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A PROOF OF THEOREM 1

We first specify notations and then show our proof. Given a training dataset Dtr and a poisoned
training datasetDp, we respectively useX and Y to denote the list of m training examples subsampled
from them with replacement. We use e to denote the number of training examples that are in both
Dtr and Dp, i.e., e = |Dtr ∩ Dp|. Moreover, we use Υ to denote the joint space between X and Y .
We use E to denote a random variable in the space Υ.

We divide the space Υ into the following subspace:

A = {E|E ⊆ Dtr, E ̸⊆ Dtr ∩ Dp}, B = {E|E ⊆ Dtr ∩ Dp}, C = {E|E ⊆ Dp, E ̸⊆ Dtr ∩ Dp},
(10)

where E ⊆ Dtr (or E ⊆ Dp) means every element in E is in Dtr (or Dp) and E ̸⊆ Dtr ∩ Dp means
there exist at least one element in E that are not in Dtr ∩ Dp. Intuitively, subspace A contains all
possible subsampled datasets that can only be obtained from Dtr; subspace B contains all possible
subsampled datasets that can only be obtained from both Dtr and Dp; subspace C contains all
possible subsampled datasets that can only be obtained from Dp.
Lemma 1. LetX , Y be two random variables whose probability densities are respectively Pr(X = E)
and Pr(Y = E), where E ∈ Υ. Let Z1, Z2, · · · , Zt : Υ −→ {0, 1} be t random or deterministic
functions. Let k′ be an integer such that:

t∑︂
i=1

Zi(1|E) ≤ k′,∀E ∈ Υ, (11)

where Zi(1|E) denotes the probability that Zi(E) = 1. Then, we have the following:

(1) If W1 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) < µ} and W2 = {E ∈ Υ : Pr(Y = E)/Pr(X =

E) = µ} for some µ > 0. Let S = W1 ∪W3, where W3 ⊆ W2. If
∑︁t

i=1 Pr(Zi(X )=1)

k′ ≥ Pr(X ∈ S),

then
∑︁t

i=1 Pr(Zi(Y)=1)

k′ ≥ Pr(Y ∈ S).

(2) If W1 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) > µ} and W2 = {E ∈ Υ : Pr(Y = E)/Pr(X =

E) = µ} for some µ > 0. Let S = W1 ∪W3, where W3 ⊆ W2. If
∑︁t

i=1 Pr(Zi(X )=1)

k′ ≤ Pr(X ∈ S),

then
∑︁t

i=1 Pr(Zi(Y)=1)

k′ ≤ Pr(Y ∈ S).

Proof. Let’s start by proving part (1). For convenience, we denote the complement of S as Sc. With
this notation, we have the following:∑︁t

i=1 Pr(Zi(Y) = 1)

k′
− Pr(Y ∈ S) (12)

=

∫︂
Υ

∑︁t
i=1 Zi(1|E)

k′
· Pr(Y = E)dE −

∫︂
S

Pr(Y = E)dE (13)

=

∫︂
Sc

∑︁t
i=1 Zi(1|E)

k′
· Pr(Y = E)dE +

∫︂
S

∑︁t
i=1 Zi(1|E)

k′
· Pr(Y = E)dE −

∫︂
S

Pr(Y = E)dE

(14)

=

∫︂
Sc

∑︁t
i=1 Zi(1|E)

k′
· Pr(Y = E)dE −

∫︂
S

(1−
∑︁t

i=1 Zi(1|E)
k′

) · Pr(Y = E)dE (15)

≥µ · [
∫︂
Sc

∑︁t
i=1 Zi(1|E)

k′
· Pr(X = E)dE −

∫︂
S

(1−
∑︁t

i=1 Zi(1|E)
k′

) · Pr(X = E)dE ] (16)

=µ · [
∫︂
Sc

∑︁t
i=1 Zi(1|E)

k′
· Pr(X = E)dE +

∫︂
S

∑︁t
i=1 Zi(1|E)

k′
· Pr(X = E)dE −

∫︂
S

Pr(X = E)dE ]

(17)

=µ · [
∫︂
Υ

∑︁t
i=1 Zi(1|E)

k′
· Pr(X = E)dE −

∫︂
S

Pr(X = E)dE ] (18)

=µ · [
∑︁t

i=1 Pr(Zi(X ) = 1)

k′
− Pr(X ∈ S)] (19)
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Figure 3: Illustration Figure.

≥0. (20)

Equation 16 is derived from 15 due to the fact that Pr(Y = E)/Pr(X = E) ≤ µ,∀E ∈ S, Pr(Y =

E)/Pr(X = E) ≥ µ,∀E ∈ Sc, and 1−
∑︁t

i=1 Zi(1|E)
k′ ≥ 0. Similarly, we can establish the proof for

part (2), but we have omitted the detailed steps for the sake of conciseness.

For simplicity, we use n and np to denote the number of training examples in the training dataset
Dtr and poisoned training dataset Dp, i.e., n = |Dtr| and np = |Dp|. Then, we have the following
probability mass function:

Pr(X = E) =
{︃

1
nm , if E ∈ A ∪B,

0, otherwise.
(21)

Pr(Y = E) =

{︄
1

(np)m
, if E ∈ B ∪ C,

0, otherwise.
(22)

Recall that we have e = |Dtr ∩ Dp|, the probability of X and Y in those subspace can be computed
as follows:

Pr(X ∈ A) = 1− (
e

n
)m,Pr(X ∈ B) = (

e

n
)m,Pr(X ∈ C) = 0; (23)

Pr(Y ∈ A) = 0,Pr(Y ∈ B) = (
e

np
)m,Pr(Y ∈ C) = 1− (

e

np
)m. (24)

We use M to denote the size of L(x) for some test sample x. Suppose this equation |G(x;Dp) ∩
L(x)| < r is satisfied, then at least M − r + 1 ground truth labels in L(x) are not predicted by our
ensemble classifier G for x. Similarly, we know at least k − r + 1 labels in {1, 2, · · · , C} \ L(x)
are predicted for x. For simplicity, we respectively use U and V to denote the set of M − r + 1 and
k − r + 1 labels. Since the labels in V are predicted for x while the labels in U are not predicted, we
know there exist U and V such that we have the following:

max
u∈U

p′u ≤ min
v∈V

p′v (25)

Therefore, if

max
u∈U

p′u > min
v∈V

p′v (26)

, then |G(x;Dp) ∩ L(x)| ≥ r. Considering that the selection of U and V is not fixed, it becomes
necessary to examine the worst-case scenarios for both U and V . Therefore, we derive a lower (or
upper) bound on minU maxu∈U p′u (or maxV minv∈V p′v). Next, we will derive those bounds.

Deriving a lower bound on minU maxu∈U p′u. For an arbitrary label u ∈ U , we let:

p#u ≜
kb
nm
⌊pu ·

nm

kb
⌋ ≤ pu, (27)
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Suppose Ut is a subset of U , i.e., Ut ⊆ U . Moreover, we define pUt
=

∑︁
u∈Ut

p#u . We construct
a set S = A + B′, where B′ ⊆ B and Pr(X ∈ B′) =

pUt

kb
− Pr(X ∈ A). We can assume

pUt

kb
> Pr(X ∈ A) because otherwise x cannot be certified by our derived bound. Then, we have the

following lower bound on maxu∈U p′u:

max
u∈U

p′u (28)

≥ max
Ut⊆U

max
u∈Ut

p′u (29)

≥ max
Ut⊆U

1

t

∑︂
u∈Ut

p′u (30)

≥ max
Ut⊆U

kb
t
Pr(Y ∈ S) (31)

≥ max
Ut⊆U

kb
t
Pr(Y ∈ B′) (32)

≥ max
Ut⊆U

1

t

kb · Pr(X ∈ B′)

Pr(X ∈ B′)
Pr(Y ∈ B′) (33)

≥ max
Ut⊆U

1

t

pUt
− kb · Pr(X ∈ A)

Pr(X = E|E ∈ B)
Pr(Y = E|E ∈ B) (34)

= max
Ut⊆U

1

t
· (pUt

− kb · Pr(X ∈ A))
nm

(np)m
(35)

≥ max
Ut⊆U

1

t
(pUt

− kb + kb · (
e

n
)m)

nm

(np)m
(36)

We have Equation 31 from Equation 30 via Lemma 1, which states that for the set S described
above, if Pr(X ∈ S) ≤ pUt

kb
, then Pr(Y ∈ S) ≤ 1

t·kb

∑︁
u∈Ut

p′u. For each t, Equation 36 reaches
the maximum value when Ut is a set of t labels from U with the largest p#u ’s. Recall that we have
L(x) = {l1, l2, · · · , lM}, where p#l1 ≥ p#l2 ≥ · · · ≥ p#lM . Thus, minU maxu∈U p′u reaches the
minimal value when U = {lr, lr+1, · · · , lM}. Given U = {lr, lr+1, · · · , lM}, we have:

max
u∈U

p′u (37)

≥ max
Ut⊆U

1

t
(pUt

− kb + kb · (
e

n
)m)

nm

(np)m
(38)

≥M−r+1
max
t=1

1

t
(pUt

− kb + kb · (
e

n
)m)

nm

(np)m
(39)

≥M−r+1
max
t=1

1

t
(

lr+t−1∑︂
l=lr

p#l − kb + kb · (
e

n
)m)

nm

(np)m
(40)

To consider each element individually, we can construct a set S = A + B′, where B′ ⊆ B and
Pr(X ∈ B′) = p#u − Pr(X ∈ A) for any u ∈ U . Then we can again apply Lemma 1 by letting
k′ = 1 and have the following:

min
U

max
u∈U

p′u ≥ (p#lr − 1 + (
e

n
)m)

nm

(np)m
(41)

Putting them together, we have the following:

min
U

max
u∈U

p′u ≥ max(
M−r+1
max
t=1

1

t
(

lr+t−1∑︂
l=lr

p#l − kb + kb · (
e

n
)m)

nm

(np)m
, (42)

(p#lr − 1 + (
e

n
)m)

nm

(np)m
) (43)
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Deriving an upper bound on maxV minv∈V p′v .

For an arbitrary label v ∈ V , we have the following:

p∗v ≜
kb
nm
⌈pv ·

nm

kb
⌉ ≥ pv, (44)

Let pVt =
∑︁

v∈Vt
p∗v, we can construct a set S = C + B′, where B′ ⊆ B and Pr(X ∈ B′) =

pVt

kb
− Pr(X ∈ C). Recall that we have s1, s2, · · · , sk are the k labels with the largest p∗v’s in

{1, 2, · · · , C} \ L(x). Moreover, we have p∗s1 ≥ p∗s2 ≥ · · · ≥ p∗sk . Given those two conditions,
maxV minv∈V p′v reaches the maximum value when V = {s1, s2, · · · , sk−r+1}. Suppose Vt is an
arbitrary subset of V with t labels. Then, we have the following:

max
V

min
v∈V

p′v (45)

≤ min
Vt⊆V

min
v∈Vt

p′v (46)

≤ min
Vt⊆V

1

t
· kb · Pr(Y ∈ S) (47)

≤ min
Vt⊆V

1

t
· kb(Pr(Y ∈ B′) + Pr(Y ∈ C)) (48)

≤ min
Vt⊆V

1

t
(

pVt

Pr(X = E|E ∈ B)
Pr(Y = E|E ∈ B) + kb(1− (

e

np
)m)) (49)

= min
Vt⊆V

1

t
(pVt

nm

(np)m
+ kb(1− (

e

np
)m)) (50)

≤
k−r+1
min
t=1

min
Vt⊆V

1

t
(pVt

nm

(np)m
+ kb(1− (

e

np
)m)) (51)

≤
k−r+1
min
t=1

1

t
(

sk−r+1∑︂
s=sk−r+2−t

p∗s
nm

(np)m
+ kb(1− (

e

np
)m)) (52)

By considering each label independently, we have the following:

max
V

min
v∈V

p′v ≤ p∗sk−r+1

nm

(np)m
+ 1− (

e

np
)m (53)

Combining them together, we have:

max
V

min
v∈V

p′v ≤ min(
k−r+1
min
t=1

1

t
(

sk−r+1∑︂
s=sk−r+2−t

p∗s
nm

(np)m
+ kb(1− (

e

np
)m)), (54)

p∗sk−r+1

nm

(np)m
+ 1− (

e

np
)m) (55)

Deriving the optimization problem. By letting minU maxu∈U p′u > maxV minv∈V p′v, we have
the following:

max(
M−r+1
max
t=1

1

t
(

lr+t−1∑︂
l=lr

p#l − kb + kb · (
e

n
)m)

nm

(np)m
, (p#lr − 1 + (

e

n
)m)

nm

(np)m
) (56)

>min(
k−r+1
min
t=1

1

t
(

sk−r+1∑︂
s=sk−r+2−t

p∗s
nm

(np)m
+ kb(1− (

e

np
)m)), p∗sk−r+1

nm

(np)m
+ 1− (

e

np
)m) (57)

B PROOF OF THEOREM 2

We show that ensemble classifier is provably robust against data poisoning attacks. We use nl to
denote the number of base classifiers that predicts the label l before poisoning and n′

l to denote the
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number of base classifiers that predicts the label l after poisoning the training dataset. Suppose the
size of L(x) is M . When this equation |H(x;Dp) ∩ L(x)| < r is satisfied, we know that at least
M − r + 1 ground truth labels in L(x) are not predicted by our ensemble classifier for x. Similarly,
we know at least k − r + 1 labels in {1, 2, · · · , C} \ L(x) are predicted for x. For simplicity, we
respectively use U and V to denote the set of M − r + 1 and k − r + 1 labels. Since the labels in V
are predicted for x while the labels in U are not predicted, we know that we have the following:

max
u∈U

n′
u < min

v∈V
n′
v ∨ (max

u∈U
n′
u = min

v∈V
n′
v ∧ argmax

u∈U
n′
u < argmin

v∈V
n′
v) (58)

By contraposition, we know that if
max
u∈U

n′
u > min

v∈V
n′
v (59)

for all possible {n′
l|l ∈ {1, 2, . . . , C}}, U , and V , then the test sample is certified. It is essential

to derive a lower (or upper) bound on minU maxu∈U n′
u (or maxV minv∈V n′

v). We notice that U
includes M − r+1 ground truth labels with smallest nu’s in the worst case, and V includes k− r+1
non-ground truth labels with biggest nv’s in the worst case. As before, we denote the worst case U as
U∗ = {lr, lr+1, · · · , lM}, and the worst case V as V ∗ = {s1, s2, · · · , sk−r+1}. Then the problem
becomes deriving a lower (or upper) bound on maxu∈U∗ n′

u (or minv∈V ∗ n′
v). We denote |n′

u − nu|
as δu, then maxu∈U∗ n′

u is equivalent as:

min
{δu|u∈U}

max
u∈U∗

(nu − δu) s.t.
∑︂
u∈U∗

δu ≤ kb · T̃ , and ∀u ∈ U∗, δu ∈ Z, δu ≤ T̃ . (60)

This problem is somewhat complicated due to the min-max structure. As such, it might not have
a simple closed-form solution. Here we consider Ut = {lr, lr+1, · · · , lr+t−1} ⊆ U∗ , by jointly
considering all u ∈ Ut, we can lower bound it by:

min
{δu|u∈U}

max
u∈U∗

(nu − δu) s.t.
∑︂
u∈U∗

δu ≤ kb · T̃ , and ∀u ∈ U∗, δu ≤ T̃ . (61)

≥1

t
min

{δu|u∈U}

∑︂
u∈Ut

(nu − δu) s.t.
∑︂
u∈U∗

δu ≤ kb · T̃ , and ∀u ∈ U∗, δu ≤ T̃ . (62)

≥1

t
min

{δu|u∈U}
(
∑︂
u∈Ut

nu −
∑︂
u∈Ut

δu) s.t.
∑︂
u∈U∗

δu ≤ kb · T̃ , and ∀u ∈ U∗, δu ≤ T̃ . (63)

≥1

t
(
∑︂
u∈Ut

nu −min(kb · T̃ , t · T̃ )) (64)

(65)
If we take the maximum over all t, we have:

max
u∈U∗

n′
u ≥

M−r+1
max
t=1

1

t
(

lr+t−1∑︂
u=lr

nu −min(kb · T̃ , t · T̃ )) (66)

We can omit the part that considers each u ∈ U∗ individually since it gives:
max
u∈U∗

n′
u (67)

≥ min
{δu|u∈U}

max
u∈U∗

(nu − δu) s.t. ∀u ∈ Ut, δu ≤ T̃ . (68)

≥ max
u∈U∗

(nu − T̃ ) (69)

≥nlr − T̃ (70)
, which is equal to t = 1 case. Similarly, we can derive:

min
v∈V ∗

n′
v (71)

≥
k−r+1
min
t=1

1

t
(

sk−r+1∑︂
v=sk−r+2−t

nv +min(kb · T̃ , t · T̃ )) (72)
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Algorithm 1 Optimize for r

Input: Number of ground truth labels |L(x)|, left hand side of the inequality LHS(·), right hand
side of the inequality RHS(·).

Output: The maximum r s.t. the inequality holds (LHS(r) > RHS(r)).
1: procedure OPTIMIZE(|L(x)|, LHS(·), RHS(·))
2: low← 0 ▷ Lowest possible intersection size
3: high← |L(x)| ▷ Highest possible intersection size
4: while low < high− 1 do
5: mid← ⌊ low+high

2 ⌋
6: if LHS(mid) > RHS(mid) then
7: low← mid
8: else
9: high← mid

10: end if
11: end while
12: if LHS(high) > RHS(high) then
13: return high
14: else
15: return low
16: end if
17: end procedure

C SOLVE OPTIMIZATION PROBLEM IN EQUATION 4 AND EQUATION 9

Computing the certified intersection size. As shown in Equation 4, we need to estimate the
probability lower or upper bound for each label to solve the optimization problem to compute the
certified size. Following previous studies Jia et al. (2021), we leverage the Monte Carlo algorithm
to estimate those probability lower or upper bounds. We randomly sample N subsampled dataset
from the training dataset Dtr. For simplicity, we use D1

tr,D2
tr, · · · ,DN

tr to denote them. Given
those subsampled datasets and a training algorithm A, we can use A to train a base multi-label
classifier on each subsampled dataset. For simplicity, we use g1, g2, · · · , gN to denote those base
classifiers. Given a testing input xtest, we can use each base multi-label classifier to predict a
label for it. We denote Nl(xtest) as the number of base classifiers that predict label l for xtest, i.e.,
Nl(xtest) =

∑︁N
i=1 I(fi(xtest) = l), where l ∈ {1, 2, · · · , C} and I is the indicator function. Given

those Nl(xtest)’s, we can use Clopper-Pearson method to estimate probability lower or upper bounds.
Formally, we can compute them as follows:

pl = Beta(
α

c
;Nl, N −Nl + 1),∀l ∈ L(x), (73)

pl = Beta(1− α

c
;Nl, N −Nl + 1),∀l ∈ {1, 2, · · · , C} \ L(x), (74)

where 1− α
c is the confidence level and Beta(ρ; ς, ϑ) is the ρth quantile of the Beta distribution with

shape parameters ς and ϑ.

Complete algorithm. Please refer to Algorithm 1 for details.

D DETAILS OF DATASETS

Here we provide more details for each dataset.
• MS-COCO (Lin et al., 2014): The MS-COCO dataset, also known as Microsoft-COCO (Lin

et al., 2014), comprises 82,081 training images, 40,504 validation images, and 40,775 testing
images, from a total of 80 different objects. On average, each image within the dataset contains
approximately 2.9 objects. It is worth noting that the testing images lack ground truth labels, which
means they are not annotated. Therefore, to assess the performance of our method, we follow the
previous research (Chen et al., 2019) and evaluate it on the validation dataset.
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• NUS-WIDE (Chua et al., 2009): The NUS-WIDE dataset, introduced in the paper by (Chua
et al., 2009), initially comprises 269,648 images sourced from Flickr. These images are manually
annotated across 81 visual concepts, averaging 2.4 visual concepts per image. However, due to
some inaccessible image URLs, we utilize the modified version of the dataset released by (Cao
et al., 2017). This revised version consists of 134,025 training images and 89,470 testing images,
ensuring compatibility and accessibility for our purposes.

• VOC 2007 (Everingham et al., 2007): Pascal Visual Object Classes Challenge (VOC 2007)
dataset (Everingham et al., 2007) is a widely recognized and extensively utilized benchmark dataset
for multi-label classification. The dataset consists of 9,963 images from 20 objects, also known as
classes. On average, each image contains 2.5 objects. To align with prior research (Wang et al.,
2016), we divided the dataset into 5,011 training images and 4,952 testing images.

E BASE CLASSIFIERS

To prevent overfitting due to the limited number of training samples per base classifier, we employ a
publicly accessible MoCo-v2 (Chen et al., 2020) encoder that has been pre-trained on ImageNet. This
encoder utilizes a ResNet-50 backbone. During the training phase, we supplement the encoder with a
linear layer and solely optimizing the linear layer while keeping the pre-trained encoder unchanged.

As for the loss function, we choose Asymmetric loss (ASL) (Ben-Baruch et al., 2020) since this
loss addresses the issue of positive-negative label imbalance commonly encountered in multi-label
classification. This problem arises when an image has only a few positive labels but numerous
negative labels on average.

Let qj represent the probability that a base multi-label classifier predicts label j (j = 1, 2, · · · , c) for
a given training input. Additionally, let yj be 1 (or 0) if label j is (or is not) a ground truth label for
the training input. The ASL loss [2] is defined as follows: LASL =

∑︁c
j=1−yjLj+ − (1− yj)Lj−,

where Lj+ = (1 − qj)
γ+ log(qj) and Lj− = (max(qj − β, 0))

γ− log (1−max(qj − β, 0)). Here,
γ+, γ−, and β are hyperparameters.

In accordance with (Ben-Baruch et al., 2020), we set the training hyperparameters as follows: γ+ = 0,
γ− = 4, and β = 0.05. For training the classifier, we employ the Adam optimizer with a learning rate
of 0.01 and a batch size of 32. To carry out our experiments, we utilize the public implementation of
ASL1.

During the testing phase, we report the labels that correspond to the top kb largest logits.

F IMPACT OF α FOR PG-BAGGING

Figure 9 in Appendix show the impact of α on PG-Bagging for the MS-COCO dataset. We find that
PG-Bagging achieves slightly better performance as α increases. The reason is the label probability
lower or upper bounds are loose when α is large. We also find that our PoisoningGuard is relatively
insensitive to α, i.e., the influence of α is very small. Our observation is consistent with previous
work Cohen et al. (2019); Jia et al. (2021) that utilize Monte-Carlo sampling to compute robustness
guarantees. The impact of α on other datasets are shown in the fourth row of Figure 5 and Figure 7.

G IMPACT OF ATTACK TYPES FOR POISONINGGUARD

Figure 10 in Appendix show the impact of different attack types on PG-Bagging and PG-DPA for
the MS-COCO dataset. We find that our PoisoningGuard achieves better robustness guarantee on
addition and deletion attacks than on modification attacks, which means modification attack is the
strongest attack type. This finding is consistent with previous works (Jia et al., 2021; Levine & Feizi,
2021).

1https://github.com/Alibaba-MIIL/ASL
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Figure 4: Ablation Study for PG-DPA. Impact of k (first row), kb (second row), and N (third
row). The dataset is MS-COCO.
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Figure 5: Ablation Study for PG-Bagging. Impact of k (first row), kb (second row), α (third
row), and m (fourth row). The dataset is NUS-WIDE.
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Figure 6: Ablation Study for PG-DPA. Impact of k (first row), kb (second row), and N (third
row). The dataset is NUS-WIDE.
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Figure 7: Ablation Study for PG-Bagging. Impact of k (first row), kb (second row), m (third
row), and α (fourth row). The dataset is VOC.
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Figure 8: Ablation Study for PG-DPA. Impact of k (first row), kb (second row), and N (third
row). The dataset is VOC-2007.
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Figure 9: Impact of α for PG-Bagging. The dataset is MS-COCO.
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Figure 10: Impact of different attack types on PoisoningGuard. Impact on PG-Bagging (first
row) and Impact on PG-DPA (second row). The dataset is MS-COCO.
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