442

443

444
445

446

447

448

449

451
452

454

459

460
461

462
463

464
465

467

7 Supplementary Material

7.1 Model inference

Assume an observation dataset D,, = {x;, yi}?zl, we exploit an efficient element-wise Gibbs
sampling algorithm for model inference.

7.1.1 Sampling latent functions

Given the the Gaussian prior and Gaussian likelihood of the latent factors g7, their posterior distri-
butions are still Gaussian. Let 4% = y; — S 71—y Aj HdD:1 gh (i) and y, = [y},...,y"]" € R"
h#r

forr =1,..., R. Every y, generates a D-dimensional tensor), € RIS11>~*ISpl in the Cartesian

product space Hle Sq4. We define a binary tensor O with the same size of Y indicating the locations
of the observation data, where o (x;) = 1 for ¢ € [1,n], and other values are zero. The posterior of
gy, is given by:

p(gsl =) =N (g

™, (A2).

1
il = (M) | 7 (Yo @ Ow) | A @ i | |-
h=D

h#d

acR/Sdl (1)
2

1
(A7) =rdiag | O | A @ gi | | +(ED ™,
h=D

h#d

beR!Sadl

where Y',.4) and O) are mode-d unfoldings of)V, and O, respectively, with the size of | S| x

(IT7=1 |Sx). Note that the vector term @ in (5] and b in [A})]", which are only relevant to the
h#d

n observations and corresponding function values, can be computed element-wise instead of using

matrix multiplication and Kronecker product. The point-wise computation can dramatically reduce

the computational cost especially for a relatively large D, since the number of observations in BO is

much smaller compared with the number of samples in the entire grid space, i.e., n < HdD:1 |Sal.

7.1.2 Sampling kernel hyperparameters

We update the kernel hyperparameters {I; : d = 1,...,D, r = 1,..., R} from their marginal
posteriors by integrating out the latent factors. Let [y,], = Ogvec (Y, (@)) € R", where

O, € R™ (I 15al) 5 o binary matrix obtained by removing the rows corresponding to zeros in
vec (O(d)) from I 12, 1Sal" When sampling the posteriors for kernel hyperparameters under a given

d and r, their marginal likelihoods only relate to [y,.] ;. The log marginal likelihood of]}, for example,
is:

. 1 T a1 1
tog (fy,Ja | 10) o —5 (w,Ja)) o la = 5 logdet (B,) 1)

o T (ly,)) T H (A7) H [y,], logdet ([A3]") — 3 logdet (K.

(&

(12)
where H = Oy (AT ®1h:D g ® I(|Sd|)) e R™*15al and 2[yr]d|l2 = HK'ZH—r + 771, The
h#d

term c in Eq. (T2)) is a scalar that can be computed with u " u, where u = (Lg)_1 a is a vector

12

468
469
470
471
472

473

474

475

476

477

478

479

481

482

483

484

485

486
487

of length |Sg4|; L} = chol ([Aj]") is the Cholesky factor matrix of [A}]". This means that the
complicated term c can also be calculated element-wise, and it leads to a fast learning process. With
the marginal likelihoods and pre-defined log-normal hyperpriors, we can get the marginal posteriors
of the kernel hyperparameters straightforwardly; and we update them by using the slice sampling
algorithm presented in [13]].

7.1.3 Sampling weight vector
Every observed data point has the following distribution:

R D D D
yimuN'<§:ATIIsﬁ(IZ)[I195($®,-~7I195($2ﬂ Aﬂ‘1>, i=1,...,n
d=1 d=1 d=1

r=1

Let g (x;) = (Hle g5 () ,...,Hle gl (xfi))T € Rtandy = (y1,... 7yn)T e R™; we
then have y ~ N (GTA,TAI,L), where G = [g(1),...,g(x,)] € R*". The posterior of
A follows a Gaussian distribution p (A | =) ~ N (p3, A;)_1>, where pi =7 (A})"" Gy and
AL =7GG +Ip.

7.1.4 Sampling model noise precision

For precision 7, we have a Gamma posterior p (7 | —) = Gamma (7 | a*,b*), where a* = a¢ + %n

2
N n R D r 7
and b* = by + 5>, (yz =21 A [amr 94 (xd)) :

7.2 Algorithm of BKTF for BO

Algorithm 2: BKTF for BO

Input: Initial dataset Dy.
forn=1:Ndo
fork=1:Kdo
forr=1:Rdo
ford=1:Ddo
L Draw kernel length-scale hyperparameters [';;
(k).

Draw latent factors (g7)

Draw model noise precision T(k);

Draw weight vector)\(k);
if £ > K then

‘ Compute and collect F (k).

Compute mean U and variance V of {F (k)};

Compute ap.ycs (€ | Dp—1, 5) as a tensor;

Find next x,, = arg max,, ag.ycs (€ | Dn-1,3);
| Augment the data D,, = D,,_1 U {@,,, yn }.

7.3 Optimization for nonstationary and nonseparable function

7.3.1 Data generation

The function in Figure[T](a) is a modification of the case study used in [14]]. It is 40 x 40 2D process
generated in a [1, 2] x [—1, 0] square, with

Y (21, 29) = (cos (4 [fi(x1) + fa(w2)]) + sin (4 [fi(z2) = fa(1)]) — 1) X

132
exp (—(xl —0.5)2+ (”51)> (13)

13

488
489
490

491

492
493
494
495
496
497
498
499
500
501
502
503

505

506
507

508

509
510

where f(z1) = x1 (sin2z1 + 2), f(z2) = 0.2221/99(x2 + 1) + 4, 21 € [1,2], 22 € [-1,0]. This
is a nonstationary, nonseparable, and multimodel function, with the global maximum f(x*) = 0.6028
atx* = (1.75,—0.55).

7.3.2 Results

We randomly select nyp = 30 data points as the initial data and run 50 iterations (i.e., budget)
of evaluation for optimization. To compare different surrogates, we run the optimization for 20
replications with different initial datasets. For the proposed BKTF surrogate, we place Matérn 3/2
kernel functions on the latent factors, set the rank R = 4, and run 1000 MCMC samples for model
inference where the first 600 samples are burn-in. For comparison BO methods, we consider typical
GP surrogate with both EI and UCB (3 = 2) as the AF, denoted by GP ag; and GP aycp respectively,
and use the same Matérn 3/2 kernel for GP surrogate. Figure [I{b) shows the medians along with
25% and 75% quantiles of the optimization results from 20 runs. We see that GP ag; and GP aycp
cannot find the global optimum in most cases, and they easily get stuck in the lower left flat area
which contains easily find local optima. Figure[T|c) illustrates the estimation surface for the function
and the estimated AF surface from one run. It is clear that BKTF can capture global correlations with
limited data. The search points contain areas of almost every peak in the true function, and the peaks
of its AF surface also reflect the peak area in f. Figure[d(a)-(d) shows the posterior distributions of
model parameters, the mean of latent factors after burn-in, and the last 20 MCMC samples for latent
factors in two dimensions, respectively. The samples of latent factors in panel (c) and (d) explain the
uncertainty learned by BKTF for this optimization problem.

118ngth»scale 1, noise precision 71

w

—0
—ly
1

—_

probability
N

o

0

-1 0 1 2 0 0.2 0.4 0.6
weights model hyperparameters

(a) Posterior probabilities of model hyperparameters.

factors

(¢) MCMC samples for latent factors (d = 1). (d) MCMC samples for latent factors (d = 2).

Figure 4: Results of BKTF for optimization on the nonstationary and nonseparable multimodal 2D
function in Figure [Tfa).

7.4 Benchmark test functions

The functional expressions and characteristics of the used test functions in Section[5.1]are summarized
as below.

14

511
512

513

514

516
517

519

520

521
522

523
524

526

527
528
529

(1) Branin Function (D = 2)

5.1 5

2
. 1
flz1,22) = (xg - —xf + ;zl — 6> + 10 (1 — 877) cos(z1) + 10, (14)

47

where z1 € [—5,10] and x5 € [0, 15]. It is a smooth but multimodal function with the global minima
f(x*) = 0.3978873 at three input points * = (—, 12.275), (7, 2.275), (37, 2.425).

(2) Damavandi Function (D = 2)

[2+ (z1—7)% +2(z2 — 7)?],

sin[r(zq — 2)] sin[m(zg — 2)] ‘5 (15)

fz1,m0) = |} - s P o

where x4 € [0, 14]. This is a multimodal function with the global minimum f(*) = 0 at x* = (2, 2).

(3) Schaffer Function (D = 2)

102 2 2
Vv 205
5 S VLT y (16)

f(z1,22) =0.5)
[1+40.001 (22 + 23)]

where x4 € [—10, 10]. The global minimum value is f(2*) = 0 at * = (0,0). One characteristic
of this function is that the global minimum is located very close to the local minima.

(4) Griewank Function (D = 3,4)

D 22 D .
flx) = 1—1-;4000 —dE[lcos (\/g> ,

where 24 € [—10,10]. This is a multimodal function with the global minimum f(z*) = 0 at
z* = (0,0).

a7

(5) Hartmann Function (D = 6)
multiple local minima.

A nonseparable function with multidimensional inputs and

4 6
fl@) == cjexp (— Y ajalza - bjd)2>7 (18)
j=1 d=1
where
r10 3 17 35 1.7 8 1
005 10 17 01 8 14 1.2
A=laal=|"3" 35 17 10 17 s| ¢=ll=]35]"
|17 8 005 10 0.1 14 3.2 (19
r0.1312 0.1696 0.5569 0.0124 0.8283 0.5586
B = (b, 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
= 1%dl = 10.2348 0.1451 0.3522 0.2833 0.3047 0.6650|
10.4047 0.8828 0.8732 0.5743 0.1091 0.0381

xq € [0,1]. The six dimensional case has 6 local minima, and the global minimum is f(z*) =
—3.32237 at z* = (0.20169,0.150011, 0.476874,0.275332,0.311652, 0.657301).

Note that all these minimization problems can be easily transformed as a maximization optimization
problem, i.e., max — f ().

7.5 Supplementary results on benchmark test functions

7.5.1 Effects of hyperpriors on kernel hyperparameters

We show the optimization results on Branin function with different hyperprior settings in Figure [5as
an example to illustrate the effects of hyperpriors. In panel (a), the optimization results under several
hyperprior assumptions are compared, where Tl_l is set as 0.5. As can be seen, BKTF is not able to

15

530
531
532
533
534
535
536
537
538
539

540

541
542
543
544
545

546

547
548
549
550
551
552
553
554
555
556
557
558

reach the global minimum with too small or too large mean assumptions (comparable to [0, 1]) on the
kernel length-scales [, for example in the cases where ;; = {log (0.05),log (2)}. In contrast, it finds
the global optimum after 4 iterations of function evaluations when ; = log (0.5), see the purple line
in panel (a). These imply the importance of hyperprior selection. The reason is that in the first several
evaluations, since the observations are rare, the prior basically determines the exploration-exploitation
balance and guides the search process. Panel (b) shows the approximated posterior distributions for
kernel hyperparameters and model noise variance when 7'[1 = 0.5, iy = log (0.5). We see that for
the re-scaled input space and normalized function output, the sampled length-scales are around half
of the input domain. Such settings are reasonable to capture the correlations between the observations
and are also interpretable.

3 — i = log(0.05)
—;z; =1log(0.1)
= log(0.)
2 ——
| ~ —Hz log(1)
5] = log(2)
0

0 10 20 30 40 50
no. of evaluations

(a) Results with different hyperpriors.

2 —u 15
_lf
1. —!
S jg 10
_ —| =
X 1 £
[sH
5
05
0 0
0 1 2 3 0 0.1 0.2 03

L 71

(b) Posterior probability distributions of length-scales and model noise variance.

Figure 5: Effects of hyperpriors for kernel hyperparameters on Branin function.

7.5.2 Performance profiles

When computing the performance profiles (PPs), i.e., Dolan-Moré curves [30], we consider the
number of function evaluations to find the global optimum as the performance measure. Specifically,
let ¢, , denote the number of evaluations used by method/solver a to reach the global solution in
experiment p (a lower value is better). The value equals to IV, + 100 if the method cannot find the
global optimum with N,, being the given observation budget for experiment p. The performance

ratio v, o = m, where A represents the set including all comparing models, and the

performance profile for each method is the distribution of p (y, < p) in terms of a factor p. We set
P = 1: Npax +1, where Ny« = max N, is the largest observation budget assumed for the compared
experiments. We define the problem set {P | Vp € P} as the 10 runs for every function and draw the
performance profiles of each model, also set P as all 60 experiments across the 6 tested functions
and estimate the overall performance profiles. We show the obtained PPs on the three 2D functions
and across test functions (i.e., overall PPs) in Figure |Z[c) for illustration; the full results on all the
tested functions along with the overall plot are shown below in Figure [f] Table 2] gives the AUC
(area under the curve) values of these curves, where the AUC of the overall performance profiles are
taken as the metric to compare the overall performances. As can be seen, BKTF obtains the best
performance across all the considered functions. In addition, for most of the test functions, the AUC
of grid-based baseline models is comparable with those of continuous GP-based models, suggesting
that the discretization of the continuous space is feasible to simplify the optimization problem.

16

559

560
561

563

564
565

566

567

Branin Damavandi Schaffer 1 Griewank (D=3)
T T T T

L

0.5

0 0 0
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
p

Griewank (D=4) y Hartmann 1 Across test functions
1 h =
< |
VI)
\(;; 0.5 0.5 0.5 —GP ag, - - GPgrid Qe
= - -GP Qe ---BKTF %% ucs
- -GPgrid ag,
0 0 0
20 40 60 80 20 40 60 80 20 40 60 80
p p P

Figure 6: Performance profiles on the standard test functions.

7.5.3 Interpretation of results

The basis functions learned by BKTF are interpretable. For example, Figure[/|shows the latent factors
(r = 1) obtained at the last iteration of function evaluation in one run on 3D Griewank function.
We see that BKTF can learn the periodicity (global structure) of the function benefited from the
low-rank modeling. On the other hand, a stationary and separable GP cannot, other than using a
specific kernel function such as the periodic kernel, which however requires strong prior knowledge
to set the periodicity kernel hyperparameter.

—d=1 —d=2 d=3
0.5 /\
0

0 0.5 1
T

factors

\

Figure 7: Examples of latent factors learned by BKTF on 3D Griewank function.

7.6 Hyperparameter tuning for machine learning

Table @lists all the hyperparameters in the tuning tasks.

17

Table 4: Hyperparameters of the tested ML algorithms.

Dataset Algorithm ‘ Hyperparameters Type Search space
no. of estimators discrete [10, 100]

. max depth discrete [5, 50]

RF classifier max features discrete [1, 64]

MNIST min samples split discrete [2,11]
neurons discrete [10, 100]

NN classifier batch size discrete [16, 64]

epochs discrete [20, 50]

no. of estimators discrete [10, 100]

RE regressor max depth discrete [5, 50]

& max features discrete [1, 13]

Boston housing min samples split discrete [2, 11]
neurons discrete [10, 100]

NN regressor batch size discrete [16, 64]

epochs discrete [20, 50]

18

	Introduction
	Preliminaries
	Bayesian Kernelized Tensor Factorization for BO
	Bayesian Hierarchical Model Specification
	BKTF as a Two-layer Deep GP
	Model Inference
	Prediction and AF Computation

	Related Work
	Experiments
	Optimization for Benchmark Test Functions
	Hyperparameter Tuning for Machine Learning

	Conclusion and Discussions
	Supplementary Material
	Model inference
	Sampling latent functions
	Sampling kernel hyperparameters
	Sampling weight vector
	Sampling model noise precision

	Algorithm of BKTF for BO
	Optimization for nonstationary and nonseparable function
	Data generation
	Results

	Benchmark test functions
	Supplementary results on benchmark test functions
	Effects of hyperpriors on kernel hyperparameters
	Performance profiles
	Interpretation of results

	Hyperparameter tuning for machine learning

