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Figure 1. Focal Length distribution of images used in training Hu-
manFoV.

1. Focal length distribution
We plot the distribution of focal lengths used in training Hu-
manFoV model in Figure 1. The distribution shows notable
peaks corresponding to the focal lengths of lenses most fre-
quently used in photography, e.g. 24, 28, 35, 50, 85, 105,
135, 200, 300,

2. CameraHMR
2.1. Losses

We use several loss functions to ensure accurate 3D human
pose and shape estimation. We minimize the L2 norm dis-
tance between the ground truth 3D joint locations Ĵ3d ∈
R44×3 and the predicted 3D joint locations J3d ∈ R44×3

centered around pelvis joint using LJ3d
.

Lj3d = ∥Ĵ3d − J3d∥22 (1)

We also penalize the deviation of the ground truth SMPL
shape and pose parameters β̂ and θ̂ from the predicted pa-
rameters β and θ, respectively using LSMPL. The network
predict θ in a 6D rotation format [12], which is later con-
verted to a rotation matrix representation to facilitate loss
calculation. This avoids the discontinuities and ambiguities
associated with angle-based representations, such as Euler
angles or quaternions.

Lsmpl = ∥β̂ − β∥22 + ∥θ̂ − θ∥22 (2)

Since we have accurate body shape labels we also min-
imize the difference between the ground truth 3D body
mesh vertices V̂3d ∈ R6890×3 and the predicted vertices
V3d ∈ R6890×3, using Lv3d

Lv3d = ∥V̂3d −V3d∥22 (3)

For the 2D keypoint loss, we project J3d and Ĵ3d onto the
2D image plane using the camera intrinsic matrix K. For

BEDLAM [2] and AGORA, the ground truth intrinsic ma-
trix K is provided. For 4DHumans dataset, where ground
truth camera parameters are unavailable, we estimate K us-
ing our HumanFoV model. The 2D projection J2d of the
3D joints is computed as Π(J3d;K) where Π(·) denotes the
projection using the intrinsic matrix K.

Given that J2d represents points in the original image
coordinates where the horizontal and vertical coordinates x
and y satisfy x ∈ [0,W ] and y ∈ [0, H] respectively, we
need to normalize these coordinates before calculating the
loss. Therefore, we first transform the point from the full
image coordinates to the cropped coordinates, based on the
center and scale of the bounding box. The cropped image
coordinates are then resized to a fixed resolution and nor-
malize between -1 to 1. Finally, the 2D keypoint loss, Lj2d,
is computed based on the normalized 2D keypoints, Jnorm

2d .

Lj2d = ∥Ĵnorm
2d − Jnorm

2d ∥22 (4)

3. CamSMPLify
Here we provide more details about the optimization proce-
dure used for generating our pseudo ground truth data for
4DHumans dataset. As describe in Eq. ?? from the main
paper, we minimize the energy term E(β, θ, tfull) by opti-
mizing for SMPL shape β and pose θ as well as the camera
translation tfull in 2 steps.

Initially, we optimize for n iterations focusing solely on
the parameters β (shape), θ0 (global orientation), and tfull

(translation), while excluding θ (pose parameters) from the
optimization. During this stage, we set the pose prior weight
λint to 0, as we are not yet optimizing the pose. This strat-
egy prevents the model from distorting the body pose ex-
cessively to match the keypoints, ensuring that any discrep-
ancies due to incorrect orientation, shape, or translation are
addressed first. By refining these parameters initially, we
avoid overcompensating for errors related to the pose. After
this stage, we update Vint with the output vertices from this
optimization stage. In the subsequent stage, we optimize all
the parameters, including θ, and set λint to 1.0 to obtain our
final pose, shape and camera translation. For more details
on the hyperparameter settings, please refer to the code.

4. Shape Evaluation
Most HPS evaluation benchmarks primarily represent aver-
age body shapes and offer limited shape diversity, which
restricts their effectiveness in assessing improvements in
shape accuracy. To address this, we utilize the SSP-3D [8]
dataset, which includes a broad spectrum of body shapes.



Method Model PVE-T-SC ↓

HMR [5] SMPL 22.9
SPIN [6] SMPL 22.2
SHAPY [3] SMPL-X 19.2
STRAPS [8] SMPL 15.9
Sengupta et. al [9] SMPL 13.6
CLIFF [7] SMPL 18.4
BEDLAM-CLIFF [2] SMPL-X 14.2
CameraHMR (B) SMPL 13.3
CameraHMR (B+4DH) SMPL 11.6

Table 1. Shape error evaluation on SSP-3D dataset. B means
trained on BEDLAM and AGORA and 4DH means trained on
4DHumans.

SSP-3D contains 311 real-world images of 62 individuals
in fitted clothing, along with estimated ground-truth body
shape data.

We evaluate shape accuracy using the PVE-T-SC metric
on the SSP-3D dataset. PVE-T-SC, or Per-Vertex Error in
T-pose after Scale Correction, calculates the per vertex av-
erage error by comparing a reconstructed 3D body mesh in
a standardized T-pose to the ground truth. Before comput-
ing this error, the scale of the predicted model is adjusted
to match the ground truth, ensuring that the metric reflects
inaccuracies in shape and pose, rather than differences in
overall scale.

As demonstrated in Table 1, CameraHMR outperforms
all other benchmarks in terms of shape accuracy, even sur-
passing methods specifically trained to enhance shape pre-
diction. Additionally, incorporating our improved 4DHu-
mans pGT into the training process, along with BEDLAM,
further improves shape accuracy, highlighting the high qual-
ity of the shape information in our pseudo ground truth.

5. More Qualitative Results
In Fig. 2 and Fig. 3, we present qualitative results of Cam-
eraHMR applied to images downloaded from Pexels [1].
The results for multi-person images are obtained by first
generating the bounding box for each person using De-
tectron2 [11] on the full image. These cropped bounding
boxes are then fed into CameraHMR. The results demon-
strate that CameraHMR effectively estimates both accurate
body poses and detailed body shapes, even for complex
body poses and camera angles.

In Figure 4, we compare the results of CameraHMR
with HMR2.0 [4] and ReFit [10] on images from Pexels.
HMR2.0 employs a weak perspective camera model, while
ReFit, like CameraHMR, uses a full perspective camera
model during training. Despite achieving good alignment
on images with standard focal length, HMR2.0 often results
in unrealistic body poses. 2D alignment with the image also
gets worse as FoV of the image increases as shown in some
of the images in Figure 4. ReFit [10], although producing a
more accurate 3D pose, suffers from poor 2D alignment due

to reliance on default camera parameters during inference.
In contrast, CameraHMR leverages robust camera intrinsics
predicted by our HumanFoV model, resulting in accurate
body poses and shapes as well as improved 2D alignment,
even under extreme camera conditions.
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Figure 2. CameraHMR results on landscape images downloaded from Pexels [1].



Figure 3. CameraHMR results on portrait images downloaded from Pexels [1].
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Figure 4. CameraHMR achieves more accurate 3D pose estimation, shape reconstruction, and 2D alignment with the image even for
extreme camera angles, outperforming other methods in these challenging scenarios.
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