
7 Supplementary Material442

7.1 Model inference443

Assume an observation dataset Dn = {xi, yi}ni=1, we exploit an efficient element-wise Gibbs444

sampling algorithm for model inference.445

7.1.1 Sampling latent functions446

Given the the Gaussian prior and Gaussian likelihood of the latent factors gr
d, their posterior distri-447

butions are still Gaussian. Let yir = yi −
∑R

h=1
h̸=r

λh

∏D
d=1 g

h
d

(
xi
d

)
and yr = [y1r , . . . , y

n
r]

⊤ ∈ Rn448

for r = 1, . . . , R. Every yr generates a D-dimensional tensor Yr ∈ R|S1|×···×|SD| in the Cartesian449

product space
∏D

d=1 Sd. We define a binary tensor O with the same size of Y indicating the locations450

of the observation data, where o (xi) = 1 for i ∈ [1, n], and other values are zero. The posterior of451

gr
d is given by:452

p (gr
d | −) = N

(
gr
d

∣∣∣ [µr
d]

∗
,
(
[Λr

d]
∗)−1

)
,

[µr
d]

∗
=
(
[Λr

d]
∗)−1

τ
(
Y r(d) ⊛O(d)

)λr

1⊗
h=D
h̸=d

gr
h




︸ ︷︷ ︸
a∈R|Sd|

,

[Λr
d]

∗
= τ diag

O(d)

λr

1⊗
h=D
h̸=d

gr
h


2

︸ ︷︷ ︸
b∈R|Sd|

+(Kr
d)

−1
,

(11)

where Y r(d) and O(d) are mode-d unfoldings of Yr and O, respectively, with the size of |Sd| ×453

(
∏D

h=1
h ̸=d

|Sh|). Note that the vector term a in [µr
d]

∗ and b in [Λr
d]

∗, which are only relevant to the454

n observations and corresponding function values, can be computed element-wise instead of using455

matrix multiplication and Kronecker product. The point-wise computation can dramatically reduce456

the computational cost especially for a relatively large D, since the number of observations in BO is457

much smaller compared with the number of samples in the entire grid space, i.e., n ≪
∏D

d=1 |Sd|.458

7.1.2 Sampling kernel hyperparameters459

We update the kernel hyperparameters {lrd : d = 1, . . . , D, r = 1, . . . , R} from their marginal460

posteriors by integrating out the latent factors. Let [yr]d = Od vec
(
Y r(d)

)
∈ Rn, where461

Od ∈ Rn×(
∏D

d=1 |Sd|) is a binary matrix obtained by removing the rows corresponding to zeros in462

vec
(
O(d)

)
from I∏D

d=1 |Sd|. When sampling the posteriors for kernel hyperparameters under a given463

d and r, their marginal likelihoods only relate to [yr]d. The log marginal likelihood of lrd, for example,464

is:465

log p ([yr]d | lrd) ∝ −1

2
([yr]d)

⊤
Σ−1

[yr]d|lrd
[yr]d −

1

2
log det

(
Σ [yr]d|lrd

)
∝ τ2

2
([yr]d)

⊤
H
(
[Λr

d]
∗)−1

H⊤ [yr]d︸ ︷︷ ︸
c

−1

2
log det

(
[Λr

d]
∗)− 1

2
log det (Kr

d) ,

(12)

where H = Od

(
λr

⊗1
h=D
h̸=d

gr
h ⊗ I(|Sd|)

)
∈ Rn×|Sd| and Σ [yr]d|lrd = HKr

dH
⊤ + τ−1In. The466

term c in Eq. (12) is a scalar that can be computed with u⊤u, where u = (Lr
d)

−1
a is a vector467

12

of length |Sd|; Lr
d = chol

(
[Λr

d]
∗) is the Cholesky factor matrix of [Λr

d]
∗. This means that the468

complicated term c can also be calculated element-wise, and it leads to a fast learning process. With469

the marginal likelihoods and pre-defined log-normal hyperpriors, we can get the marginal posteriors470

of the kernel hyperparameters straightforwardly; and we update them by using the slice sampling471

algorithm presented in [13].472

7.1.3 Sampling weight vector473

Every observed data point has the following distribution:474

yi ∼ N

(
R∑

r=1

λr

D∏
d=1

grd
(
xi
d

)
=

[
D∏

d=1

g1d
(
xi
d

)
, . . . ,

D∏
d=1

gRd
(
xi
d

)]
λ, τ−1

)
, i = 1, . . . , n.

Let g (xi) =
(∏D

d=1 g
1
d

(
xi
d

)
, . . . ,

∏D
d=1 g

R
d

(
xi
d

))⊤
∈ RR and y = (y1, . . . , yn)

⊤ ∈ Rn; we475

then have y ∼ N
(
G̃

⊤
λ, τ−1In

)
, where G̃ = [g(x1), . . . , g(xn)] ∈ RR×n. The posterior of476

λ follows a Gaussian distribution p (λ | −) ∼ N
(
µ∗

λ, (Λ
∗
λ)

−1
)

, where µ∗
λ = τ (Λ∗

λ)
−1

G̃y and477

Λ∗
λ = τG̃G̃

⊤
+ IR.478

7.1.4 Sampling model noise precision479

For precision τ , we have a Gamma posterior p (τ | −) = Gamma (τ | a∗, b∗), where a∗ = a0 +
1
2n480

and b∗ = b0 +
1
2

∑n
i=1

(
yi −

∑R
r=1 λr

∏D
d=1 g

r
d

(
xi
d

))2
.481

7.2 Algorithm of BKTF for BO482

Algorithm 2: BKTF for BO
Input: Initial dataset D0.
for n = 1 : N do

for k = 1 : K do
for r = 1 : R do

for d = 1 : D do
Draw kernel length-scale hyperparameters lrd;
Draw latent factors (gr

d)
(k);

Draw model noise precision τ (k);
Draw weight vector λ(k);
if k > K0 then

Compute and collect F̃ (k)
.

Compute mean U and variance V of {F̃ (k)};
Compute αB-UCB (x | Dn−1, β) as a tensor;
Find next xn = argmaxx αB-UCB (x | Dn−1, β);
Augment the data Dn = Dn−1 ∪ {xn, yn}.

483

7.3 Optimization for nonstationary and nonseparable function484

7.3.1 Data generation485

The function in Figure 1 (a) is a modification of the case study used in [14]. It is 40 × 40 2D process486

generated in a [1, 2]× [−1, 0] square, with487

Y (x1, x2) = (cos (4 [f1(x1) + f2(x2)]) + sin (4 [f1(x2)− f2(x1)])− 1)×

exp

(
−(x1 − 0.5)2 +

(x2 − 1)2

5

)
, (13)

13

where f(x1) = x1 (sin 2x1 + 2), f(x2) = 0.2x2

√
99(x2 + 1) + 4, x1 ∈ [1, 2], x2 ∈ [−1, 0]. This488

is a nonstationary, nonseparable, and multimodel function, with the global maximum f(x⋆) = 0.6028489

at x⋆ = (1.75,−0.55).490

7.3.2 Results491

We randomly select n0 = 30 data points as the initial data and run 50 iterations (i.e., budget)492

of evaluation for optimization. To compare different surrogates, we run the optimization for 20493

replications with different initial datasets. For the proposed BKTF surrogate, we place Matérn 3/2494

kernel functions on the latent factors, set the rank R = 4, and run 1000 MCMC samples for model495

inference where the first 600 samples are burn-in. For comparison BO methods, we consider typical496

GP surrogate with both EI and UCB (β = 2) as the AF, denoted by GP αEI and GP αUCB respectively,497

and use the same Matérn 3/2 kernel for GP surrogate. Figure 1(b) shows the medians along with498

25% and 75% quantiles of the optimization results from 20 runs. We see that GP αEI and GP αUCB499

cannot find the global optimum in most cases, and they easily get stuck in the lower left flat area500

which contains easily find local optima. Figure 1(c) illustrates the estimation surface for the function501

and the estimated AF surface from one run. It is clear that BKTF can capture global correlations with502

limited data. The search points contain areas of almost every peak in the true function, and the peaks503

of its AF surface also reflect the peak area in f . Figure 4(a)-(d) shows the posterior distributions of504

model parameters, the mean of latent factors after burn-in, and the last 20 MCMC samples for latent505

factors in two dimensions, respectively. The samples of latent factors in panel (c) and (d) explain the506

uncertainty learned by BKTF for this optimization problem.507

(a) Posterior probabilities of model hyperparameters. (b) Mean of latent factors.

(c) MCMC samples for latent factors (d = 1). (d) MCMC samples for latent factors (d = 2).

Figure 4: Results of BKTF for optimization on the nonstationary and nonseparable multimodal 2D
function in Figure 1(a).

7.4 Benchmark test functions508

The functional expressions and characteristics of the used test functions in Section 5.1 are summarized509

as below.510

14

(1) Branin Function (D = 2)

f(x1, x2) =

(
x2 −

5.1

4π
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10, (14)

where x1 ∈ [−5, 10] and x2 ∈ [0, 15]. It is a smooth but multimodal function with the global minima511

f(x∗) = 0.3978873 at three input points x∗ = (−π, 12.275), (π, 2.275), (3π, 2.425).512

(2) Damavandi Function (D = 2)

f(x1, x2) =

[
1−

∣∣∣∣ sin[π(x1 − 2)] sin[π(x2 − 2)]

π2(x1 − 2)(x2 − 2)

∣∣∣∣5
] [

2 + (x1 − 7)2 + 2(x2 − 7)2
]
, (15)

where xd ∈ [0, 14]. This is a multimodal function with the global minimum f(x∗) = 0 at x∗ = (2, 2).513

(3) Schaffer Function (D = 2)

f(x1, x2) = 0.5 +
sin2

√
x2
1 + x2

2 − 0.5

[1 + 0.001 (x2
1 + x2

2)]
2 , (16)

where xd ∈ [−10, 10]. The global minimum value is f(x∗) = 0 at x∗ = (0, 0). One characteristic514

of this function is that the global minimum is located very close to the local minima.515

(4) Griewank Function (D = 3, 4)

f(x) = 1 +

D∑
d=1

x2
d

4000
−

D∏
d=1

cos

(
xd√
d

)
, (17)

where xd ∈ [−10, 10]. This is a multimodal function with the global minimum f(x∗) = 0 at516

x∗ = (0, 0).517

(5) Hartmann Function (D = 6) A nonseparable function with multidimensional inputs and518

multiple local minima.519

f(x) = −
4∑

j=1

cj exp

(
−

6∑
d=1

ajd(xd − bjd)
2

)
, (18)

where520

A = [ajd] =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , c = [cj] =

 1
1.2
3
3.2

 ,

B = [bjd] =

0.1312 0.1696 0.5569 0.0124 0.8283 0.5586
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2833 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 ,

(19)

xd ∈ [0, 1]. The six dimensional case has 6 local minima, and the global minimum is f(x∗) =521

−3.32237 at x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.657301).522

Note that all these minimization problems can be easily transformed as a maximization optimization523

problem, i.e., max−f(x).524

7.5 Supplementary results on benchmark test functions525

7.5.1 Effects of hyperpriors on kernel hyperparameters526

We show the optimization results on Branin function with different hyperprior settings in Figure 5 as527

an example to illustrate the effects of hyperpriors. In panel (a), the optimization results under several528

hyperprior assumptions are compared, where τ−1
l is set as 0.5. As can be seen, BKTF is not able to529

15

reach the global minimum with too small or too large mean assumptions (comparable to [0, 1]) on the530

kernel length-scales l, for example in the cases where µl = {log (0.05), log (2)}. In contrast, it finds531

the global optimum after 4 iterations of function evaluations when µl = log (0.5), see the purple line532

in panel (a). These imply the importance of hyperprior selection. The reason is that in the first several533

evaluations, since the observations are rare, the prior basically determines the exploration-exploitation534

balance and guides the search process. Panel (b) shows the approximated posterior distributions for535

kernel hyperparameters and model noise variance when τ−1
l = 0.5, µl = log (0.5). We see that for536

the re-scaled input space and normalized function output, the sampled length-scales are around half537

of the input domain. Such settings are reasonable to capture the correlations between the observations538

and are also interpretable.539

(a) Results with different hyperpriors.

(b) Posterior probability distributions of length-scales and model noise variance.

Figure 5: Effects of hyperpriors for kernel hyperparameters on Branin function.

7.5.2 Performance profiles540

When computing the performance profiles (PPs), i.e., Dolan-Moré curves [30], we consider the541

number of function evaluations to find the global optimum as the performance measure. Specifically,542

let tp,a denote the number of evaluations used by method/solver a to reach the global solution in543

experiment p (a lower value is better). The value equals to Np + 100 if the method cannot find the544

global optimum with Np being the given observation budget for experiment p. The performance545

ratio γp,a =
tp,a

min{tp,a:a∈A} , where A represents the set including all comparing models, and the546

performance profile for each method is the distribution of p (γp,a ≤ ρ) in terms of a factor ρ. We set547

ρ = 1 : Nmax+1, where Nmax = maxNp is the largest observation budget assumed for the compared548

experiments. We define the problem set {P | ∀p ∈ P} as the 10 runs for every function and draw the549

performance profiles of each model, also set P as all 60 experiments across the 6 tested functions550

and estimate the overall performance profiles. We show the obtained PPs on the three 2D functions551

and across test functions (i.e., overall PPs) in Figure 2(c) for illustration; the full results on all the552

tested functions along with the overall plot are shown below in Figure 6. Table 2 gives the AUC553

(area under the curve) values of these curves, where the AUC of the overall performance profiles are554

taken as the metric to compare the overall performances. As can be seen, BKTF obtains the best555

performance across all the considered functions. In addition, for most of the test functions, the AUC556

of grid-based baseline models is comparable with those of continuous GP-based models, suggesting557

that the discretization of the continuous space is feasible to simplify the optimization problem.558

16

Figure 6: Performance profiles on the standard test functions.

7.5.3 Interpretation of results559

The basis functions learned by BKTF are interpretable. For example, Figure 7 shows the latent factors560

(r = 1) obtained at the last iteration of function evaluation in one run on 3D Griewank function.561

We see that BKTF can learn the periodicity (global structure) of the function benefited from the562

low-rank modeling. On the other hand, a stationary and separable GP cannot, other than using a563

specific kernel function such as the periodic kernel, which however requires strong prior knowledge564

to set the periodicity kernel hyperparameter.565

Figure 7: Examples of latent factors learned by BKTF on 3D Griewank function.

7.6 Hyperparameter tuning for machine learning566

Table 4 lists all the hyperparameters in the tuning tasks.567

17

Table 4: Hyperparameters of the tested ML algorithms.
Dataset Algorithm Hyperparameters Type Search space

MNIST

RF classifier

no. of estimators discrete [10, 100]
max depth discrete [5, 50]

max features discrete [1, 64]
min samples split discrete [2, 11]

NN classifier
neurons discrete [10, 100]

batch size discrete [16, 64]
epochs discrete [20, 50]

Boston housing

RF regressor

no. of estimators discrete [10, 100]
max depth discrete [5, 50]

max features discrete [1, 13]
min samples split discrete [2, 11]

NN regressor
neurons discrete [10, 100]

batch size discrete [16, 64]
epochs discrete [20, 50]

18

	Introduction
	Preliminaries
	Bayesian Kernelized Tensor Factorization for BO
	Bayesian Hierarchical Model Specification
	BKTF as a Two-layer Deep GP
	Model Inference
	Prediction and AF Computation

	Related Work
	Experiments
	Optimization for Benchmark Test Functions
	Hyperparameter Tuning for Machine Learning

	Conclusion and Discussions
	Supplementary Material
	Model inference
	Sampling latent functions
	Sampling kernel hyperparameters
	Sampling weight vector
	Sampling model noise precision

	Algorithm of BKTF for BO
	Optimization for nonstationary and nonseparable function
	Data generation
	Results

	Benchmark test functions
	Supplementary results on benchmark test functions
	Effects of hyperpriors on kernel hyperparameters
	Performance profiles
	Interpretation of results

	Hyperparameter tuning for machine learning

