11MB 0.06 97 0.93 16MB 0.07 61 0.97 99MB
Voxels 0.03 100 1.00 137KB 0.03 100 0.98 82KB 0.03 83 1.04 51KB 0.03 100 1.04 83KB 0.03 96 0.96 617KB
Cuboid[37] 0.21 80 1.04 57KB x x x 15KB 0.09 87 0.96 17KB 0.07 52 1.04 11KB x x x x
SuperDec 0.15 100 1.05 45KB 0.10 94 0.87 18KB 0.17 83 1.30 53KB 0.12 100 0.87 27KB 0.21 57 0.82 71KB

Table 4. Path Planning Results. We show results of path planning for different ScanNet++ [56] scenes, whose ids are reported on the top.
PointCloud method uses dense point clouds from ScanNet++, all other methods process the same input point cloud. Time refers to average
execution time of the validity-check function during the sampling stage of planning. Success rate (Suc.) is calculated after excluding
trials where no representation could generate valid path due to randomness of start and goal sampling. The Cuboid method encounters an
out-of-memory failure when fitting scene 0f25f24a4f due to its large scale, and fails to find any valid path in scene 1841a0b525.
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From: OpenReview noreply@openreview.net
Subject: [ICCV 2025] Decision for Submission #4571

Date: 25 June 2025 at 10:46
To: efedele@ethz.ch

Dear Authors of Submission #4571,

Thank you for your submission to ICCV 2025. The review process has now concluded. Below you will find the meta-review and final
reviews for your submission, which will be available on OpenReview shortly.

Congratulations, your submission #4571, titled “SuperDec: 3D Scene Decomposition with Superquadrics Primitives” has been
accepted to ICCV 2025.
You will receive additional information for submitting the camera-ready version shortly. Please note that acceptance is contingent on
passing a plagiarism check. Papers that do not comply with plagiarism and dual-submission rules will be rejected.

This year, we received 11,239 valid submissions that underwent the review process. The program committee recommended 2,698
papers for acceptance, resulting in an acceptance rate of 24%. All papers were initially evaluated by at least three independent
reviewers. Following the author rebuttal and reviewer discussions, moderated by an Area Chair (AC), a triplet of three ACs reviewed
each paper holistically, considering the reviews, author rebuttal, and reviewer discussions. For challenging cases, additional ACs
and/or Program Chairs (PCs) were consulted.

We would like to thank the reviewers and Area Chairs for their contributions to the review process.

Best Regards,
ICCV Program Chairs

Metareview

This paper received three reviews. The preliminary ratings were BR, A, and WA. Following the rebuttal, the final ratings improved to
BA, A, and WA. The reviewers identified several key strengths of the work: the proposed approach is novel and sound, the paper is
well-written, both the object and scene results demonstrate clear superiority over previous superquadric methods, and the presented
applications are highly relevant and solid. Initial concerns included the lack of ablation studies and limited qualitative results. The
authors addressed these concerns satisfactorily in their rebuttal. Given the unanimous positive feedback from the reviewers, the AC
recommends acceptance of this paper.

To ensure the final paper reflects the improvements made during the review process, the authors should integrate the responses
provided in the rebuttal into the camera-ready version.

Final Recommendation

Accept

Reviewer ewjR

Paper Summary

The paper proposes to represent 3D objects with superquadric primitives. It introduces a framework, consisting of a feed-forward
model and an optimization module, to decompose objects into parts and learn superquadrics to fit these segments. The method
proves to be effective for 3D objects/scene decomposition, achieving good reconstruction accuracy and being compact. In addition, the
proposed method demonstrates its usefulness in various downstream tasks.

Paper Strengths

1. The writing of this paper is easy to follow, and the overall presentation is clear.

2. The experiment is comprehensive, and applications to different downstream tasks are interesting.

Major Weaknesses

1. At the beginning of the Method section, the paper claims to address “unsupervised 3D scene decomposition into primitives”.
However, given 3D scene point clouds, the proposed method makes use of Mask3D, which is a supervised segmentation
model, to generate instance masks.

2. It would also be interesting to substitute Mask3D with unsupervised 3D object segmentation methods, which may further
validate the robustness of the proposed method against noisy object masks.

3. Ablation for loss terms and model design: There is a lack of ablations for model designs and loss terms. For example, is it
necessary to predict existence? It seems that object existence is equivalent to the thresholded soft assignment matrix value.

4. 3D scene decomposition experiment: Currently, the proposed model focuses on object-level decomposition and requires an
additional instance segmentation model to generate an object mask for 3D scenes. Is the model capable of segmenting
scenes to primitives directly?

Minor Weaknesses

In Figure 1, what does the color represent? Do different colors indicate different instances? Or different object parts? Or different
primitive types? From Figure 1, it is hard for readers to see “superquadric primitives” decomposed. Figures in the experiment section
are clearer, authors may consider updating Figure 1.

Preliminary Recommendation

5: Weak Accept

Preliminary Justification
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