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ABSTRACT

Spiking Neural Networks (SNNs), models inspired by neural mechanisms in
the brain, allow for energy-efficient implementation on neuromorphic hardware.
However, SNNs trained with current direct training approaches are constrained to
a specific time step. This ”temporal inflexibility” 1) hinders SNNs’ deployment on
time-step-free fully event-driven chips and 2) prevents energy-performance bal-
ance based on dynamic inference time steps. In this study, we first explore the fea-
sibility of training SNNs that generalize across different time steps. We then intro-
duce Mixed Time-step Training (MTT), a novel method that improves the tempo-
ral flexibility of SNNs, making SNNs adaptive to diverse temporal structures. Dur-
ing each iteration of MTT, random time steps are assigned to different SNN stages,
with spikes transmitted between stages via communication modules. After train-
ing, the weights are deployed and evaluated on both time-stepped and fully event-
driven platforms. Experimental results show that models trained by MTT gain re-
markable temporal flexibility, friendliness for both event-driven and clock-driven
deployment (nearly lossless on N-MNIST and 10.1% higher than standard meth-
ods on CIFAR10-DVS), enhanced network generalization, and near SOTA perfor-
mance. To the best of our knowledge, this is the first work to report the results of
large-scale SNN deployment on fully event-driven scenarios. Codes are available
at: https://github.com/brain-intelligence-lab/temporal flexibility in SNN

1 INTRODUCTION

As deep learning continues to evolve, the field has witnessed numerous groundbreaking advance-
ments that have made unprecedented strides across diverse applications. However, deploying these
huge neural networks on low-power edge devices presents substantial challenges. In addition to the
typical solutions, including network quantization (Rastegari et al., 2016), pruning (He et al., 2017),
and distillation (Hinton et al., 2015), the Spiking Neural Networks, known as one of the 3rd gener-
ation of neural networks, have emerged as a compelling candidate due to their unique bio-inspired
characteristics (Fang et al., 2021; Guo et al., 2022; Yao et al., 2023). SNNs mimic the behavior
of biological neurons by accumulating membrane potentials and transmitting sparse spikes, thereby
circumventing the need for computationally expensive multiplications (Roy et al., 2019), which
presents a promising solution for energy-efficient neuromorphic computation.

The SNN community has flourished in recent years. One of the most significant driving factors
is the invention of direct training methods with time-step-based iterative neurons (Wu et al., 2018;
2019)- with an RNN-like backpropagation method, the introduction of time steps (T) successfully
brings SNN training into mainstream deep learning platforms like PyTorch, which allows for fast
GPU-accelerated training for large-scale SNNs.

While training at a specific time step has become a prevalent paradigm for following works, the
obtained SNNs perform well only at a specific T but generalize poorly to others. This temporal
inflexibility posts constraints on SNNs’ deployment on neuromorphic chips, where the energy ad-
vantage is truly exploited. For example, it posts constraints on time step adjustment and thus hinders

∗Equal Contribution
†Corresponding author

1

https://github.com/brain-intelligence-lab/temporal_flexibility_in_SNN


Published as a conference paper at ICLR 2025

… …LIF

C
onv

LIF

C
onv +

LIF

C
onv

LIF

C
onv +

𝑇 = 2

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖 = 𝑡𝑖
(1)

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖+1 = 𝑡𝑖+1
(1)

……

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖+1

…

𝑠𝑡𝑎𝑔𝑒𝑖 𝑠𝑡𝑎𝑔𝑒𝑖+1

i) Sample 𝑠 temporal
configurations

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖 = 𝑡𝑖
(𝑠)

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖+1 = 𝑡𝑖+1
(𝑠)

……

…

…

v) Collect gradients

ii) Forward

…

Dog

𝐿

𝐿

𝐿

𝐿

+

iv) Backward

iii) Make loss

𝑇 = 𝑡𝑖
(𝑠)

𝑇 = 𝑡𝑖+1
(𝑠)

𝑇 = 𝑡𝑖−1
(𝑠)

𝑇 = 𝑡𝑖
(1)

𝑇 = 𝑡𝑖+1
(1)

𝑇 = 𝑡𝑖−1
(1)

vi) Update weights

…

… …LIF

C
onv

LIF

C
onv +

LIF

C
onv

LIF

C
onv +

𝑇 = 4

… …LIF

C
onv

LIF

C
onv +

LIF

C
onv

LIF

C
onv +

𝑇 = 6

MTT training
process

Time-step based
inference

Dashed box:𝒔 partitioned SNNs
with distinct temporal structures

𝑠 configs

𝒕
(1) =

(𝑡1
1 , …

, 𝑡 𝐺
(1) )

𝒕 (𝑠)
= (𝑡1 𝑠 , … , 𝑡

𝐺
(𝑠)
)

…

…

Fully event-driven
inference

Deployment

… …

N
euron

N
euron

wire

Synapse Synapse

N
euron

N
euron

wire

Synapse Synapse

Figure 1: The workflow of MTT pipeline. We first partition SNN into G stages. In each iteration, we sample
s temporal configs t(1), ..., t(s) ∈ RG, each assigning a set of random time steps to different stages (for j-th
sampled config, Ti = t

(j)
i ). These configurations create s partitioned SNNs with distinct temporal structures,

all sharing the same weights. To update the shared weights, we backpropagate the sum of the s losses to obtain
the gradient. Models trained with MTT exhibit temporal flexibility, which leads to their adaptation to any time
step and friendliness with fully event-driven chips.

SNNs’ on-device energy-performance balance by dynamic time step algorithms (Li et al., 2023d)
and hardware (Li et al., 2023d). Another more conspicuous issue occurs when deploying SNNs on
fully event-driven neuromorphic accelerators. Fully event-driven accelerators are ideal always-on
edge platforms for SNNs with ultra-low energy consumption (Li et al., 2023b) and bio-plausibility
(Richter et al., 2024). On these time-step-free platforms, all neurons operate asynchronously, and
the time step here is an auxiliary for GPU-friendly training rather than a real-world hyper-parameter.

In response to these deployment issues caused by temporal inflexibility, we propose a novel training
method, Mixed Time-step Training (MTT), to improve temporal flexibility of SNNs. The workflow
is shown in Fig. 1. The parameters trained with this method are decoupled from temporal structures
used during training and are compatible with a wide range of time steps. This not only enhances the
model’s compatibility with fully event-driven hardware but also enables dynamic on-chip time step
adjustment and corresponding energy-performance trade-off strategies. Our main contributions are
as follows:

• We identified the temporal inflexibility caused by the standard training method and its
potential solution, based on which we further designed Mixed Time-step Training (MTT)
to enhance the temporal flexiblility of SNNs.

• Intensive experiments are carried out on platforms including GPU-accelerated servers, neu-
romorphic chips, and our high-performance event-driven simulator, testifying MTT’s effec-
tiveness on static and event datasets. To our knowledge, this is the first work to evaluate
large-scale SNNs in fully event-driven scenarios.

• Models trained with MTT demonstrate remarkable temporal flexibility while achieving
performance comparable to other state-of-the-art approaches.

2 RELATED WORK

Direct Training The direct training approach stems from the idea that SNNs can be viewed as vari-
ant RNNs and trained using BPTT as long as the non-differentiable activation term is replaced with
a surrogate gradient. Wu et al. (2018) first proposes the STBP method and trains SNNs using an
ANN framework. Further, (Wu et al., 2019) and Zheng et al. (2021) suggest novel NeuronNorm and
BatchNorm strategies to facilitate large-scale SNN training, respectively. Recently, the performance
of SNN on neuromorphic datasets has been substantially enhanced with the advent of specially de-
veloped algorithms, including TET (Deng et al., 2022) and TCJA-SNN (Zhu et al., 2022a). On static
datasets, various methods (Li et al., 2021b; Guo et al., 2022; Yao et al., 2022) are proposed to close
the gap between SNNs and ANNs. Notably, Guo et al. (2022) first reported SNNs with accuracy
exceeding the corresponding ANN counterpart, demonstrating the strong potential of SNNs. More-
over, the recent emergence of spike-based transformer architectures (Zhou et al., 2024; 2023; Yao
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et al., 2024a;b; Zhou et al., 2022) has propelled the performance of large-scale SNNs to unprece-
dented levels. However, weights obtained by existing direct training methods are only applicable to
a specific time step, which posts constraints for deployment and entails further fine-tuning.

ANN-SNN Conversion ANN-SNN conversion uses SNN firing rates to approximate the activation
of ANN. Specifically, parameters are first directly copied from a pre-trained ANN to the target
SNN and then fine-tuned to mimic the original ANN activation. Techniques have been proposed to
reduce the minimum convertible time step, including the subtraction mechanism (Rueckauer et al.,
2016; Han et al., 2020; Han and Roy, 2020), spike-norm (Sengupta et al., 2019), threshold shift
(Deng and Gu, 2021), layer-wise calibration (Li et al., 2021a) and activation quantization (Bu et al.,
2023). Although SNNs obtained by conversion show some temporal flexibility for large time steps
(e.g., above 100), they do not exhibit temporal flexibility for ultra-low time steps. Additionally, the
conversion method is unable to handle DVS datasets and can only procure SNNs with IF neurons.

Dynamic Inference Time Step Recent research explores inference-wise varied time steps to reduce
the average inference cost by skipping steps when the network is confident enough. Li et al. (2023c)
introduced SEENN, which determines the exit time step using confidence scores (SEENN-I) or a
policy network (SEENN-II). Li et al. (2023a) introduced another confidence-based dynamic model,
identifying the optimal confidence threshold using a Pareto front. Our models provides ideal weights
for these methods due to their ability to infer at different time steps without extra fine-tuning.

Fully Event-driven Neuromorphic Chips Although iterative neurons successfully integrate direct
training into modern backpropagation frameworks (Wu et al., 2018), clock-driven neuromorphic
hardware based on this framework may not be suitable for always-on real-time devices at edge plat-
forms due to the constant state updates even in the absence of input spikes (Dampfhoffer et al.,
2022). Recently, time-step-free, fully event-driven SNN implementations have received increasing
attention from researchers (Deng et al., 2024; Koopman et al., 2024) due to their ultra-low energy
consumption, compatibility with real-time edge scenarios, and better similarity with biological neu-
rons (Richter et al., 2024; Li et al., 2023b). Models trained with our method are well-suited for
deployment on this fully event-driven hardware.

3 PRELIMINARIES

3.1 SPIKING NEURON MODEL

The most popular model for SNN neurons in recent studies (Wu et al., 2019; Zheng et al., 2021; Xiao
et al., 2022; Deng et al., 2023; Zhou et al., 2022; Yao et al., 2024b) is the Leaky Integrate-and-Fire
(LIF) model. Its dynamics can be characterized by

τ0
du

dt
= −u+ I, u < Vth (1)

fire a spike and u← R(u), u ≥ Vth (2)

where u is the membrane potential, τ0 is membrane constant, I is pre-synaptic input, Vth is mem-
brane threshold, and R(·) is reset function (Wu et al., 2019). For hard reset R(u) = 0 and for soft
reset R(u) = u − Vth. The two simulation methods of these equations, the time-stepped and the
event-based simulation, have given rise to two popular SNN models: the clock-driven synchronous
model and the event-driven asynchronous model.

3.2 TIME-STEPPED SIMULATION, CLOCK-DRIVEN LIF/IF MODEL AND HARDWARE

Let’s first consider Eq. 1. After applying the forward Euler method to Eq. 1, replacing 1 − dt/τ0
with τ , and absorbing dt/τ0 as a scaling factor into the synapse weight (Wu et al., 2019), we have

u(t+ dt) = τu(t) + I(t) (3)

where τ is a decay factor. We then incorporate fire and reset (Eq. 2) mechanism into the simulation
by adding a temporary variable v and have

v(t+ dt) = τu(t) + I(t) (4)
s(t+ dt) = Θ[v(t+ dt)− Vth] (5)
u(t+ dt) = s(t+ dt)R(v(t+ dt)) + [1− s(t+ dt)]v(t+ dt) (6)

where v(t) is the temporary variable, s(t) is the output spike at time t, Θ(x) is the Heaviside step
function where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. Eq. 4-6 is the single iteration
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of the time-stepped simulation. The iterative Integrate-and-Fire (IF) model is a special case of LIF
where τ = 1 or τ0 → +∞. Time-stepped simulation can be properly accelerated by GPU due
to its compatibility with mainstream deep learning framework, enabling efficient training of large-
scale SNNs. Clock-driven neuromorphic hardware simply mimics the iterative process of time-
stepped models, which can thus be deployed on such hardware with little performance loss. Time
step of clock-driven neuromorphic inference serves as a hyperparameter that controls the temporal
granularity and forward time complexity, directly influencing the trade-off between performance and
energy consumption. For experiments on time-stepped platforms in this paper, we use LIF neuron
with Vth = 1, τ = 0.5.

3.3 EVENT-BASED SIMULATION, EVENT-DRIVEN LIF/IF MODEL AND HARDWARE

Rethinking the original neuron dynamics, I(t) only has discrete spikes, which can be seen as
weighted Dirac delta functions. This enables a precise simulation of LIF neurons based on events.
Let’s start with u < Vth again and analyze I(t) = 0 and I(t) ̸= 0 separately. For cases where
I(t) = 0, we directly solve the differential equation and have u(t) = u(t′)e−(t−t′)/τ0 where t′ is
the moment the last spike arrives. For I(t) ̸= 0 cases, we let dt→ 0, absorb dt/τ0 into I as we did
in Eq. 3, and then have du = I where du is the instantaneous increment of u. The term −dt/τ0 · u
is eliminated because u is a finite value. Combining the two cases discussed, we have the formula

u(ti) = e
ti−ti−1

τ0 · u(ti−1) + I(ti) (7)

where ti is the timestamp of the current i-th spike and ti−1 is the timestamp of the last spike (Wu
et al., 2018). Similar to the time-stepped scenario, we add an intermediate variable v to enable fire
and reset behaviors.

v(ti) = e
ti−ti−1

τ0 · u(ti−1) + I(ti) (8)
s(ti) = Θ[v(ti)− Vth] (9)
u(ti) = s(ti)R(v(ti)) + (1− s(ti))v(ti) (10)

where v(t) is the temporary variable, s(t) is the output spike at time t, Θ(x) is the Heaviside step
function. The event-based Integrate-and-Fire (IF) model is a special case of LIF where τ0 → +∞.
The discrete, sequential nature of events hinders parallelizing event-driven SNN training. While
some event-driven methods have been explored, they either remain constrained within the time-
stepped framework (Zhu et al., 2022b) or face challenges in scaling to large models due to in-
sufficient GPU support (Engelken, 2023). Since event-driven simulation under spiking input pre-
cisely replicates the original dynamics, the industry uses time-stepped simulation to approximate
event-driven behavior and directly deploys weights trained in the time-stepped framework onto fully
event-driven hardware (Richter et al., 2023). In fact, Eq. 4-6 and Eq. 8-10 share the same form, and
thus theoretically, the event-driven inference can be approximated by time-stepped inference as
dt → 0, equivalently as time step T → +∞. This aligns with the intuition-an sufficiently high T
will result in at most one event per time step, effectively mirroring the event-driven paradigm where
neurons update only upon event arrival. All trainings for event-driven platforms in this paper are
conducted by Speck deployment toolkit- Tonic. We use IF neurons with Vth = 1 for all event-based
experiments because most of the existing fully event-driven neuromorphic chips mainly support IF
for its suitability to asynchronous scenarios.

3.4 SURROGATE GRADIENT

The time-step-based direct training method computes gradients for parameters by spatiotemporal
backpropagation (STBP) (Wu et al., 2018):

∂L

∂W
=

∑
t

∂L

∂s(t)

∂s(t)

∂v(t)

∂v(t)

∂I(t)

∂I(t)

∂W
. (11)

When backpropagating, all terms apart from the term ∂s(t)
∂v(t) can be easily calculated. However, the

term ∂s(t)
∂v(t) = ∂Θ(v)

∂v is the derivative of the Dirac delta function and does not exist. To solve this
problem, surrogate gradient(SG) is used to approximate the original gradient. For all time-stepped
experiments in this work, we adopt a triangular surrogate gradient (Rathi and Roy, 2020), which can
be formulated as

∂s(t)

∂v(t)
=

1

h2
max(0, h− |Vth − v(t)|), (12)
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where h is a constant controlling the sharpness. In this work, we apply h=1 to most experiments.
For experiments on event-driven platforms, we follow Speck handbook and use the default single
exponential SG (Shrestha and Orchard, 2018) in Tonic (Lenz et al., 2021).

4 METHODOLOGY

4.1 IDENTIFYING TEMPORAL INFLEXIBILITY AND POTENTIAL SOLUTION

As discussed in Sec. 3, current mainstream methods for training SNNs, whether clock-driven or
event-driven, rely on time-stepped frameworks. To avoid confusion, we refer to these conventional
time-step-based training as Standard Direct Training (SDT). Our study identifies a critical limitation
of SDT, which we named ”temporal inflexibility”: models trained with SDT perform ideally only
at the same time-step setting as at training, and perform evidently lower at other time step configu-
rations than models trained at that time step configurations specifically. To showcase this limitation,
we perform experiments with ResNet18 on CIFAR100 (Krizhevsky et al., 2009). An SNN was first
trained at T = 6, and its inference accuracy was evaluated across five distinct time step settings (see
SDT in Tab. 1). However, the temporal structures of SNNs on platforms deployed often differ from
those used during training. For example, event-driven platforms lack explicit time steps, and the
time-stepped training is only an approximation to event-driven models, leading to a substantial gap
with on-chip scenarios (see Sec. 3.3). In clock-driven systems, time steps may also be dynamically
adjusted to meet varying energy-performance requirements (see Sec. 2 on ”Dynamic Inference Time
Steps”). The temporal inflexibility, however, prevents model from generalizing to temporal structure
on deployment platforms and thus poses significant challenges for SNN deployment.

Table 1: Inference accuracy of ResNet18 on CI-
FAR100 by naive mixture training vs. standard
direct training. ”SDT*”: SNNs independently
trained with SDT at each T. ”SDT”: single SNN
trained at T=6 and infers at other T.

Methods T=2 T=3 T=4 T=5 T=6
SDT 70.08 72.77 74.17 75.09 75.63
SDT* 72.86 73.86 74.77 74.96 75.63
NMT 73.47 74.17 75.11 75.34 75.77

To alleviate temporal inflexibility, we start with
a straightforward method named Naive Mixture
Training (NMT). In each iteration of NMT, it ran-
domly selects 3 time steps from a predefined range
{1, 2, ..., 6} and performs 3 forward passes. The i-
th sampled time step Ti is then used for the i-th
forward pass of the iteration. The parameters are
then updated collectively after completing all for-
ward passes within an iteration. We test the NMT-
trained model at different time steps and compare it
with SDT-trained models. The results are shown at
Tab. 1. Although NMT is a relatively simple method, a single NMT-trained model performs compa-
rably to models separately trained by SDT for each time step (denoted as SDT*). This indicates that
NMT effectively mitigates models’ temporal inflexibility, enabling the model to generalize across
different time-step configurations. We term this generalization to temporal structures beyond those
used during training as temporal flexibility, which can be measured by its performance on unseen
temporal structures compared to models trained specifically on those structures. Given the simplicity
and effectiveness of NMT, we further investigate its underlying mechanisms.

4.2 ANALYSIS ON NAIVE MIXTURE TRAINING

Temporal Flexibility. As we mentioned earlier, the models trained with SDT are only optimized
for a specific T. This will render overfitting towards the single temporal structure and cause poor
temporal flexibility (see Tab. 1). NMT successfully mitigates this overfitting by training 6 temporal
structures at the same time so that the model learns how to keep the performance with different
time structures and thus gets better generalization across temporal structures. Due to the enhanced
temporal flexibility, NMT-trained models can change their inference time structures with reduced
performance degradation. For time-step-based SNNs, this property also detaches training time steps
from the event sensor’s framing time steps, which is relevant to specific application scenarios and is
often too high for GPU training platforms.

Event-driven Friendliness. On fully event-driven hardware platforms, all neurons operate asyn-
chronously, and the time step is no longer a hardware hyperparameter that determines the number
of iterations for each inference. In such systems, the time step becomes irrelevant to the on-chip
inference phase, serving only in the training phase to simulate the on-chip model’s operation in a
GPU-compatible manner. However, as we analyzed in Sec. 3.3 and 4.1, there is a substantial gap
between time-stepped simulation and real event-driven dynamics, and temporal inflexibility caused
by SDT prevents models from generalizing to event-driven temporal structures, which can be seen
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as a time-stepped model whose T is infinity (see Sec. 3.3). NMT can add to model’s temporal
flexibility and largely decouple network outputs from the time-step-based temporal structure. This
makes NMT-trained models ideal candidates for event-driven deployment.

Network Generalization. If SNN training falls into a local minimum point, once NMT samples
a new time step that is far away from the current one, the SNN’s output may change significantly.
In this scenario, the new training loss may not converge, leading SNN to jump out of the local
minimum point. Eventually, the SNN will be trained towards a flatter minimum point. Another
perspective is that since the sampling space is 6, NMT is equivalent to training 6 similar SNNs
simultaneously. This is similar to applying a new kind of dropout to the SNN, which improves the
network’s generalization. This is why NMT significantly improves SNN’s performance when T is
small. We verify our theory through experiments in Sec. 5.1 and loss landscapes in Sec. A.10.

4.3 MIXED TIME-STEP TRAINING

The success of NMT lies in its incorporation of diverse temporal structures during training. A
straightforward idea to improve is to include more temporal structures. However, the number of
temporal structures in NMT scales linearly with Tmax, and excessively large T cannot be trained
on current GPUs. To introduce more temporal structures while keeping Tmax not increasing, we
propose Mixed Timestep Training (MTT). In MTT, A normal SNN is first partitioned into stages as
shown in Fig. 2. In each iteration, each stage is assigned with different time steps. By assigning
stage-wise different time steps, MTT successfully expands the number of temporal structures from
Tmax to (Tmax)

G where G is the number of stages. We then introduce each step of MTT.
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Figure 2: SNN partitioned for Mixed Timestep Training.

4.3.1 NETWORK PARTITIONING

The first step of MTT is to divide the whole network into stages which will then be set to different
time steps for each forwarding process. We denote the setting of time steps of different stages in each
forwarding process of MTT by a temporal configuration vector t = (t1, . . . , tn), where ti denotes
the time step of the i-th stage and n is the total number of stages. The forwarding of a partitioned
SNN SP can be denoted by SP (x, t), where x is an input and t is the temporal configuration vector.

4.3.2 TEMPORAL TRANSFORMATION MODULE
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Figure 3: (A) Downsampling TTM when tin=5 and tout=3. (B)
Upsampling TTM when tin=3 and tout=5.

We then design the inter-block com-
munication rule between adjacent
stages with different simulation time
steps-temporal transformation mod-
ule (TTM). When adjacent stages are
of the same number of time steps,
TTM becomes an identity transfor-
mation. Otherwise, TTMs can be cat-
egorized into 2 types as illustrated
in Fig. 3-downsampling TTM and
upsampling TTM. In downsampling
TTMs, we borrow from the pooling layer and divide input time frames into tout groups of adjacent
frames. We then sum up the frames within each group to form tout time frames. By contrast, the
upsampling type of TTM replicates each input time frame and assigns it to all output frames in the
corresponding group, using the grouping policy same as the downsampling type of TTM with tout
frames of input and tin frames of output. Now, the task at hand is to identify a suitable policy to
partition l frames into k groups, where l ≥ k. A natural idea is to group them as evenly as possible
to minimize temporal mismatch. According to this idea, we use the following policy shown in Eq.
13 where bi denotes the index of the first frame of group i. Explanation of our design is in Sec. A.4.
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bi = ⌊
(i− 1) · l

k
− ε⌉+ 1, i ∈ {1, ..., k} (13)

4.3.3 MIXED TIME-STEP TRAINING

Overall MTT Framework With TTM and a partitioned network, we can now develop mixed time-
step training (MTT). Mathematically, the goal of MTT is to minimize loss for all temporal structures:

LMTT (overall) =

N∑
k=1

∑
t∈{Tmin,...,Tmax}G

L(SP (xk, t),yk) (14)

where L is any loss function, N is dataset size, G is the number of stages, Tmin and Tmax are
the minimum and maximum time steps respectively, SP is a partitioned SNN, and t is any possible
temporal configuration vector. Since directly optimizing the overall loss is too expensive, we sample
s vectors t(1), . . . , t(s) ∈ {Tmin, . . . , Tmax}l for each iteration and optimize the estimated loss
function instead:

LMTT =

B∑
k=1

∑
t∈{t(1),...,t(s)}

L(SP (xk, t),yk) (15)

where B is batch size. To better illustrate our method, the training pipeline of one epoch is detailed
in Algo.1. In this work, Tmin is set to 1 for all experiments.

Algorithm 1 Mixed time step training for one epoch

Input: SNN model SP ; training dataset; training iteration I; sample number S in one iteration;
stage number G; minimum and maximum time step Tmin, Tmax

1: for all i = 1, 2, . . . , I-th iteration do
2: Get the training data xi and labels yi

3: for all s = 1, 2, . . . , S-th sample do
4: Sample a vector t(s) with G numbers in the range [Tmin, Tmax]
5: Calculate the loss function L(SP (xi, t

(s)),yi)
6: Backpropagation and collect the gradient
7: end for
8: Update the model weights with collected gradients
9: end for

BN Layer Calibration MTT implemented with the standard BN technique suffers significant ac-
curacy degradation. When training with mixed time steps, drastic structural changes will cause
intensive variations in batch statistics. Therefore, the running mean and variance calculated during
training are inaccurate for models trained with MTT. To address this problem, we either lock BN
layers (when fine-tuning, Sec. A.3) or calibrate BN statistics similar to Yu and Huang (2019) from a
few training batches after optimizing and fixing weights (when training). In our experiments in Sec.
5.2, correcting BN statistics with as few as 10 batches proved sufficient. Therefore, we used this
setting in all experiments. We also found that the BN statistics of Tmax apply to other time steps.
This saves us extra calibrations when switching to a different inference T (details in Sec. A.6).

4.4 TESTS ON FULLY EVENT-DRIVEN SCENARIOS

To verify the event-driven friendliness of our TFSNN, we employed Synsense Speck2e as the testing
platform. The Speck series chips are among the most advanced real-time, fully event-driven neu-
romorphic chips available today, boasting extremely low power consumption and latency (Richter
et al., 2023; Li et al., 2023b). However, due to their limited size, Speck cannot support the main-
stream backbones used for DVS datasets in recent studies (e.g. VGGSNN). Therefore, we developed
an easy-to-use parallelized event-driven chip software simulator and aligned it with Speck on small
datasets. To quantify the mismatch between a given output and the real hardware output, we define
spike difference (SD) as

SD(s0, s) =

∑Nf−1
i=0 |s0[i]− s[i]|∑Nf−1

i=0 s0[i]
(16)

where s0 is the real hardware output spikes, s is the output spikes to compare with, s0[i] denotes
the total spike counts of the i-th neuron, and Nf is the dimention of output. We then used this
simulator to test TFSNN on larger datasets and mainstream backbones (see Sec. 5.1). To the best of
our knowledge, our work is the first to report the performance of large-scale datasets and models on
a fully event-driven scenario.
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5 EXPERIMENTS

In this section, we first conduct validation experiments for analyses in Sec. 4.2. These experi-
ments aim to examine if the models trained with MTT improves temporal flexibility, event-driven
friendliness, and network generalization as we claim. Then, a comparison between our method
and other current training methods is made to demonstrate the effectiveness of our method in terms
of temporal flexibility and model performance. Finally, well-designed ablation studies are carried
out to prove the effectiveness of network partitioning and BN calibration, the two main compo-
nents of our method. The datasets involved in this work include static datasets like CIFAR10, CI-
FAR100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009), and event-based datasets such
as CIFAR10-DVS (Li et al., 2017) and N-Caltech101 (Orchard et al., 2015). We also tested our
method on sequence task and audio task (see Sec. A.12). The model structures used in this paper
are ResNet-18 (He et al., 2016), ResNet-19 (Zheng et al., 2021), ResNet-34 (He et al., 2016), VGG.

5.1 VALIDATION EXPERIMENTS

Temporal Flexibility Across Time Steps We first test our models under a wider range of inference
time steps on the datasets and network structures. On static datasets, inputs are repeated for T times
as previous works where T is the inference time step. MTT-trained models perform fairly well at
different time steps as shown in Tab. 2. On DVS datasets, input events are split into T frames
according to their timestamps for time-stepped training and inference. See training details in Sec.
A.3. We find the model’s temporal flexibility is significantly enhanced by MTT especially at high T
as shown in Fig. 4 and inference at high T is similar to event-driven scenario (Sec. 3.3), while SDT
and TET both fail to generalize across time steps. We then further compare our method with recent
ANN-SNN conversion methods in Tab. 3 to demonstrates the temporal flexibility brought by MTT.
Although these conversion methods involve post-conversion finetuning at inference T and MTT
doesn’t, MTT still outperforms them significantly at T=1 and T=2 while remaining comparable to
them for higher time steps. For a fair comparison, we adopt the same data augmentation policy as
these methods. To further demonstrate the temporal flexibility that MTT brings, and to show how
temporal flexibility benefits clock-driven deployment as we claimed, we combine SEENN (Li et al.,
2023c) with ResNet19 trained by MTT on CIFAR10 (Tab. 4). Since the time step in SEENN-I is
dynamically decided by confidence scores, the T ultimately contains decimals, which stand for the
average number of time steps needed for each sample in the test set. We observed a performance
boost under the same average inference T when compared with their reported results trained by TET,
testifying the suitability of MTT-trained models to dynamic time step inference methods.

Table 2: Accuracy of different inference time steps.
Dataset Method Backbone T=2 T=3 T=4 T=5 T=6
CIFAR100 MTT ResNet-19 80.35 81.14 81.51 81.73 81.98
CIFAR10 MTT ResNet-19 96.20 96.62 96.75 96.76 96.84
ImageNet MTT ResNet-34 65.23 67.58 67.54 68.02 68.34
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Figure 4: MTT-trained model has a uni-
versally high performance across differ-
ent number of time steps for VGGSNN on
CIFAR10-DVS. T = 10 is used for SDT,
TET and Tmax = 10 is used for MTT.

Table 3: Compare with SOTA ANN-SNN conversion methods on
CIFAR100, ResNet18. Tmax = 6 is used for MTT.

Method T=1 T=2 T=4 T=8 T=16 T=32 T=64
QCFS Bu et al. (2023) - 70.29 75.67 78.48 79.48 79.62 79.54
SlipReLU (Jiang et al., 2023) 71.51 73.91 74.89 75.40 75.41 75.30 74.98
MTT 72.09 76.54 78.47 78.90 79.17 79.25 79.42

Table 4: Combine MTT with SEENN.
Method T=1.20 T=1.09
SEENN-I (Li et al., 2023c) 96.38 96.07
SEENN-I + MTT 96.58 96.08

Event-driven Friendliness Since MTT-trained models have improved temporal flexibility, they are
more suitable for deployment on fully event-driven chips as we claimed. To prove this, we deploy
and test our MTT-trained models on event-driven neuromorphic systems. We first train two net-
works on NMNIST using SDT and MTT respectively, and then deploy them directly on Speck2e
Devkit (Richter et al., 2023). We then develop an easy-to-use software simulator for event-driven
chips to test MTT on large-scale datasets and models. Experiments show that our simulator accu-
rately mimics the chip behavior. On the NMNIST dataset, the spike difference (SD, see Eq. 16)
between the simulator’s output and the actual on-chip output is only 3.92%, comparable to the
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2.81% SD between two identical model tests on the same chip, much lower than the 28.77% SD be-
tween time-step-based inference and the on-chip output. Our supportive results in Tab. 5 on various
datasets and backbones strongly demonstrate the event-driven friendliness of MTT-trained models.
In this section, our models show slightly lower PyTorch test accuracy compared to models with
similar backbones because they are bias-free to be deployed on chips. Fully event-driven chips like
Speck eliminate time-step-wise operations, including clocked bias addition, making them extremely
energy-efficient and ideal for always-on scenarios. See Sec. A.3 for more training details.

Table 5: Comparison of model performance across different datasets and methods.

Dataset Backbone Param Size Method Torch Simulator Speck

N-MNIST 3C1FC(W16) 6160 MTT (Tmax=10) 99.16 98.56 98.57
SDT (T=10) 98.09 93.07 92.77

DVS-Gesture 4C2FC(W32) 48768 MTT (Tmax=40) 88.28 81.82 -
SDT (T=40) 88.67 80.68 -

CIFAR10-DVS VGGSNN 9228416 MTT (Tmax=10) 75.2 58.5 -
SDT (T=10) 74.7 48.4 -

Figure 5: Accuracy of mod-
els with weights injected with
Gaussian noise

Figure 6: Accuracy of models
with inputs injected with Gaus-
sian noise

Network Generalization As men-
tioned earlier in the Sec. 4.2, our
method makes the network param-
eters robust against network struc-
ture changes and adds to the mod-
els’ generalization. We further
verified this through experiments
with ResNet-18 on CIFAR100. A
common method to measure the
model’s generalization is noise in-
jection. First, we randomly in-
ject Gaussian noise N (0, σ2) to
weights, where σ2 is the variance
of the noise. For each σ2, we run
the experiment 5 times and plot the mean, maximal, and minimal accuracy in Fig. 5. Results show
that the weights trained by MTT are more robust against noise. Then, we inject Gaussian noise into
the inputs instead, and also run the experiment 5 times each σ2, the results are shown in Fig. 6.
In addition, to solidify the conclusion, we also inspect the generalization in other metrics (see Sec.
A.11). All the experiments indicate that the model obtained by MTT performs better generalization.

5.2 ABLATION STUDY

A B

Figure 7: (A) Accuracy of ResNet-18 with different
granularity where g=8 denotes NMT and g=1 denotes
MTT. SDT denotes a single model trained at T=6 and
tested across T=2,3,4,5. (B) Training ResNet-18 on CI-
FAR100 and tracing the test accuracy with and without
BN calibration.

Evolution from SDT to NMT to MTT Our
improvement to NMT mainly lies in dividing
networks into time-step-different stages. In this
section, we test MTT with different partition
granularity on CIFAR100 with ResNet-18 to
validate the effectiveness of network partition-
ing. We define granularity constant g as the
number of blocks per stage. NMT can be now
seen as a special case where g=8 (there are 8
blocks in ResNet-18). Then, we train 4 SNNs
with MTT and g=1,2,4,8 respectively, and an-
other single SNN with SDT for comparison. Fi-
nally, we assess test accuracy for each model
with T=2,3,4,5,6. The results are shown in Fig.
7 (A). As expected, with g continued to reduce
and more temporal structures added to the opti-
mization space, the overall performance is gen-
erally improved.

Effectiveness of BN Calibration In this section, we studied the necessity of BN calibration. We
first trained two ResNet-18 on CIFAR100 and tracked their accuracy, one with BN calibration on
10 batches before testing and one simply using running means and variances. The results are shown
in Fig. 7 (B). Our experiment indicates that without correct BN statistics, the model suffers huge
accuracy degradation and that BN calibration effectively ameliorates the degradation.
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Table 6: Compare with existing works on static image datasets. † denotes introducing additional floating-point
multiplications

Dataset Model Methods Architecture TimeStep Accuracy

CIFAR10

Guo et al.(Guo et al., 2022) InfLoR-SNN ResNet-19
6 96.49±0.08
4 96.27±0.07
2 94.44±0.08

Deng et al.(Deng et al., 2022) TET ResNet-19
6 94.50±0.07
4 94.44±0.08
2 94.16±0.03

Yao et al.(Yao et al., 2022) GLIF† ResNet-19
6 95.03±0.08
4 94.85±0.07
2 94.44±0.10

Our Method MTT ResNet-19
6 96.84±0.03
4 96.75±0.04
2 96.20±0.07

CIFAR100

Li et al.(Li et al., 2021b) Dspike ResNet-18 6 74.24±0.10
4 73.35±0.14

Guo et al.(Guo et al., 2022) InfLoR-SNN ResNet-19 6 79.51±0.11
4 78.42±0.09

Deng et al.(Deng et al., 2022) TET ResNet-19 6 74.72±0.28
4 74.47±0.15

Yao et al.(Yao et al., 2022) GLIF† ResNet-19 6 77.35±0.07
4 77.05±0.14

Our Method MTT ResNet-19 6 81.98±0.03
4 81.51±0.04

ImageNet

Zheng et al. (Zheng et al., 2021) STBP-tdBN ResNet-34 6 63.72
Deng et al. (Deng et al., 2022) TET ResNet-34 4 64.79
Fang et al. (Fang et al., 2021) SEW† SEW-ResNet-34 4 67.04

Chen et al. (Chen et al., 2023) MPSNN† DSNN-34 4 67.52
FSNN FSNN-34 4 66.45

Our Method MTT ResNet-34 6 68.34
4 67.54

Table 7: Compare with existing works on DVS datasets. †denotes introducing additional floating-point multi-
plications

Dataset Model Methods Architecture T Accuracy

CIFAR10-DVS

Yao et al. (Yao et al., 2022) GLIF† 7B-wideNet 16 78.10
Guo et al. (Guo et al., 2022) InfLoR-SNN ResNet-19 10 75.50±0.12
Zhu et al. (Zhu et al., 2022a) TCJA-SNN† VGGSNN 10 80.7

Deng et al. (Deng et al., 2022) TET VGGSNN 10 83.17±0.15
Our Method MTT ResNet-18 10 82.8±0.54(83.5)

N-Caltech101

Kim et al. (Kim and Panda, 2021) SALT VGG11 20 55.0
Li et al. (Li et al., 2022) NDA VGG11 10 78.2

Zhu et al. (Zhu et al., 2022a) TCJA-SNN† VGGSNN 14 78.5
Our Method MTT ResNet-18 10 81.74±0.73(82.32)

5.3 COMPARISON TO EXISTING WORKS

While our work mainly focuses on improving the temporal flexibility of networks, the models trained
by MTT maintain a performance on par with other SOTA methods. See Sec. A.2 for training details.
Here, we compare the accuracy of models trained by MTT with existing works. Remarkably, to
demonstrate the superior temporal flexibility of MTT-trained networks, for one backbone and one
dataset in the table, we trained only once and tested for all different T. For all experiments, we
apply the sampling number s = 3 unless otherwise specified. The results of static and neuromorphic
datasets are provided in Tab. 6 and Tab. 7. We repeat the experiment three times to report the mean
and standard deviation (see Sec. A.2 for details).

6 CONCLUSION

In this paper, we have identified ”temporal inflexibility”, a side effect caused by the prevailing train-
ing paradigms. This issue, which has not yet received sufficient attention, can lead to significant
challenges when deploying GPU-trained models on neuromorphic devices. To respond to the de-
ployment issues, we propose a novel training method, Mixed Time-step Training, to enhance SNN’s
temporal flexibility. We conduct intensive experiments on GPU, neuromorphic chips, and event-
driven simulator to prove its effectiveness. The results indicate that MTT significantly enhances
temporal flexibility, improves compatibility with event-driven systems while maintaining perfor-
mance comparable to state-of-the-art approaches. The idea of introducing diverse training temporal
structures in MTT can also be applied to other training forms, such as randomly accumulating input
frames or adjusting time steps in online training (Xiao et al., 2022; Bellec et al., 2020). We believe
our methods pave a path to the promising future of nearly lossless event-driven hardware deploy-
ment and will inspire other impressive designs. Finally, we sincerely hope that our work will draw
more academic attention to the deployment issues of SNNs on event-driven neuromorphic chips.
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A APPENDIX

A.1 EXPERIMENTS ON VGG STRUCTURES

We evaluated our method on the CIFAR100 dataset using VGG architectures, besides ResNets.
We treated each layer as a stage in the VGG series. During experimentation, we observed that
VGG16 with three fully connected (fc) layers could not be trained effectively using the standard
direct training approach (its accuracy remained limited at 1%). To tackle this issue, we merged
the last three fc layers of VGG16 into one and named the resulting architecture VGG14. We set
Tmax = 5, s = 3, and computed the mean and standard deviation of three runs. We used the SGD
optimizer to train the model, with a learning rate of 0.1, a weight decay of 0.0005, and a batch size of
256. The results, presented in Tab. 8, indicate the effectiveness of our approach on VGG structures.

Table 8: Accuracy of VGG on CIFAR100

Methods Model T=2 T=3 T=4 T=5
MTT VGG14 73.53±0.09 74.52±0.07 75.27±0.14 75.72±0.10
InfLoR-SNN VGG16 - - - 71.56±0.10

A.2 TRAINING DETAILS FOR NON-EVENT-DRIVEN EXPERIMENTS

CIFAR The CIFAR10/CIFAR100 dataset comprises 50K training images and 10K test images with
a 32×32 pixel resolution. For CIFAR100, we train a ResNet-19 using the MTT pipeline for 300
epochs with a batch size of 256 and a Tmax of 6. Following the practice in GLIF (Yao et al., 2022),
the last 2 fully connected layers of ResNet-19 are replaced with a single fully connected layer. We
employ the SGD optimizer with a weight decay of 0.0005 and a learning rate of 0.1 cosine decayed
to 0. To make a fair comparison with the state-of-the-art (SOTA) work (Li et al., 2021b; Guo et al.,
2022; Yao et al., 2022), AutoAugment (Cubuk et al., 2018) and Cutout (DeVries and Taylor, 2017)
are applied to both CIFAR10 and CIFAR100 datasets. However, these augmentation techniques
are only used for comparative experiments and temporal flexibility experiments, and not for other
experiments.

ImageNet ImageNet (Deng et al., 2009) contains more than 1280k training images and 50k test im-
ages. We use the standard data processing flow to crop each image to a size of 224×224. We deploy
the ResNet-34 structure, however, with the removal of the first max-pooling layer and changing the
stride of the first basic block from 1 to 2 (Zheng et al., 2021; Yao et al., 2022). We train the model
for 160 epochs with a batch size of 512 and a Tmax of 6. We utilize the AdamW optimizer with a
weight decay of 0.02 and a learning rate of 0.004 cosine decayed to 0.

DVS-Dataset There are two training settings on DVS-datasets in this work, one is for compari-
son with existing state-of-the-arts, and another is for all other experiments on event-driven datasets
where we ensure the models are deployable on fully event-driven chips. However, the data pro-
cessing of these two settings are the same. The event datasets involved in this paper, NMNIST,
DVS-Gesture, CIFAR10-DVS and N-Caltech101, are neuromorphic datasets widely used in SNN
experimentation. For NMNIST, we don’t do any data augmentation and remain the resolution. For
DVS-Gesture, we perform random horizontal flip and roll the frames up to 20 pixels. For CIFAR10-
DVS and N-Caltech101, we divide the dataset into a 9:1 ratio, which, similar to previous work (Li
et al., 2021b; Deng et al., 2022), we resize to 48×48. For both these datasets, we adopt a random
horizontal flip and rotate the frames up to 5 pixels as augmentation techniques. We employ the
additional temporal inversion policy (Shen et al., 2023) uniquely for N-Caltech101.

We then introduce the settings of SOTA comparison experiments (see next section for event-driven
settings), which is for time-stepped inference and only used in Sec. 5.3. Following previous works,
we merge all events to form ten frames. The optimizer we choose is SGD, with a weight decay of
0.0005, and a learning rate of 0.1, which we cosine decay to 0. For both datasets, we use a Tmax of
10, a batch size of 50, and train standard ResNet-18 model for 300 epochs. We take only the first t
frames of the ten frames where t denotes the time step of the input stage, to feed into the network.

A.3 TRAINING DETAILS FOR EVENT-DRIVEN EXPERIMENTS

Here, we provide the settings used by all other experiments on event-driven datasets than SOTA
comparison. As we mentioned, the settings introduced in the last section is only applicable to SOTA
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comparions (experiments in Sec. 5.3). All other experiments related to event datasets (e.g. Sec. 5.1)
use the settings described in this section, including experiments in Fig. 4 and Tab. 5

We carefully learned Synsense’s documentation. To obtain Spiking Neural Networks (SNNs) more
suitable for deployment on asynchronous chips, we utilized a soft reset mechanism and multistep-IF
neurons during training (neurons emit mem/Vth spikes per event to simulate multiple event trans-
missions and generations). Note that, however, the neurons realistically employed on our simulator
and Speck chip are still IF neurons.

Since asynchronous event-driven chips do not support linear or convolutional layers containing bi-
ases, and networks with Batch Normalization (BN) layers inevitably introduce bias terms after ab-
sorbing BN into the convolutional layers, we adopted a more indirect method to obtain deployable
networks. For 3C1FC(W16) (xCyFC(Wz) denotes VGG-like structure with x convolution layers, y
fully connected layers, and maximum convolution channel z) on N-MNIST, For larger and deeper
networks like 4C2FC(W32) for DVS-Gesture and VGGSNN for CIFAR10-DVS, we first train with
networks that include BN layers with SDT to establish a baseline model, then absorb BN into the
convolutional layers, remove the bias, and further fine-tune to achieve a network without bias terms.
MTT is applied to the bias-removal finetuning process with BN locked.

For NMNIST, our final layer is an IF voting layer; for DVS-Gesture and CIFAR10-DVS, we find it
crucial to replace the final layer with a membrane potential voting layer.

A.4 DESIGN TTM GROUPING POLICY

We previously stated our policy’s objective is to partition l frames into k groups (l ≥ k) as evenly
as possible. In this section, we mathematically interpret the design. We will start by describing the
grouping process in a different manner. The l frames are viewed as l adjacent intervals of length 1
over the rational number domain with the i-th frame starting at i − 1 and ending at i. We define ci
as the boundary between group i and group i − 1. Here, i ranges from 1 to k, and c1 is 0. Ideally,
ci = (i−1) · l/k is set to group frames most evenly. Nevertheless, this strategy produces non-integer
ci, which results in atomic frames’ division when l is not a multiple of k. To solve this problem, we
retreat and set ci to the nearest integer and get

ci = ⌊
(i− 1) · l

k
− ε⌉, (17)

where ε is a small constant used to determine ci when the distances to the closest two integers are
equal. As bi must be the frame directly following the boundary ci (bi = ci + 1), we obtain Eq. 13.

A.5 DERIVATION OF THE BACKPROPAGATION FORMULA FOR LIF

In this section, we derive the backpropagation formula for LIF from the forwarding formula. We
derive ∂u(t)/∂v(t) from Eq. 4 first:

∂u(t)

∂v(t)
= 1− s(t)− v(t) · ∂s(t)

∂v(t)
. (18)

Then, we consider the derivation of ∂u(t)/∂v(t− 1).

∂u(t)

∂v(t− 1)
=

∂u(t)

∂v(t)

∂v(t)

∂u(t− 1)

∂u(t− 1)

∂v(t− 1)
= τ

∂u(t)

∂v(t)

∂u(t− 1)

∂v(t− 1)
. (19)

By combining multiple Eq. 19, we get

∂u(t)

∂v(t− n)
= τn

t∏
i=t−n

∂u(i)

∂v(i)
. (20)

Finally, we get the complete expression for ∂s(t)/∂I(t− n) as follows

∂s(t)

∂I(t− n)
=

∂s(t)

∂v(t)

∂v(t)

∂u(t− 1)

∂u(t− 1)

∂v(t− n)

∂v(t− n)

∂I(t− n)

=
∂s(t)

∂v(t)
· τn

t−1∏
i=t−n

[(1− s(i))− v(i) · ∂s(i)
∂v(i)

]

(21)
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A.6 T = TMAX BN STATISTICS VS. RECALCULATED BN STATISTICS

As previously mentioned, we discovered that the BN statistics of the T=Tmax network can be applied
to other temporal structures with uniform T across blocks. In this section, we provide experimental
verification for this observation. Our experiment involves testing the accuracy of one of our trained
ResNet-19 models with two distinct BN layer information approaches. The first approach utilizes
the statistics of the T=Tmax, while the second approach recalculates the BN statistics individually
for each time step T. For the latter approach, we calibrate the BN layer three times and report
the average accuracy. Our experimental results demonstrated in Tab. 10 show that the mean and
variance calculated at T=Tmax is applicable directly to other T values. Therefore, we can utilize the
BN statistics of T=Tmax for other T directly, which saves the time required to calibrate the BN layers
for other T values.

Table 9: Accuracy given sampling number s and
training epochs e.

Sampling Num e× s
300 600 900 1200

s = 1 75.61 76.13 76.23 75.78
s = 2 75.53 76.37 76.31 76.36
s = 3 75.25 76.45 76.47 76.44
s = 4 74.81 75.74 76.41 76.42

Table 10: Test accuracy of a single model with two
kinds of BN statistics.

Method TimeStep
2 3 4 5

T=Tmax stat 80.21 81.06 81.51 81.82
Recalculated stat 80.21 81.23 81.44 81.85

A.7 IMPACT OF DIFFERENT SAMPLING NUMBER AND TRAINING EPOCHS

In most previous experiments, we employed sampling number s = 3. In this section, we experiment
with varying values of s, assess their effects at different epochs, and explain why we chose s = 3.
We train ResNet-18s with Tmax = 6 on CIFAR100 with varied s and list their test accuracy at T=6.
The results are displayed in Tab. 9. When e × s is constrained, the model requires more epochs
to converge, necessitating a lower s. However, if trained across a sufficient number of epochs,
sampling of s structurally diverse networks can smooth the optimization of network parameters and
improve performance. Specifically, we find s = 3 performs well and adopt s = 3 for most of the
experiments.
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A.8 PARTITIONED SNN ACCURACY ESTIMATION FOR DIFFERENT TEMPORAL
CONFIGURATIONS ON CIFAR10/100

As MTT divides SNN into stages of different T when training, we are interested in the performance
of each possible temporal configuration t. Although the stage-wise different time steps are only
applied to the MTT training process to improve the temporal flexibility of SNNs and are not for
inference, the relationship between t and inference performance can inspire SNN structure designs.
However, it is impossible to test all possible situations directly (e.g., there are 68 cases for ResNet-
18). Therefore, we propose the following hypotheses to estimate the accuracy of each t: 1) The
expressive power of each stage contributes differently and positively to the final network accuracy.
2) The expressive power of each stage is related to the information content of its selected time T,
such as K

√
log2 T , where the square root is due to the information content of a spike sequence with
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time step T cannot exceed log2 T because the arrangement of spikes is regular, e.g., tending to be
uniformly distributed. Then we assume that the accuracy equation of different temporal configura-
tions is

∑I
i=1 Ki

√
log2 Ti + c, where the Ki is the contribution of each block, and c is a constant.

Our experiment demonstrates that we only need to sample a very small number of ts to infer the
parameters of the equation, and then able to estimate accuracies of all temporal configurations with
this equation.

Here, we randomly sample 18 temporal configuration vectors (different time step combinations) and
obtain their test accuracy for solving the hypothesis equation in Sec. A.8. The weight parameters
we obtained are {0.93, 0.53, 0.59, 0.67, 1.22, 0.48, 1.36, 0.18}, and the constant value c is 67.11.
This result supports our hypothesis 1), which suggests that all blocks’ time step increment positively
contributes to the accuracy of the final network. Some blocks, such as blocks 1, 5, and 7, have a
greater contribution. Then, we resample 1000 configurations and validate their estimated accuracy
and their test accuracy. The result (Fig. 7 (A)) shows that our method can effectively predict the
actual testing accuracy of different temporal configurations. Finally, we use the spike frequency
and accuracy estimation to build a combinatorial optimization equation for searching the optimal
configuration (see Sec A.9 for detail). For example, by setting the energy cost that is lower than
default (the time step of all blocks is 3), we discover the optimal combination of block time steps
is {3, 2, 2, 3, 5, 3, 6, 2}. The selected configuration acquires an accuracy of 75.38%, which is 0.62%
higher than the default.

In addition to CIFAR100, we also conducted experiments with ResNet-18 on CIFAR10/100. We ran-
domly sample 18 temporal configurations as usual and solve the equation in Sec. A.9. The weight
parameters are {0.0049, 0.0028, 0.0017, 0.0037, 0.0037, 0.0004, 0.0005, 0.0017}, and the constant
value c is 92.13. Notes that block 1,4,5 have a higher contribution, and the 1,5 blocks are also
highly weighted on CIFAR100, which may imply that the weights are partly related to the network
structure. We then resample 1000 temporal configurations and plot their estimate accuracy and test
accuracy on CIFAR10 in Fig. 8 and CIFAR100 in Fig.9, respectively. We also use the aforemen-
tioned combinatorial optimization strategy to search the optimal temporal configuration under the
energy consumption of T=3 and find {4, 2, 2, 3, 5, 2, 2, 4}, which achieves an accuracy of 94.70%,
0.21% higher than its T=3 counterpart.

A.9 DETAILS OF COMBINATORIAL OPTIMIZATION

As previously mentioned, the accuracy formula of different temporal structures is given by the ex-
pression

∑I
i=1 Ki

√
log2 ti + c, where Ki represents the contribution of each block, I is the number

of blocks, and c is a bias. We randomly select 18 distinct temporal configurations (t) and evaluate
their accuracies on the test set, resulting in 18 pairs of temporal configurations and their corre-
sponding accuracies. Using the least squares method, we compute the values of Ki and c from the
collected data. Next, we estimate the average firing rate (Ri) of each block in a unified SNN of
T=6. Then, the energy consumption of a specified temporal configuration t can be approximated
as

∑I
i=1 ti ·Ri. For example, the estimated energy consumption of a unified SNN with T=4 is

calculated as EC4 =
∑I

i=1 4Ri. Based on this, we can obtain a group of temporal configurations
with lower energy consumption (EC) for a given T=Tg , and we aim to identify the config with
the maximum estimated accuracy from this set. This is formulated as the following optimization
problem:

maximize ACCestimated =

I∑
i=1

Ki

√
log2 ti + c

s.t.

I∑
i=1

ti ·Ri ≤ ECTg

Tmin ≤ t1, t2, . . . , tl ≤ Tmax,

where tiis the i-th component of temporal configurations t and ECTg
is the given uper bound of

energy.
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In order to solve the above problem, we adopt the depth-first search (DFS) algorithm to search in the
solution space. To obtain a more accurate accuracy for each temporal configuration t, we perform
three times of BN calibrations and take the average of the accuracies.

A.10 LOSS LANDSCAPES OF MTT AND SDT

To visually confirm the flatter minimum achieved by the model trained with MTT, we trained two
ResNet18 using SDT and MTT respectively on CIFAR100 for 300 epochs and plotted their loss
landscapes in Fig. 10. The 1D landscape is plotted using the code provided by Li et al. (2018), whose
basic idea is to view the trained weights as a high-dimension points and plots its surroundings. We
observed that MTT led the model to a flatter minimum which indicates improved generalizability.

A.11 VERIFYING GENERALIZABILITY THROUGH GRADIENT METRICS

Apart from noise injection, another famous metric that indicates the generalizability is the length
of the gradient on weights || ∂L∂W || and the inputs || ∂L∂xi

||. For || ∂L∂W ||, we evaluate the length of
the gradient of loss over the entire training set for the convolution layers. For || ∂L∂xi

||, we calculate
the mean value of the length of each input gradient. The model trained by MTT exhibits a shorter
gradient of both weights and inputs (see Tab. 11), which implies the model’s strong robustness and
generalizability.

Table 11: The gradi-
ent statistics of the model
trained by SDT and MTT.

Methods || ∂L∂W || ||
∂L
∂xi
||

MTT 11.59 1.81
SDT 38.08 7.78

Table 12: Results on
seqMNIST.

Methods Acc
Our RNN 56.22
SNN SDT 55.75
SNN MTT 64.56

Table 13: Results on Spiking
Heidelberg Digits

Methods Acc
l=3 Repro by code of 75.26Hammouamri et al. (2023)
l=3 our SDT 74.43
l=3 our MTT 79.68

Table 14: Results on
Spiking Speech Com-
mands

Methods Acc
Our SDT l=3 57.75
Our MTT l=3 60.15

A.12 EXPERIMENTS ON AUDIO AND SEQUENTIAL DATASETS

Our research reveals that models trained by MTT can function effectively as a time encoder when
the temporal configuration vectors used for training are monotonically non-increasing.

To illustrate this adaptability, we present the performance on three distinct temporal tasks: seqM-
NIST, Spiking Heidelberg Digits and Spiking Speech Commands.

For the sequential task seqMNIST, we utilized a simple fc LIF SNN with 2 hidden layers of width
64 and set the time constant τ to 0.99. We also trained an RNN with 2 hidden layers of width 64 for
comparison. The results are as shown in Tab. 12.

For the Spiking Heidelberg Digits, we adopt the plain 3-layer feed-forward SNN architecture pro-
posed by Cramer et al. (2020), a fully connected SNN with an input width of 70 and 128 LIF neurons
in each of the 3 hidden layers. The timestep of the first layer is fixed to the input timestep, while the
timesteps of subsequent layers are restricted to monotonically non-increasing. We set τ = 0.9753,
which is equivalent to the parameter λ in the work of Cramer et al. (2020), namely 1− 1/τ in most
other articles, and train the model for 150 epochs. To ensure the validity of our results, we also re-
produce the result using the code provided by Hammouamri et al. (2023). The results are as shown
in Tab. 13.

Spiking Speech Commands (SSC) (Cramer et al., 2020) is a spiking dataset converted from Google
Speech Commands v0.2 and is tailored for SNN. For SSC, we continue using the same architecture
and the same parameters as we used in SHD, except that here we only train the model for 60 epochs.
The results are shown in Tab. 14.

A.13 COMPUTATIONAL COST ANALYSIS FOR MTT

Time Complexity When training with GPUs, the time required for a single forward and backward
pass of normal SNNs is proportional to the time steps T . Therefore, the time cost for a normal SNN
with T time steps within a single iteration can be expressed as:

C(T ) = T · k
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where k is the time cost of a single time step. Now consider the cost of MTT. Before inserting the
TTM module, the time cost at stage i can be expressed as Ci(T ) = T · ki, where k =

∑
i ki. Let

CTTM denote the total time cost of all TTM modules. The total time cost for one iteration of MTT
can then be expressed as:

CMTT = CTTM +

s∑
i=1

G∑
j=1

T
(i)
j · kj

Here, s is the sampling times, and G is the total number of stages. Note that BN calibration is only
needed before inference, which requires only a few forward passes and incurs negligible overhead
during training.

Due to the randomness in temporal configuration sampling, we calculate the expectation of the time
cost under given Tmin and Tmax as follows:

E(CMTT(Tmin, Tmax)) = E(CTTM(Tmin, Tmax)) + s · k · Tmin + Tmax

2

Since a single TTM module involves at most Tmax tensor multiplications and additions, its cost is
negligible compared to the main model. After ignoring the CTTM term, the time cost expectation is:

E(CMTT(Tmin, Tmax)) ≈ s · k · Tmin + Tmax

2

Thus, the time cost ratio between MTT and SDT is approximately:

s(Tmin + Tmax)

2T

We verified this analysis by testing the first-epoch time of SDT and MTT on various datasets and
models. All the experiments were conducted with RTX3090 GPUs and data-parallel training. The
results are shown in Table 15.

Table 15: Experimental results of first-epoch training time for both MTT and SDT. MTT config is denoted by
s[Tmin, Tmax] where s is sampling times each iteration, [Tmin, Tmax] is the sampling range of T

Model Dataset GPUs Batch Size MTT s[Tmin, Tmax] MTT Time SDT T SDT Time Actual Theory
ResNet19 CIFAR100 3 256 3[1, 6] 193s 6 109s 1.77x 1.75x
ResNet19 CIFAR100 3 256 3[1, 10] 328s 10 190s 1.73x 1.65x
ResNet18 CIFAR10-DVS 2 50 3[1, 10] 123s 10 77s 1.60x 1.65x

As shown, the experimental results align well with the theoretical analysis. According to our analy-
sis, MTT’s overhead is approximately 1.5 times that of SDT when T is not too small.

Space Complexity MTT performs immediate backward passes after forward passes and accumu-
lates gradients of all temporal configurations sampled within a single iteration. Because the com-
putation graph and temporary tensors are instantly released after backpropagation, the theoretical
maximal memory usage of MTT is comparable to standard SDT. However, since the maximal mem-
ory usage only occurs when the time steps of all stages are set to T , the intermediate memory usage
of MTT may be smaller than SDT. We tested the GPU memory usage at the end of the first epoch,
and the results are shown in Tab. 16. The experimental results confirm that MTT’s memory usage is
consistent with theoretical expectations.

Table 16: Experimental results of first-epoch memory usage for both MTT and SDT. s[Tmin, Tmax] denotes
MTT samples s temporal configs each iteration, each time step is sampled from [Tmin, Tmax]

Model Dataset GPUs Method MTT Memory (per GPU)
ResNet18 CIFAR10-DVS 2 MTT 3[1, 10] 6640MiB
ResNet18 CIFAR10-DVS 2 MTT 3[10, 10] 7025MiB
ResNet18 CIFAR10-DVS 2 SDT T = 10 7295MiB
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