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REBUTTAL APPENDIX
We provide additional details and results to address the reviewers’ concerns and comments.

• For Reviewer 7Xoc. Section C provides experiments comparing our method to directly
optimizing coefficients for different constitutive models, which demonstrates the difference
and contribution of our work compared to related methods (Nagasawa et al., 2019; Su
et al., 2023). Detailed analysis of these works is provided in the OpenReview comments.
Section E provides more qualitative results, with prompts that do not describe motions, to
demonstrate the robustness of our method.

• For Reviewer h6D1. Section B provides an analysis and improved results of the artifacts
in the can-duck collision scene. Section E provides more qualitative results regarding the
same material with different material parameters.

• For Reviewer ktNn. Section A provides the detailed results of the user study as a comple-
ment to the metrics in the main manuscript. Section B provides an analysis and improved
results of the artifacts in the can-duck collision scene. Section C provides experiments com-
paring our method to directly optimizing a vector representing the probability of different
pre-defined constitutive models. Section E provides more qualitative results regarding real-
world scenes.

• For Reviewer S54K. Section E provides more qualitative results regarding both multiple
objects and real-world scenes.

• For Reviewer kAsd. Section C provides experiments comparing our method to directly
optimizing coefficients for different constitutive models, which demonstrates the difference
and contribution of our work compared to the related method (Su et al., 2023). Detailed
analysis of the work is provided in the OpenReview comments. Section D provides the
revised version of the original Figure 3.

For other comments and concerns, we provide detailed responses in the OpenReview comments. We
appreciate the reviewers’ valuable feedback and suggestions. Thank you for your time and input.

A USER STUDY

As a complement to the metrics in the main manuscript, we conducted a user study among 20
participants to evaluate the quality of the generated dynamics by different methods. In the study,
the participants were asked to rank the videos based on two criteria: the text alignment and physical
plausibility of the dynamics. Table 1 shows the detailed results of the user study, where the numbers
indicate the average ranking of each method. A lower ranking reflects better performance. The
results indicate that our method achieves better performance in modeling various dynamics while the
baseline methods achieve comparable performance only in the pure elasticity case. This conclusion
aligns with the quantitative and qualitative findings discussed in the main manuscript. Figure 2
presents the user interface of our user study.

B ANALYSIS OF ARTIFACTS IN COLLISION

We analyze the artifacts occurring in the generated dynamics, particularly those involving complex
interactions such as collisions. Our findings indicate that the number of grids in the MPM simulator
is a key factor influencing the quality of generated dynamics. Figure 4 (see the supplementary video
for better visualization) compares the dynamics generated with varying grid resolutions. The results
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demonstrate that increasing the number of grids effectively reduces aliasing artifacts and enhances
the physical plausibility of the generated dynamics.

C DISCUSSION ON THE NETWORK ARCHITECTURE

In the main manuscript, we implement the proposed physics-guided network with a neural network
composed of two components, a 3D feature encoder and a physics-aware decoder. A naive way
to simplify the network is to directly optimize a vector representing the probability of different
pre-defined constitutive models for each particle. However, our preliminary experiments revealed
that this straightforward method struggles with convergence and is prone to numerical instability.
Figure 3 shows the predicted softmax probability during training of both the naive method and our
proposed approach. we used the prompt “a sand wolf collapsing”, where the model is expected to
converge to the non-elastic sand constitutive model. The results show that the naive method fails to
converge, as the probabilities for both elastic and non-elastic models remain close to 0.5.

D REVISON OF THE ORIGINAL FIGURE 3

We have revised the original Figure 3 to illustrate how the decoder assigns different materials to
different parts of the scene. Figure 1 shows the revised version of the original Figure 3.

E MORE EXPERIMENT RESULTS

We provide more qualitative results in this section, including the visualization of the same material
with different strengths (Figure 5), multiple objects (Figure 6), and real-world scene generated
using our method (Figure 7). In some cases, we remove the verb describing motions from prompts
to demonstrate the robustness of our method when using material-only prompts. For better visual-
ization, please refer to the supplementary video.
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Figure 1: Constitutive Gaussian Network (Revised version).

Table 1: Quantitative results of the user study. The table shows the average ranking of each method
for each scene and the overall average ranking. Lower values indicate better performance. The best
results are highlighted in bold.

Method
Scene

Swinging Ficus Collapsing Ficus Rubber Bear Sand Bear Jelly Cube Water Cube Average

PhysDreamer 3.1579 3.1250 2.0588 2.7692 2.1765 2.5385 2.6376
Physics3D 2.1579 2.7500 2.8824 3.0000 2.6471 3.0000 2.7396
DreamPhysics 2.4737 3.0000 2.2353 2.7692 2.3529 3.3077 2.6898

Ours 2.2105 1.1250 2.8235 1.4615 2.8235 1.1538 1.9330

Method
Scene

Rubber and Sand Duck and Pile Rubber hits Metal Bear into Water Average

PhysDreamer 2.8000 3.1250 2.8125 3.0588 2.9491
Physics3D 2.7333 2.7500 2.8750 2.8824 2.8102
DreamPhysics 3.0667 2.6875 3.0625 3.0588 2.9689

Ours 1.4000 1.4375 1.2500 1.0000 1.2719

Figure 2: The user interface of our user study.
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(a) Naive (b) Ours

Figure 3: The predicted softmax probability of naive vector optimization and our method during the
optimization process.

(a) 25× 25× 25 grids (b) 50× 50× 50 grids

(c) 75× 75× 75 grids (d) 100× 100× 100 grids

Figure 4: Comparison of the dynamics generated by different numbers of grids. We present the
frame at the same time step for each grid size. Artifacts are highlighted in the red box.
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(a) “A soft ficus swinging heavily in the wind.”

(b) “A ficus swinging slightly.”

(a) “A very soft, bouncy rubber wolf.”

(b) “A hard wolf.”

(a) “A very tender jelly.”

(b) “A firming jelly.”

Figure 5: Qualitative visualizations of 3D dynamic synthesis for a single object in the same material
but with different strength levels. We present the results of our method.
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(a) “Different kinds of materials on the table”

(b) “Pillows falling into a basket.”

Figure 6: Qualitative visualizations of 3D dynamic synthesis for more than 2 objects. We present
the results of our method.

(a) “Flowers swinging gently.”

(b) “A fox shaking its head.”

Figure 7: Qualitative visualizations of 3D dynamic synthesis for real-world scenes. We present the
results of our method.
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