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A  EXPERIMENTAL SETTINGS

A.1 NETWORK ARCHITECTURE

A.1.1 GENERATOR

Our network generator consists of a shared recurrent block, which is essentially a U-Net-based
network which comprises both up-sampling and down-sampling layers. For every set of 3 input
frames, we mask the frames using input and target ages, thereby increasing the number of input
channels from 3 to 5. Each of these input frames has a resolution of 512 x 512. In the first layer
of the recurrent block, we concatenate three input frames with a 64-channel hidden state and a 3-
channel output image from the previous iteration. This combination results in a spatial image with a
total of 82 channels. Such a detailed configuration ensures that the spatial image accurately captures
both the current input data and the information processed in the preceding steps. Finally, we obtain
a 67-channel spatial image that is subsequently split into a delta image and a hidden state. For
detailed architectures of these layers and blocks, please refer to Table 4] for down-sampling, Table 3]
for up-sampling, Table[6] for the recurrent block, and Table 7] for generator architecture.

Table 4: Down-sampling layer.

Layer Output
Input wXxhXxc
MaxBlurPool w/2x h/2xc

3 x 3 Conv + LeakyReLU w/2 x h/2 X 2¢
3 x 3 Conv + LeakyReLU  w/2 x h/2 x 2¢
Output w/2 X h/2 X 2c

Table 5: Up-sampling layer.

Layer Output
Input w X hXc
BlurUpSample 2w x 2h X ¢

3 x 3 Conv + LeakyReLU 2w x 2h x ¢/2
3 x 3 Conv + LeakyReLU 2w x 2h x ¢/2
Output 2w x 2h X ¢/2

A.1.2 DISCRIMINATOR

In our architecture, we use two discriminators. The first discriminator, specifically focused on image
quality, is based on PatchGAN [Isola et al.| (2017). This consists of three downsampling layers
followed by two convolution layers. The output frames are concatenated by their target age masks
in a channel-wise manner, resulting in a 4-channel input image. Additionally, we process all output
frames independently by concatenating them batch-wise as shown in Table 8]

We also incorporate another discriminator with 3D convolutions, referred to as the video discrim-
inator, to evaluate the realism of motion. Our video discriminator consists of three downsampling
layers. The input is created by concatenating the target input age mask and the output images cor-
responding to three consecutive frames, resulting in a four-channel input. The architecture of the
video discriminator is illustrated in Table 0 It is noted that both of our discriminators consist of
LeakyReLU in every layer, which is not shown in Table 8] and Table[9]

A.2 IMPLEMENTATION SETTINGS
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Table 6: Recurrent block.

Layer Output
Input (Video) 512 x 512 x 3 x5
Reshape 512 x 512 x 15

Previous Hidden State
Previous Output
Concatenation

512 x 512 x 64
512 x 512 x 3
512 x 512 x 82

3 x 3 Conv + LeakyReLU
3 x 3 Conv + LeakyReLU

912 x 512 x 64
512 x 512 x 64

DownSampleLayer 256 x 256 x 128
DownSampleLayer 128 x 128 x 256
DownSampleLayer 64 x 64 x 512
DownSampleLayer 32 x 32 x 1024
UpSampleLayer 64 x 64 x 512
UpSampleLayer 128 x 128 x 256
UpSampleLayer 256 x 256 x 128
UpSampleLayer 512 x 512 x 64
1 x 1 Conv 512 x 512 x 67
Output Delta Image 512 x 512 x 3

Output Hidden State + LeakyReLLU

5912 x 512 x 64

Table 7: Generator architecture. N represents the number of frames in the input sequence.

Layer Output
Input (Video) 512 x 512 x N x 3
Recurrent Blocks (x N) 512 x 512 x N x 67
Output (Video) 512 x 512 x N x 3

Table 8: Architecture of image discriminator.

Layer Output
Video with Target Mask 512 x 512 x 4
4 x 4 Conv 256 x 256 x 64
4 x 4 Conv 128 x 128 x 128
4 x 4 Conv 64 x 64 x 256
4 x 4 Conv (Stride = 1) 64 x 64 x 512
4 x 4 Conv (Stride = 1) 64 x 64 x 1

Table 9: Architecture of video discriminator.

Layer Output
Video with Target Mask 512 x 512 x 3 x4
4 x 4 3D Conv 256 x 256 x 32 x 4
4 x 4 3D Conv 128 x 128 x 64 x 4
4 x 4 3D Conv 64 x 64 x 128 x 4

4 x 4 3D Conv (Stride = 1)
4 x 4 3D Conv (Stride = 1)

64 x 64 x 256 x 4
64 x 64 x1x4

In this section, we describe our experimental setup for video re-aging training data. We utilized a
total of 4,248 subjects to train our network, generating 14 videos per subject. These subjects were
divided into 14 classes, covering a wide age range from 18 to 85. Each video consists of 57 frames
for training. We applied a cumulative probability of blur detection(CPBD) threshold of 0.5 to ensure
sharpness, reducing the prevalence of blurry videos, especially in those with lower CPBD values.
Higher CPBD videos, exhibiting fewer dynamic poses, led us to maintain this threshold to balance
sharpness and dynamic representation. The sample images of our generated dataset are shown in
Fig.[/] For testing, we selected 20 videos from VFHQ Xie et al.|(2022) and 85 videos from CelebV-
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HQ [Zhu et al.| (2022)) for each Young — Old direction (target ages: 65, 75, 85) and Old — Young
direction (target ages: 18, 25, 35).

During training, we set input and output ages randomly without imposing any conditions that both
ages cannot be equal in the same iteration. This approach enables the reconstruction of the input
image when the input and target ages are the same. We used a learning rate of 0.0001 for 250K
iterations with a batch size of 4. Additionally, we introduced temporal augmentation in our training.
We randomly selected a frame interval At from [3, 5, 7]. Reverse augmentation is applied to every
frame sequence with a 0.5 probability. We implemented our code in the PyTorch framework and
trained our model with a single A100 GPU.

EXPERIMENTAL SETTINGS FOR ABLATION STUDY

For the ablation study on reenactment methods in Table[3](a), we employed 5 videos of 10 subjects,
each with 2 target ages (18 and 85), totaling 100 videos. Table |3| (b), which shows the different
interpolation methods, utilizes 21 videos from [Xie et al.| (2022)) for testing. In the experiments
exploring various training configurations of OSFV Wang et al.|(2021a) (Table[I0), we use a relatively
large test set comprising 100 videos, as this step is crucial for generating quality data.

B ADDITIONAL QUALITATIVE COMPARISON

In this section, we provide additional comparison results to evaluate our method against state-of-
the-art approaches.

Young — Old. Fig. [§|shows the comparison results for Young — Old. The results indicate that
SAM |Alaluf et al. (2021) emphasizes on target age and does not retrain the image fidelity especially
for side-poses. This tendency is also observed for HRFAE [Yao et al.| (2021b)). The diffusion based
model DIFF-AE [Preechakul et al.| (2022) and CUSP |Gomez-Trenado et al.| (2022)) often produce
artifacts in output images. Whereas AgeTransGAN |Hsu et al. (2022) generate artistic images that
appears to be unnatural.

Old — Young. We also present our comparison results for Old — Y oung task in Fig. 0| These
results show the similar tendency in which HRFAE |Yao et al.[(2021b)) and SAM |Alaluf et al.[(2021)
fail to recover the facial details and suffer from significant artifacts. The results indicate that DIFF
AE Preechakul et al.|(2022)) lacks control on target ages and consists various artifacts in their results
with variant ages.

C ABLATION OF TRAINING CONFIGURATIONS OF OSFV

For genera-
tion of key frames, we utilize the unofficial implementationﬂ of OSFV Wang et al.| (2021a) trained
on VoxCeleb Nagrani et al|(2017) at 2562 resolution. We denote this configuration as model ‘A’.
We evaluated the performance on 100 Xie et al.| (2022)’s test set For the training at 5122, we exper-
imented with four different training configurations, as detailed in Table One of the approaches
involved a naive upscaling of the images to 5122, resulting in a notably poor CPBD. Afterward, we
fine-tuned the existing pretrained model on VFHQ [Xie et al.| (2022) at 5122, resulting in improved
quality and designated as model ‘B’. We also conducted training from scratch at 2562 on the VFHQ
dataset, following Wang et al|(2021a). While SSIM and PNSR showed improvement compared
to model ‘A’, CPBD remained lower. This model is referred to as model ‘C’. Therefore, we fine-
tuned model ‘C’ at 5122 and observed an overall improvement in the dataset’s quality, designated as
model ‘D’. For the test set, we randomly selected 100 videos from [Xie et al.|(2022)’s test set. Our
configurations are summarized as follows:

A: Publicly available model trained at resolution 2562

B: Fine-tuning model A on VFHQ at resolution 5122

C: Training |Wang et al.[(2021a) from scratch on VFHQ at resolution 2562
D: Fine-tuning C on VFHQ at resolution 5122
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Figure 7: Data samples in our proposed video dataset with ages 18, 50, and 85.
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Figure 8: Qualitative comparison with existing state-of-the-art methods on CelebV-HQ dataset. The
target age is set to 85.
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Figure 9: Qualitative comparison with existing state-of-the-art methods on CelebV-HQ dataset. The
target age is set to 18.
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Figure 10: Limitations of our approach.

Table 10: Ablating performance of OSFV Wang et al.|(2021a) with different training configurations.
Method  Resolution  PSNRT  SSIMT  CPBD?

256 x256 17.553 0.657 0.149
512x512 18.476 0.665 0.442
512x512 19.200 0.697 0.223
512x512 19.519 0.683 0.487

Caw»>

D LIMITATIONS AND FUTURE WORKS

Despite of our work surpasses current state-of-the-art methods, we have observed that our method
often struggles to preserve the facial hairs. The limitation of our methods are shown in Fig.
Our empirical results found that this problem arises due to SAM |Alaluf et al.| (2021). Therefore,
leveraging alternative methodologies that are closely aligned to our aspirations may improve the
performance. Additionally, we employ simple encoder-decoder within recurrent block architecture.
One can explore more advanced network architectures, focusing on refining the transformation of
facial shapes. This will likely lead to enhancements in age transformation capabilities and temporal
consistency. Furthermore, we have utilized |Wang et al. (202 1a)) for face reenactment and|Reda et al.
(2022) for frame interpolation, integrating models such as|Zhang et al.[(2023a)) could potentially lead
to the creation of even more realistic videos and enhancing our performance. These tasks require
further investigation by future researchers.
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E ETHICAL STATEMENT

Our proposed video dataset comprises synthetic videos which heavily relies on StyleGAN images,
trained on FFHQ dataset Karras et al.| (2019). We acknowledge the potential biases inherited from
StyleGAN and FFHQ. Recognizing the societal threat or risk of misuse of our work, we explic-
itly disapprove of any malicious applications of our research. Our primary intent is to contribute
positively for the production and advertisement industry.
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