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Abstract

Motivated by the connection between sampling and optimization, we study a mirror
descent analogue of Langevin dynamics and analyze three different discretization
schemes, giving nonasymptotic convergence rate under functional inequalities such
as Log-Sobolev in the corresponding metric. Compared to the Euclidean setting, the
result reveals intricate relationship between the underlying geometry and the target
distribution and suggests that care might need to be taken in order for the discretized
algorithm to achieve vanishing bias with diminishing stepsize for sampling from
potentials under weaker smoothness/convexity regularity conditions.

1 Introduction

It has been widely recognized that optimization and sampling are deeply connected. One one hand,
optimization can be viewed as performing sampling in the limit, and on the other, since the influential
work of Jordan-Kinderlehrer-Otto [12], Langevin dynamics takes on the interpretation as performing
deterministic optimization (gradient flow) in the space of probability measures. This profoundly
shapes the way we view and understand traditional MCMC sampling algorithms, deviating from
the Markov semigroup path. While huge amount of progress has been made on the optimization
front in the past few decades, its sampling counterpart, finding far-reaching applications in Bayesian
statistical inference and inverse problems, hasn’t been fully explored to leverage the advancements
offered by the optimization toolbox. In this paper, we draw inspiration from mirror descent [17] and
ask the question if there’s an analog of it that can adapt to geometries beyond the Euclidean case for
Langevin diffusion, under isoperimetric inequalities such as Log-Sobolev for the target distribution,
rather than Strong-Log-Concavity, where we recall the celebrated result of Bakry and Émery [3]
prescribes that the latter implies the former.

1.1 Mirror Flow and Mirror Descent

In optimization, the extension to arbitrary geometry through the choice of a mirror map φ can
often give better smoothness/strong convexity parameter dependence, or even handle cases where
strong-convexity and Lipschitz gradient of f do not hold in the Euclidean geometry. The continuous
limit of mirror descent can be written as

dYt = −∇f(Xt)dt, Xt = ∇φ∗(Yt) (1)
which is equivalent to dYt/dt = d[∇φ(Xt)]/dt = ∇2φ(Xt)dXt/dt = −∇f(Xt), therefore the
mirror flow can be recast in the primal variable as dXt = −(∇2φ(Xt))

−1∇f(Xt)dt, akin to natural
gradient flow, which preconditions the update to adapt to local geometry. Equation (1) makes it clear
that the mirror descent update

xk+1 = ∇φ∗(∇φ(xk)− hk+1∇f(xk)) = arg min
x
〈x,∇f(xk)〉+ h−1k+1Dφ(x, xk)

∗Work done while at Stanford University.
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is nothing more than the forward-discretized gradient descent in the dual y-space through mirror
mapping. Here Dφ(x, xk) = φ(x) − φ(xk) − ∇φ(xk)>(x − xk) ≥ 0 is the Bregman divergence
and φ∗ is the Fenchel conjugate of φ. We assume that the mirror map φ : Rd → R is of Legendre
type2 and strictly convex throughout. Common choices include φ(x) = ‖x‖22/2, which reduces to
classical gradient descent as xk+1 = xk − hk+1∇f(xk), and φ(x) = −

∑
i xi log(xi), which gives

multiplicative weight update. In the special case when φ = f , one readily recovers Newton’s method.

1.2 Mirror Langevin Dynamics and Mirror Langevin Monte Carlo

For sampling, we consider the Mirror Langevin stochastic differential equation (SDE) where for
Yt = ∇φ(Xt), and target distribution π = e−f ,

dYt = −∇f(∇φ∗(Yt))dt+
√

2[∇2φ∗(Yt)]−1dWt (2)

for Wt the standard Brownian motion in Rd. If φ is three-times-differentiable, it is equivalent to

dXt =
(
−[∇2φ(Xt)]

−1 [Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1)−∇f(Xt)
])
dt+

√
2[∇2φ(Xt)]−1dWt

(3)
and the corresponding Euler-Maruyama (EM) discretized version (in dual y-space) becomes

xk+1 = ∇φ∗
(
∇φ(xk)− hk+1∇f(xk) +

√
2hk+1[∇2φ(xk)] · zk+1

)
(4)

for hk+1 the stepsize and zk+1 ∈ Rd an independent standard Gaussian random vector, where we
used∇2φ∗(Yt) = [∇2φ(Xt)]

−1. No particular warm start is assumed for initialization. It is worth
noting that while the continuous dynamics in the primal X-space involves the 3rd-order derivative
tensor, the implementation of (4) only requires access to a gradient oracle for f . For φ(x) = ‖x‖22/2,
one recovers the classical (overdamped) Langevin dynamics, whose Euler-Maruyama discretization
is ULA: xk+1 = xk − hk+1∇f(xk) +

√
2hk+1 · zk+1. In the case when there is no closed-

form expression, the inversion ∇φ∗ can be solved numerically (and therefore approximately) using
∇φ∗(z) = arg maxx{z>x− φ(x)}, which is a convex optimization problem. A derivation for the
equivalence between (2) and (3), along with the fact that (3) has π = e−f as the stationary distribution
are given in Appendix A.

It is evident (and reminiscent of the classical Langevin algorithm) that the discretized algorithm
will converge to a biased limit πh under mild regularity conditions. A Metropolis-Hastings step
can be applied on top to correct for the bias but we focus on the unadjusted case in this paper. The
main question we aim to address in this paper is – what is the non-asymptotic rate of convergence
for (2) using different discretization schemes, under functional inequalities such as Log-Sobolev
Inequality (LSI), which encompasses broader classes of distributions compared to the more restrictive
and well-studied Strong-Log-Concavity (SLC) setting. In particular, it is known that LSI is preserved
under bounded perturbation [10] and Lipschitz mapping, which capture cases when f is far from
convex, e.g., multi-modal such as Gaussian mixtures.

2 Related Work

Various discretizations of underdamped, overdamped Langevin dynamics in the Euclidean setting
under LSI [14, 23, 15] and SLC [8, 5, 7, 19, 16] are the main focus of a series of developments, for
which non-asymptotic error bounds are established for several metrics including KL, Wasserstein and
TV distance. Convergence of discretized algorithm under LSI, in general, introduces considerably
more challenges, as commonly used synchronous/reflection coupling techniques do not apply.

For Langevin dynamics working under non-Euclidean geometry, an earlier proposal was made in
[11] where an algorithm was designed to converge to (∇φ)#π, being essentially a change of measure
from the classical Langevin dynamics. Crucially, their dynamics is different in that the diffusion term
isn’t scaled as the one we consider to take into account the Riemannian metric structure induced
by φ. The study of dynamics (2) was initiated in [24] under a relaxed-SLC assumption, where the
authors show convergence of (4) to a Wasserstein ball with non-vanishing bias. [1] studied under
a similar relaxed-SLC assumption, but with a different discretization scheme as opposed to (4),

2so that ∇φ is invertible and ∇φ∗ = (∇φ)−1 is a single-valued mapping that makes sense for (1)
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where the bias decreases to zero with diminishing stepsize. Closer to our work is [6], in which
the authors investigated convergence of the continuous process (2) under functional inequalities
resembling the ones we consider and focused on φ = f , leaving the analysis of discretized algorithm
for future work. In this case one does not need to resort to smoothness assumption etc. for deriving
contraction/handling bias issues – it is only when studying stable discretization schemes that they
become necessary (and slows down convergence from exponential to polynomial).

Recent work of [13] leverages the mean-square framework, which heavily exploits the contraction
property of the dynamics, to show that under a modified self-concordance property, algorithm (4) in
fact converges without asymptotic bias. This particular property is something we do not have here,
therefore it’s likely new ideas are needed if one were to improve the analysis of (4) in this setting.

3 Notation and Assumptions

Notation We use ∇ · v(x) =
∑
i
∂vi(x)
∂xi

∈ R to denote the divergence operator for a vector
field v : Rd → Rd, and for a matrix-valued function G : Rd → Rd×d, we let ∇ · G(x) ∈ Rd

with the i-th element as
∑
j
∂G(x)ij
∂xj

. We denote the Laplacian operator as ∆ where ∆φ(x) =

Tr(∇2φ(x)). Moreover, let 〈∇2, G(x)〉 = ∇ · (∇ · G(x)) =
∑
i,j

∂2Gij(x)
∂xi∂xj

∈ R. The norm
induced by a positive definite G is defined as ‖z‖2G := z>Gz. Wasserstein-p distance is defined as
Wp(ρ, π) = infx∼ρ,x′∼π E[‖x− x′‖p]1/p for p ≥ 1. From Monge-Kantorvich’s duality W1(ρ, π) =
sup‖f‖lip≤1 Eρ[f ]−Eπ[f ] and monotonicity propertyW1(ρ, π) ≤W2(ρ, π), bound on Wasserstein-2
metric captures many functions of potential interest. We define the pushforward measure ρ̄ = ∇φ#ρ
as ρ̄(B) = ρ(∇φ−1(B)) for every borel set B.

We state the assumptions that we will make below, some of which we will relax later.
Assumption 1 (ζ-Self-Concordance). There exists a constant ζ ≥ 0 such that the conjugate mirror
map φ∗ satisfies that ∀y, u, s, v,

|∇3φ∗(y)[u, s, v]| ≤ 2ζ · (u>∇2φ∗(y)u)1/2(s>∇2φ∗(y)s)1/2(v>∇2φ∗(y)v)1/2 .

Moreover, this property is preserved under Fenchel conjugation (with the same parameter), affine
transformation and summation [18].

Many natural barrier and entropy functions (e.g., log-barrier) satisfy such self-concordance property.
This also guarantees solution of the continuous dynamics (2), cf. Appendix A of [24]. One can show
that this affine-invariant condition implies a form of Hessian stability as M−1∇2φ(x) � ∇2φ(x′) �
M∇2φ(x) for some M ≥ 1 (cf. Lemma 4), entailing that the underlying geometry isn’t rapidly
changing. This form of self-concordance also appears in interior point method in optimization and
previous work on Mirror Langevin [1] and suggests that locally the function behaves like a quadratic.
Assumption 2 (β-Mirror-Log-Sobolev). The target distribution π satisfies Mirror LSI with constant
β w.r.t a given mirror map φ, i.e., for every locally lipschitz function g, it holds that π satisfies

2

β

∫
‖∇g(x)‖2[∇2φ(x)]−1dπ ≥

∫
g(x)2 log g(x)2dπ −

(∫
g(x)2dπ

)
log

(∫
g(x)2dπ

)
(5)

taking g(x) =
√
dρ(x)/dπ(x) one gets that for all ρ,

Hπ(ρ) :=

∫
ρ(x) log

ρ(x)

π(x)
dx ≤ 1

2β

∫
ρ(x)

∥∥∥∥∇ log
ρ(x)

π(x)

∥∥∥∥2
[∇2φ(x)]−1

dx =:
1

2β
Jφπ (ρ) . (6)

This is the gradient-domination condition for KL-divergence in the Wasserstein metric, where the
(weighted) Fisher information on the RHS is the squared norm of the gradient for KL divergence.

LSI is an isoperimetric inequality that implies concentration for the distribution (subgaussian tails on
Lipschitz functions) and plays an important role in many results in probability theory. A discussion
of its implication in our context is further expanded in Section 4.1. We note that both [1] and [24]
require relative µ-strong convexity of f w.r.t φ, which means ∇2f � µ∇2φ � 0. Therefore this
assumption based on LSI allows us to move away from convex potentials.

The following two recover the familiar smoothness and Lipschitz condition when φ(x) = ‖x‖22/2.
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Assumption 3 (L-Relative Lipschitz). For all x, it holds that f : Rd 7→ R is differentiable with

‖∇f(x)‖[∇2φ(x)]−1 ≤ L . (7)

Assumption 4 (γ-Relative Smooth). For all x, x′ ∈ dom(φ),

‖[∇2φ(x)]−1∇f(x)− [∇2φ(x′)]−1∇f(x′)‖∇2φ(x′) ≤ γ · ‖∇φ(x)−∇φ(x′)‖[∇2φ(x′)]−1 . (8)

One could show that (8) is slightly stronger than assuming ∇2f̃(y) � γ∇2φ∗(y) for f̃(y) =

f(∇φ∗(y)) or that f̃(y) is smooth, i.e., ∇2f̃(y) � c · I (cf. Lemma 7). When φ(x) = ‖Ax‖22/2,
condition (8) reduces to ‖∇f(x)−∇f(x′)‖(A>A)−1 ≤ γ · ‖x−x′‖A>A, for which the dual norm on
the two sides makes sense as a generalization, whereas one could check that the relative smoothness
as defined in [24, 1] do not admit such a natural interpretation. We will comment more on this
assumption in later sections on discretization. Condition (7) is also common in previous works [1].
Assumption 5 (α-Strongly Convex). The mirror map φ is three-times differentiable, and let α :=
λmin(∇2φ) > 0.

All best known results under LSI [14, 23] in the Euclidean setting assume third order smoothness on
f (i.e., Lipschitz Hessian) and Lipschitz gradient (i.e., −L · I � ∇2f � L · I), sometimes with an
additional disspativity assumption [15], whereas we only require a weak notion of smoothness on
f ◦ ∇φ∗. The study of discretized sampling algorithms for non-smooth and non-convex potentials, to
the best of our knowledge, is a road less traversed.

4 Convergence Analysis

4.1 Continuous Time Process: Mirror LSI

One can get using LSI (and LSI alone) the exponential convergence in KL divergence for the
continuous time process, which is a manifestation of convergence under Polyak-Łojasiewicz (PL)
inequality from optimization. In optimization, steepest descent gradient flow curve y∗t ∈ Rd is
defined as

min
yt
〈∇f(yt), ẏt〉+

1

2
‖ẏt‖2

which implies ẏ∗t = −∇f(y∗t ) and df(y∗t )/dt = −‖∇f(y∗t )‖2, from which m-gradient dominance
condition on f (weaker than strong convexity)

f(y∗t )−min
y
f(y) ≤ 1

m
‖∇f(y∗t )‖2

gives exponential convergence for the objective function f as d(f(y∗t ) − miny f(y))/dt ≤
−m(f(y∗t ) − miny f(y)). In sampling within the space of probability measures, the objective
function(al) is replaced by Hπ(ρt), and the seminal work of [12] (see also later treatments by [2, 22])
show that the density ρt ∈ P(Rd) followed by the (overdamped) Langevin dynamics satisfies

ρ̇t = arg min
vt tangent to ρt

Ex∼ρt [〈∇W2Hπ(ρt)(x), vt(x)〉] +
1

2
Ex∼ρt [‖vt(x)‖22]

where ∇W2
Hπ(ρt)(x) = ∇x ∂Hπ(ρt)∂ρt

(x) is the Wasserstein-2 gradient of KL divergence at ρt.
Therefore

dHπ(ρ∗t )

dt
= −Ex∼ρ∗t

[∥∥∥∥∇x ∂Hπ(ρ∗t )

∂ρt
(x)

∥∥∥∥2
2

]
= −Ex∼ρ∗t

[∥∥∥∥∇x(1 + log

(
ρ∗t (x)

π(x)

))∥∥∥∥2
2

]
,

where for the second step we used ∂Hπ(ρt)
∂ρt

= 1 + log(ρtπ ) [2]. The RHS becomes the negative
of the Fisher information Jφπ (ρ) therefore LSI (6) reduces to gradient dominance condition for KL
divergence (in this case with ∇2φ = I for classical Langevin dynamics), from which one can
derive exponential convergence rate to the target distribution π as carried out in the optimization
land sans bias. This casts Langevin diffusion as precisely gradient flow w.r.t KL divergence in
Wasserstein metric in the space of probability measures, from which LSI (weaker than SLC) suffices
for convergence. We show in the lemma below that there is an extension of this result for Mirror-LSI
that gives exponential convergence for the continuous process (3).
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Proposition 1 (Convergence under Mirror-LSI). Along the dynamics of (3), we have that Hπ(ρt) ≤
e−2βtHπ(ρ0) under Assumption 2.

Proof. Using the PDE (22), which describes the density followed by (3) and the integration by parts
formula

∫
〈∇φ(x), v(x)〉dx = −

∫
φ(x)∇ · v(x)dx,

d

dt
Hπ(ρt) =

∫
dρt
dt

log
ρt
π
dx+

∫
π

1

π

dρt
dt
dx

=

∫
∇ ·
(
ρt[∇2φ]−1∇ log

ρt
π

)
log

ρt
π
dx+

d

dt

∫
ρtdx

= −
∫
ρt

∥∥∥∇ log
ρt
π

∥∥∥2
[∇2φ]−1

dx+ 0

≤ −2β ·Hπ(ρt)

where we used Mirror LSI in the last step. This implies from Grönwall’s inequality that Hπ(ρt) ≤
e−2βtHπ(ρ0).

For π that satisfies Mirror LSI with constant β, thanks to the strong convexity of ∇2φ � αI , it also
satisfies Talagrand’s inequality [21] with parameter β · α, which means the Wasserstein-2 distance
is upper bounded by KL divergence as αβ

2 W2(ρ, π)2 ≤ Hπ(ρ) for any ρ. Such transportation-cost
inequality has the interpretation of quadratic growth in the iterate space. Therefore Mirror LSI has
the additional nice property of allowing us to translate guarantee in the objective value (i.e., KL
divergence) to iterate space (that involves optimal coupling between iterates x ∼ ρ, x′ ∼ π).

Stability One can show that Mirror-LSI, similar to its Euclidean counterpart, is stable under
bounded perturbation. Therefore if the potential function f of interest is not exactly relative-smooth
w.r.t to a “nice" mirror map, it suffices for it to be close to one, in the sense made precise in Appendix
B. This is not something one can hope for with strong-convexity assumption, where perturbation from
convex function usually breaks the assumption. This could be especially useful when the potential
takes a composite form of f + g, where one part is smooth and the other part isn’t. It is also known
that operations such as convolution with Gaussian (or other density that satisfy LSI) preserves LSI
as well [4], which offers the option of smoothing to perform approximate sampling from a nicer
proxy potential f̃ . All these reasons make target measure satisfying Mirror-LSI appealing to study
compared to the two previous works [1, 24] studying mirror Langevin for∇2f � 0.

4.2 EM-Discretized Process: Interpolation with Weighted Dynamics

For analyzing the EM discretization, we build upon the idea initiated in [23] and view the discretized
mirror Langevin Monte Carlo (4) as following a weighted Langevin dynamics. It is clear that
yk+1 = ∇φ(xk+1) is the value at time t = hk+1 of the stochastic process

Yt = Y0 − t · ∇f(∇φ∗(Y0)) +
√

2[∇2φ∗(Y0)]−1Wt

starting from Y0 = yk, or written in differential equation form,

dYt = −∇f(∇φ∗(Y0))dt+
√

2[∇2φ∗(Y0)]−1dWt . (9)

Through the mapping Xt = ∇φ∗(Yt), one can study the corresponding dynamics in X-space, which
evolves following a weighted Langevin dynamics with shifted drift µ̂ as shown in Lemma 1 (that is
responsible for convergence to a biased limit πh 6= π), i.e.,

dXt = (∇ ·G(Xt)−G(Xt)∇f(Xt) + µ̂)dt+
√

2G(Xt)dWt . (10)

Lemma 1 (Shifted Drift and Covariance). For the dynamics written in (10) following (9), we have
G(Xt) = [∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1 � 0 and

µ̂ = −[∇2φ(Xt)]
−1∇f(X0)− [∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)

−∇ ·
(
[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)+ [∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1∇f(Xt) .

5



Having established this, a combination of Mirror LSI and careful bounding of the discretization error
using self-concordance and smoothness properties can be brought together to derive the per-iteration
progress. Deatiled proofs for this section can be found in Appendix C.
Proposition 2 (Progress in One Step of EM Discretization). In one iteration of Algorithm (4) with
xk ∼ ρ0, xk+1 ∼ ρh, under Assumption 1- 5, define D := maxu,v ‖∇φ(u)−∇φ(v)‖2, we have for
stepsize h ≤ min(1/2ζL, 1/16ζ2d,D/

√
αL,D2/4αd,M/6β),

Hπ(ρh) ≤ e−
3β
2M hHπ(ρ0) + 24M2γ2dh2 + 16Mζ2d2η2hh ,

where we denote M = exp(2ζD/
√
α) and η2h = (1− exp(−1/16ζ2h)) · (1− ζ(hL+ 2

√
hd))−4 +

exp(−1/16ζ2h) ·M2. We use the convention M = 1 when ζ = 0 and D =∞.

Picking appropriate stepsize gives the following result – perhaps surprisingly, this particular analysis
suggests that the simplest EM discretization exhibits an irreducible bias, and similar observation was
also made in [24] where the authors showed convergence to a Wasserstein ball with explicit radius,
even for diminishing stepsize.
Theorem 1 (Convergence Guarantee for EM). Under Assumption 1-5, picking stepsize h ≤
min(1/2ζL, 1/16ζ2d,D/

√
αL,D2/4αd,M/6β, δβ/44M3γ2d), after k ≥ Ω̃(M4γ2d/β2δ) iter-

ations of Algorithm (4), we have for xk ∼ ρk that Hπ(ρk) ≤ δ +Rh, where the nonvanishing bias
Rh = O(M2ζ2d2/β). In the above, D = maxu,v ‖∇φ(u)−∇φ(v)‖2 and M = exp(2ζD/

√
α).

Proof. Iterating the inequality in Proposition 2 for k iterations,

Hπ(ρk) ≤ e−
3β
2M hkHπ(ρ0) +

24M2γ2dh2

1− e− 3β
2M h

+
16Mζ2d2η2hh

1− e− 3β
2M h

≤ e−
3β
2M hkHπ(ρ0) +

22M3γ2dh

β
+

15M2ζ2d2η2h
β

where we used 1− e−a ≥ 3a/4 for a ∈ (0, 1/4]. Now using Lemma 6 for initialization, picking the
assumed stepsize, after k ≥ Ω̃(M/βh) ≥ Ω̃(M4γ2d/β2δ) iterations, we have Hπ(ρk) ≤ δ + Rh.
As long as ∇2φ is not constant (therefore ζ 6= 0, recall M ≥ 1), Rh := 15M2ζ2d2η2hβ

−1 6= 0 as
h→ 0 and the asymptotic bias Rh scale as O(M2ζ2d2/β) since η2h → 1 as h→ 0.

Remark. This convergence rate for KL divergence is stronger than [24] with their guarantee in
Wasserstein distance. Additionally, by Pinsker’s inequality, TV distance is upper bounded by
KL divergence therefore one could also get an analogous guarantee in that metric. Variations on
the argument will likely generalize to other metrics such as χ2 and Rényi divergence, with other
appropriate (mirror-version of) functional inequalities such as Poincaré [6, 20].

In the case when φ(x) = ‖Ax‖2/2, Theorem 1 gives no asymptotic bias, as we have M = 1 and
ζ = 0. Moreover, the assumption in this case says f is smooth in ‖ · ‖A>A although not necessarily
convex, and our algorithm gives an update of the form xk+1 = xk − hk+1(A>A)−1∇f(xk) +√

2hk+1(A>A)−1zk+1, which coincides with the classical Langevin performed on the function
g(x̃) = f(A−1x̃) for x = A−1x̃. One could check that g is smooth −γ · I � ∇2g � γ · I and
satisfies the classical LSI, which means that f is globally nice w.r.t a fixed geometry, after a change
of basis. If applying the Euclidean result of [20] on g(·), Theorem 1 recover the same Õ(d/δ)
complexity, which is the best-known rate without third-order smoothness assumption on f .

A closer look at the theorem points out that M plays a prominent role in the rate, where M is
effectively the Hessian stability parameter (cf. Lemma 4). However, this dependence onM necessarily
means that φ needs to be smooth on its domain (and M will be roughly the condition number of
φ). Although this extends beyond the Euclidean case when φ needs to be constant – hence allowing
for slowly-changing geometry, it is still far from satisfying. An important motivation for relaxing
smoothness assumption is in constrained sampling (e.g., uniform sampling from a convex body),
where one typically would pick φ to be a self-concordant barrier function that blows up on the
boundary as a proxy for the nonsmooth constraint for approximate sampling. Such functions do not
have a bounded M . This, in additional to the non-vanishing bias, all suggest that EM discretization,
natural as it may seem, although could improve particular parameter dependence compared to the
Euclidean counterpart (as illustrated above), might not fully benefit from the use of a mirror map.
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4.3 Alternative Forward Discretization Scheme

In practical applications, it is often the case that the cost of evaluating∇φ is considerably cheaper than
the cost of computing∇f , which could involve a finite sum over a large number of data points. Taking
hints from this observation, in [1], a slightly modified mirror Langevin algorithm was considered
where at iteration k, with step size η

xk+1/2 = arg min
v

η∇f(xk)>v +Dφ(v, xk) = ∇φ∗(∇φ(xk)− η∇f(xk)) (11)

solve dyt =
√

2[∇2φ∗(yt)]−1dWt for y0 = ∇φ(xk+1/2) (12)

xk+1 = ∇φ∗(yη) (13)

The oracle complexity (i.e., number of queries for∇f ) of the above algorithm is the same as the one
in (4), but aiming at a higher accuracy implementation for the diffusion part involving φ. The inner
step (12) can be implemented approximately using e.g., Euler-Maruyama. Integrating both sides of
(12), it is not hard to see that yk+1 = ∇φ(xk+1) is the value at time t = η of the continuous process

Yt = Y0 − t∇f(X0) +
√

2

∫ t

0

[∇2φ∗(Ys)]
−1/2dWs (14)

given X0 = ∇φ∗(Y0) = xk from the previous iteration. Written in differential form,

dYt = −∇f(∇φ∗(Y0))dt+
√

2[∇2φ∗(Yt)]−1dWt . (15)

Compared to (9), the difference is in the second term where we traded Y0 for Yt, therefore this formu-
lation amounts to discretizing the objective but not the geometry and will turn out to be crucial for re-
moving the asymptotic bias. This is also in line with the observation from optimization [9], from which
the authors argue that ẋt = −∇2φ(xt)

−1∇f(xbtc) gives a more “faithful" discretization compared to
ẋt = −∇2φ(xbtc)

−1∇f(xbtc). Indeed for the process (15), one gets in theX-space another weighted
Langevin dynamics (10) with G = [∇2φ(Xt)]

−1 and µ̂ = [∇2φ(Xt)]
−1(∇f(Xt)−∇f(X0)), the

discretization error of the gradient in the local φ metric.

It turns out that this algorithm based on splitting the deterministic and stochastic part of the SDE
works with a weaker notion of smoothness assumption as well. In particular, this definition of relative
smoothness only involves the local metric ∇2φ at a single point, whereas the previous Assumption
4 requires Lipschitz gradient across different metrics ∇2φ, which might be unavoidable if one is
discretizing the geometry as well.
Assumption 6 (Weaker γ-Relative Smooth). For all x, x′ ∈ dom(φ), it holds that

‖∇f(x)−∇f(x′)‖[∇2φ(x′)]−1 ≤ γ · ‖∇φ(x)−∇φ(x′)‖[∇2φ(x′)]−1 .

When φ(x) = ‖Ax‖22/2, Assumption 6 reduces to ‖∇f(x)−∇f(x′)‖(A>A)−1 ≤ γ · ‖x− x′‖A>A;
and when φ = f we always have γ = 1 (not the case for Assumption 4). We have the following
result for the forward-discretized Mirror Langevin algorithm. Proofs for this section can be found in
Appendix D.
Proposition 3 (Convergence Guarantee for Forward Discretization). For the Algorithm in (11)-
(13), under Assumption 1-3,5,6, let M = exp(2ζD/

√
α) and D = maxu,v ‖∇φ(u) − ∇φ(v)‖2,

picking stepsize h ≤ min(1/2ζL, 1/16ζ2d,D/
√
αL,D2/4αd, 1/6β, δβ/100Mγ2d), after k ≥

Ω̃(Mγ2d/β2δ) iterations, we have Hπ(ρk) ≤ δ.

While it is reassuring that the algorithm has vanishing bias with diminishing stepsize for any
self-concordant mirror map φ (at a higher cost of computation for each step), we still see the
appearance of M in the rate, which as we discussed earlier, substantially limit the use case for
handling weakly smooth potentials as motivation for the introduction of a mirror map. To give
a concrete example, for logistic regression, one might be interested in sampling from a posterior
π(θ) ∝ λ(θ) · exp[

∑
i yiθ

>xi − log(1 + exp(θ>xi))], where λ(θ) could be a constrained prior such
as uniform on `∞ ball [−1, 1]d. In such a setting, one natural choice is to pick a mirror map which is
a self-concordant barrier for the constraint set to enforce the constraint on the drawn samples, e.g.,
φ(θ) =

∑
i log((1− θi)−1) + log((1 + θi)

−1) with dom(φ) = (−1, 1)d. One could check that with
the potential of interest as f(θ) =

∑
i−yiθ>xi + log(1 + exp(θ>xi)), it does not have a bounded

M .
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4.4 Alternative Backward Discretization Scheme

Backward discretization is known to be more stable compared to forward discretization in optimization
and it is also known to give the best rate under LSI for Langevin diffusion in the Euclidean setting
with weaker assumptions [23], albeit at a higher cost of solving a proximal step xk+1 = xk −
η∇f(xk+1) = arg minx f(x) + (2η)−1‖x−xk‖22 compared to xk+1 = xk− η∇f(xk) at each step.

It is relatively straightforward to see that a backward discretization for the dynamics using the same
philosophy as Section 4.3 can be implemented with step size η as (assuming ηf + φ is convex -
guaranteed if η small enough)

solve dyt =
√

2[∇2φ∗(yt)]−1dWt for y0 = ∇φ(xk) (16)

xk+1 = arg min
v

ηf(v) + φ(v)− y>η v ⇔ η∇f(xk+1) +∇φ(xk+1)− yη = 0 (17)

and yk+1 = ∇φ(xk+1) is the value at time t = η of the continuous process

Yt = Y0 − t∇f(∇φ∗(Yt)) +
√

2

∫ t

0

[∇2φ∗(Ys)]
−1/2dWs (18)

given xk = ∇φ∗(Y0) from the previous iteration. Here step (16) can again be solved iteratively using
Euler-Maruyama and (17) is another convex optimization for which we can implement approximately.

We include the argument of this scheme in Appendix E, from which we see that one gets a better rate
compared to the previous forward-discretized method (Ω(δ−1/2) vs. Ω(δ−1)) while maintaining no
bias. The crucial step, which was also used in the work of [23], is to relate the process (18) to an SDE
for which the µ̂ and G only involve samples at Xt and no other time points (e.g., X0), contrary to
what happens for EM and forward discretization. This allows us to get a tighter control on the relevant
quantities for bounding the discretization error and hence a better final rate (cf. Lemma 9). The
difficulty for the other two schemes lies in the fact that due to the stochastic Brownian motion term,
if we were to bound the discretization error between two time points X0 and Xt, one would need a
more global stability control (hence dependence on M ) to account for the small probability that they
are far apart (therefore local stability implied by self-concordance doesn’t help). Our analysis for the
algorithm works with the smoothness assumption stated below.
Assumption 7 (Weaker γ-Relative Smooth). For all x, x′ ∈ dom(φ), it holds that

−γ∇2φ(x) � ∇2f(x) � γ∇2φ(x) ,

max
{
‖∇2f(x)[∇2φ(x)]−1 −∇2f(x′)[∇2φ(x′)]−1‖op,

‖[∇2φ(x)]−1∇2f(x)− [∇2φ(x′)]−1∇2f(x′)‖op
}
≤ K‖x− x′‖ .

Examples abound for such an assumption. We give an example here where f is not smooth, yet
satisfy this relative smoothness condition above. For f(x) = x log(x) which does not have Lipschitz
gradient, picking the strongly convex φ(x) = x log(x) + (1− x) log(1− x) where dom(φ) = [0, 1],
it’s easy to see f ′′/φ′′ = x−1/(x−1 + (1− x)−1) satisfy both requirements.

Below we give the result for our algorithm. As alluded to earlier, this new proposal removes the M
dependence altogether. It is somewhat expected that relative-smoothness type assumption would
show up in the result, the lack of which necessarily implies that the potential f is “misaligned" w.r.t
the underlying changing geometry, for which sampling is unequivocally expected to be hard. But
what’s surprising is that this is in fact all that’s required from φ for our method, and φ in itself doesn’t
have to be smooth or self-concrodant in this case.
Proposition 4 (Convergence Guarantee for Backward Discretization). For the Algorithm (16)-(17),
under Assumption 2,3,5,7 and stepsize h = O(min{1/γ, 1/K, 1/β,

√
δβ/(γ2L2 + α−1d3K2)}),

after k ≥ Ω̃(
√
γ2L2 + α−1d3K2/δ1/2β3/2) iterations, we have Hπ(ρk) ≤ δ.

Let us mention in passing some possible extensions to the framework presented above. In the case
when we are dealing with potential with finite sum structure, i.e., f(x) =

∑
i fi(x), as is often the

case in machine learning problems, one could execute instead of (17) the update

xk+1 = arg min
v

η
∑
i∈B

fi(v) + φ(v)− y>η v, (19)
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where B is a random batch of data points. Such algorithm effectively assumes that we have stochastic
(and therefore) noisy access to ∇f , where ∇̂f(x) = ∇f(x) + ζ for ζ an independent random noise
vector with E[ζ] = 0 and E[‖ζ‖22] ≤ dσ2. Basic considerations suggest that this stochastic variant of
the algorithm will converge to a noise ball with radius that scales with the variance of the noise σ, but
is nevertheless more efficient from a computational perspective.

5 Numerical Experiments

In this section, we test out the induced bias and the benefit of using mirror maps in two experiments.

For the first experiment, we take the similar setup as in [6], where we pick φ = f (i.e., Newton) and
consider uniform sampling from a 2D box [−0.01, 0.01]× [−1, 1]. Four methods are compared. For
Newton Langevin, we aim to target πβ ∝ exp(−β ·φ), taking φ(x) = − log(1−x21)−log(0.012−x22)
as the barrier. We test out the 3 different discretization schemes with β = 10−4 so that πβ ≈ π.
Stepsize is chosen to be h = 10−5. Projected Langevin is taken to be another option for dealing with
constraints, which targets the uniform distribution π directly and simply performs ULA followed
by projection onto the domain. The plot below shows the samples after 500 iterations, where ∇φ∗
and the proximal operator are solved with 50 steps of gradient descent steps. Diffusion term φ is
solved with 10 inner steps of EM. From the samples, EM seems to give qualitatively different result,
suggesting the possible existence of bias.

Figure 1: Uniform sampling from ill-conditioned box [−0.01, 0.01]× [−1, 1].

The second experiment concerns ill-conditioned Gaussian potential (no bias in this case), for which
we compare the speed of convergence for Mirror-Langevin (with EM discretization) vs. ULA. We
take φ = f = (x−µ)>Σ−1(x−µ)/2, and repeat the process 200 times with d = 50, computing the
error in empirical mean ‖µ̂− µ‖2 and covariance ‖Σ̂− Σ‖F /‖Σ‖F and plot them across iterations
below. Stepsize h is picked to be 10−3 in both cases and initialization as N (0, I).

6 Discussion

Our result characterizes the interplay between φ and f for different discretization schemes, which
can be used to guide particular choice of mirror map given the sampling problem on hand. Our
newly proposed algorithm and the analysis of several previously proposed schemes in the setting of

9



Figure 2: Newton Langevin vs. ULA for Gaussian (Σ = diag(1, 2, · · · , 50), µ = [1, · · · , 1]).

sampling from nonsmooth and nonconvex potentials highlight several interesting distinctions that do
not find parallel in the traditional Euclidean setup.

In optimization, one typically requires quite strong assumption for global stable convergence of
Newton’s method (for which φ = f ). Are various tricks such as Trust-Region, Cubic-Regularized
Newton justified here as well for either speeding up sampling or correcting for bias? As future steps,
it is an unfulfilled dream of ours to formalize and confirm a lower bound. It is conceivable that
the extra bias term is unavoidable and captures the price we have to pay for discretizing φ while
asking for weaker smoothness. It’s also interesting to ask whether higher-order discretizers such
as Runge-Kutta would yield better rate. In a different vein, one could explore the possibility of
higher-order dynamics (à la underdampled Langevin) for which more sophisticated integrator [19, 16]
could potentially be leveraged. Conventional wisdom suggests that the introduction of auxiliary
variable that handles the non-smoothness of Brownian motion can often lead to design of better
discrete sampling algorithms. On the probability theory front, it remains an intriguing open question
to give a complete characterization for the Mirror-LSI condition.
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A Properties of Mirror Langevin SDE

A.1 Equivalence between (2) and (3)

Let T (Y ) = ∇φ∗(Y ), and using that (1) Xt = ∇φ∗(Yt); (2) ∇2φ∗(Yt) = [∇2φ(Xt)]
−1, Itô’s

Lemma using equation (2) gives

dXt = dT (Yt) = −∇T (Yt)
>∇f(Xt)dt+Tr

(
∇2φ(Xt)∇2T (Yt)

)
dt+
√

2∇T (Yt)
>
√
∇2φ(Xt)dWt .

Moreover, we have
∇T (Y ) = [∇2φ(X)]−1 (20)

∇2T (Y ) = −[∇2φ(X)]−1
d∇2φ(X)

dY
[∇2φ(X)]−1

Therefore

dXt = −[∇2φ(Xt)]
−1∇f(Xt)dt− Tr

(
d∇2φ(Xt)

dYt
[∇2φ(Xt)]

−1
)
dt+

√
2[∇2φ(Xt)]−1dWt .

For the Trace operation on tensor-matrix product, we define it as Tr(∇3φ(X)G(X)) ∈ Rd, where the
i-th element is Tr(∇i∇2φ(X)G(X)) =

∑
j,k

∂3φ(X)
∂Xi∂Xj∂Xk

G(X)j,k. Looking at the i-the coordinate,
the middle trace term becomes

Tr

[∇2φ(X)]−1
∑
j

∂∇2φ(X)

∂X(j)

∂X(j)

∂Y (i)


=
∑
j

Tr
(
[∇2φ(X)]−1∇j∇2φ(X)

)
[∇2φ(X)]−1i,j

where we used that X = T (Y ) and equation (20). This is, of course, equal to, looking again at i-th
element,

e>i [∇2φ(X)]−1 Tr
(
∇3φ(X)[∇2φ(X)]−1

)
=
∑
j

[∇2φ(X)]−1i,j Tr
(
∇j∇2φ(X)[∇2φ(X)]−1

)
.

Therefore

dXt = −[∇2φ(Xt)]
−1∇f(Xt)dt−[∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1) dt+√2[∇2φ(Xt)]−1dWt ,

as claimed in equation (3).

A.2 Stationary distribution

Lemma 3 from [23] shows that for the SDE (under assumption∇2φ � 0)

dXt =
(
∇ · [∇2φ(Xt)]

−1 − [∇2φ(Xt)]
−1∇f(Xt)

)
dt+

√
2[∇2φ(Xt)]−1dWt , (21)

the density Xt ∼ ρt satisfies the Fokker-Planck equation

∂ρt
∂t

= ∇ ·
(
ρt[∇2φ]−1∇ log

ρt
π

)
, (22)

from which it is evident that π = e−f is an invariant measure. Comparing (21) and (3), it suffices to
show

∇ · [∇2φ(Xt)]
−1 = −[∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1) . (23)
Looking at the i-th element, we have∑

j

∂[∇2φ(X)]−1i,j
∂X(j)

= −
∑
j

∑
s,t

[∇2φ(X)]−1i,s [∇2φ(X)]−1t,j∇s[∇
2φ(X)]t,j

= −
∑
s

[∇2φ(X)]−1i,s Tr
(
∇s∇2φ(X)[∇2φ(X)]−1

)
,

same as RHS. This also concludes that the density of Xt from (3) follows the PDE (22).
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B Properties of Mirror LSI

Lemma 2 (Stability under bounded perturbation for Mirror LSI). Suppose probability density π
satisfies Mirror-LSI with parameter β, then provided ε ≤ dν

dπ ≤ δ, for ε, δ > 0, the probability density
ν satisfies Mirror-LSI with parameter δ/βε.

Proof. We denote the RHS of (5) as Entπ[g2]. One could show using the variational principal of
entropy that for ν � π

Entν [g2] ≤
∥∥∥∥dνdπ

∥∥∥∥
∞

Entπ[g2] ≤ δ · Entπ[g2] .

where we used the assumption ε ≤ dν
dπ ≤ δ, for ε, δ > 0. For the LHS,

2

β

∫
‖∇g(x)‖2[∇2φ(x)]−1dπ =

2

β

∫
‖∇g(x)‖2[∇2φ(x)]−1

dπ

dν
dν

≤ 2

βε

∫
‖∇g(x)‖2[∇2φ(x)]−1dν

Putting things together, we have

2δ

βε

∫
‖∇g(x)‖2[∇2φ(x)]−1dν ≥ Entν [g2]

as claimed.

There’s an analogous and equivalent version of Mirror LSI (and Talagrand’s inequality) in the dual
y-space (as shown below) that can drive exponential convergence in the continuous dynamics (9),
from which we can try to bound the discretization error. Similar analysis in the following sections, of
course, can be carried out there which gives similar convergence result to (∇φ)#π in the dual space.

Lemma 3 (Variant of Talagrand’s inequality). Mirror LSI for π as in (6) implies a generalized
Talagrand’s inequality, i.e., for all ρ,

β

2
W2,[∇2φ]−1(∇φ#ρ,∇φ#π)2 ≤ Hπ(ρ) ,

where W2,[∇2φ]−1(∇φ#ρ,∇φ#π)2 := infx∼ρ,x′∼π E[‖∇φ(x)−∇φ(x′)‖2[∇2φ]−1 ].

Proof. Mirror LSI with parameter β for π in x-space implies that the density∇φ#π satisfies a dual
Mirror-LSI with parameter β in y-space , i.e., for all ρ,∫

∇φ#ρ(x) log
∇φ#ρ(x)

∇φ#π(x)
dx ≤ 1

2β

∫
∇φ#ρ(x)

∥∥∥∥∇ log
∇φ#ρ(x)

∇φ#π(x)

∥∥∥∥2
∇2φ

dx . (24)

We begin by showing that the LHS is invariant under bijective mapping ∇φ : Rd → Rd. Let
ρ′ = ∇φ#ρ and π′ = ∇φ#π, then the change of variable formula gives

ρ(x)

π(x)
=
ρ′(∇φ(x)) det(∇2φ(x))

π′(∇φ(x)) det(∇2φ(x))
=
ρ′(∇φ(x))

π′(∇φ(x))
.

Therefore since ∇φ(x) ∼ ρ′ if x ∼ ρ, we have

Ex∼ρ′
[
log

ρ′(x)

π′(x)

]
= Ex∼ρ

[
log

ρ′(∇φ(x))

π′(∇φ(x))

]
= Ex∼ρ

[
log

ρ(x)

π(x)

]
.

The RHS follows by observing that if x ∼ ρ, y = ∇φ(x) ∼ ρ′. Let h(x) = log ρ(x)
π(x) and

h̃(y) = h(∇φ∗(y)),

Ex∼ρ
[
‖∇xh(x)‖2[∇2φ(x)]−1

]
= Ey∼ρ′

[∥∥∥∇∇φ∗(y)h̃(y)
∥∥∥2
[∇2φ(∇φ∗(y))]−1

]
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= Ey∼ρ′
[∥∥∥∇2φ(x)∇yh̃(y)

∥∥∥2
[∇2φ(x)]−1

]
= Ey∼ρ′

[∥∥∥∇yh̃(y)
∥∥∥2
∇2φ(x)

]
where we used ∇yh̃(y) = [∇y∇φ∗(y)]>∇∇φ∗(y)h̃(y) = [∇2φ(x)]−1∇∇φ∗(y)h̃(y). Having estab-
lished (24), applying the manifold version of LSI⇒ Talagrand’s inequality (cf. Theorem 22.17 in
[21]) on∇φ#π, we therefore have

β

2
W2,[∇2φ]−1(∇φ#ρ,∇φ#π)2 ≤ H∇φ#π(∇φ#ρ) = Hπ(ρ) .

C Proofs for Section 4.2: EM Discretization

Proof of Lemma 1. Using (9) and let X = T (Y ) := ∇φ∗(Y ), then Itô’s Lemma gives

dXt = dT (Yt) = −∇T (Yt)
>∇f(X0)dt+Tr

(
∇2φ(X0)∇2T (Yt)

)
dt+
√

2∇T (Yt)
>
√
∇2φ(X0)dWt .

From here, a similar calculation as in Appendix A.1 shows

dXt = −[∇2φ(Xt)]
−1∇f(X0)dt− [∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1) dt

+
√

2[∇2φ(Xt)]
−1
√
∇2φ(X0)dWt ,

where we can easily identify G and

µ̂ = −[∇2φ(Xt)]
−1∇f(X0)− [∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)

−∇ ·G+G∇f(Xt)

as claimed.

Below is a helper lemma stating the implication of self-concordance assumption on Hessian stability.
Being an affine invariant property, it is a more natual assumption compared to those made in previous
works, i.e., Lipschitz Hessian.
Lemma 4 (Self-Concordance Implication). Under Assumption 1, 3 and 5, we have forD the diameter
D := maxu,v ‖∇φ(u)−∇φ(v)‖2 and updates Xt = ∇φ∗(Yt) and X0 = ∇φ∗(Y0) following (9),

M−1 · [∇2φ(Xt)]
−1 � [∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1 �M · [∇2φ(Xt)]

−1

in expectation (w.r.t Brownian motion) for

M = (1− exp(−1/16ζ2t)) · (1− ζ(tL+ 2
√
td))−2 + exp(−1/16ζ2t) · exp(2ζD/

√
α) ,

if t ≤ min(1/2ζL, 1/16ζ2d) and bounded by

M = exp(2ζD/
√
α)

deterministically. We use the convention M = 1 when ζ = 0 and D =∞. Moreover, it implies

‖Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1) ‖2[∇2φ(Xt)]−1 ≤ 4ζ2d2 .

Proof. From the definition of self-concordance for φ∗, it implies from [18] that for ‖Yt −
Y0‖∇2φ∗(Y0) ≤ 1/ζ, we have(

1− ζ‖Yt − Y0‖∇2φ∗(Y0)

)2∇2φ∗(Y0) � ∇2φ∗(Yt) �
(
1− ζ‖Yt − Y0‖∇2φ∗(Y0)

)−2∇2φ∗(Y0) .

Therefore since ∇φ(Xt) − ∇φ(X0) = Yt − Y0 = −t · ∇f(X0) +
√

2t∇2φ(X0) · z0, and z0 is
independent of everything else,

‖Yt − Y0‖2∇2φ∗(Y0)
=
∥∥∥−t · ∇f(X0) +

√
2t∇2φ(X0) · z0

∥∥∥2
[∇2φ(X0)]−1

14



= t2‖∇f(X0)‖2[∇2φ(X0)]−1 + 2t‖z0‖22
≤ t2L2 + 2t‖z0‖22

Using χ2 concentration, P(‖z0‖22 ≥ (
√
d +
√
δ)2) ≤ exp(−δ), for t ≤ min(1/2ζL, 1/16ζ2d),

with probability at least 1 − exp(−d) ≥ 1 − exp(−1/16ζ2t) over the draw of z0, we have ‖Yt −
Y0‖∇2φ∗(Y0) ≤ tL+ 2

√
td < 1/ζ, therefore

(1− ζ(tL+ 2
√
td))2 · I � ∇2φ(X0)1/2[∇2φ(Xt)]

−1∇2φ(X0)1/2 � (1− ζ(tL+ 2
√
td))−2 · I .

One the other hand, with the remaining probability exp(−1/16ζ2t), consider the function g(s) =
u>∇2φ∗(Y0 + s(Yt − Y0))u =: ∇2φ∗(Ys)[u, u], then from self concordance we have

|g′(s)| = |∇3φ∗(Ys)[u, u, Yt − Y0]| ≤ 2ζ‖Yt − Y0‖∇2φ∗(Ys)‖u‖
2
∇2φ∗(Ys)

= 2ζ‖Yt − Y0‖∇2φ∗(Ys)g(s)

≤ 2ζ√
α
‖Yt − Y0‖2 · g(s)

≤ 2ζ√
α
D · g(s)

therefore | log(g(1))−log(g(0))| ≤ 2ζD/
√
α implying exp(−2ζD/

√
α)∇2φ∗(Y0) � ∇2φ∗(Yt) �

exp(2ζD/
√
α)∇2φ∗(Y0) and

exp(−2ζD/
√
α) · I � ∇2φ(X0)1/2[∇2φ(Xt)]

−1∇2φ(X0)1/2 � exp(2ζD/
√
α) · I .

Altogether this gives that in expectation w.r.t z0, the stability parameter M is upper bounded by

(1− exp(−1/16ζ2t)) · (1− ζ(tL+ 2
√
td))−2 + exp(−1/16ζ2t) · exp(2ζD/

√
α)

which goes to 1 as t→ 0. Self concordance also implies picking direction [[∇2φ(Xt)]
1/2ei, u, u]

−2ζ‖ei‖2∇2φ∗(Yt) � ∇3φ∗(Yt)[[∇2φ(Xt)]
1/2ei] � 2ζ‖ei‖2∇2φ∗(Yt)

which means using the derivation in A.1 that
∥∥∥∑j [∇2φ(Xt)]

−1/2
ij [∇2φ(Xt)]

−1∇j∇2φ(Xt)
∥∥∥
op
≤

2ζ ∀i ∈ [d], therefore

|
∑
j

[∇2φ(Xt)]
−1/2
ij Tr([∇2φ(Xt)]

−1∇j∇2φ(Xt))| ≤ 2ζ
√
d

and we have

‖Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1) ‖2[∇2φ(Xt)]−1

= ‖[∇2φ(Xt)]
−1/2 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1) ‖22
≤ d
∣∣∑
j

[∇2φ(Xt)]
−1/2
ij Tr

(
∇j∇2φ(Xt)[∇2φ(Xt)]

−1) ∣∣2
≤ 4ζ2d2

as desired.

We collect some useful results before giving the per-iteration progress bound.
Lemma 5 (Control on ‖µ̂‖2∇2φ). Under Assumption 1 and 4, we have for the µ̂ defined in Lemma 1

‖µ̂‖2∇2φ ≤ 2ηγ2‖∇φ(Xt)−∇φ(X0)‖2[∇2φ(X0)]−1 + 8η2ζ2d2 ,

where we denote η = ‖[∇2φ(Xt)]
−1[∇2φ(X0)]‖op.

Proof. Let v := ∇ ·
(
[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1), using the fact that

∂ Tr((X>CX)−1A)

∂X
= −(CX(X>CX)−1)(A+A>)(X>CX)−1 ,

15



the i-th element of v is

−
∑
j

∑
s,t

(
[∇2φ(Xt)]

−1
s,j

(
[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)

i,t

+ [∇2φ(Xt)]
−1
s,i

(
[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)

j,t

)∂∇2(Xt)s,t
∂Xt(j)

= −
∑
s

(
[∇2φ(Xt)]

−1)
i,s

Tr
(
∇s∇2φ(Xt)[∇2φ(Xt)]

−1∇2φ(X0)∇2φ(Xt)]
−1)

−
∑
t

(
[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)

i,t
Tr
(
∇t∇2φ(Xt)[∇2φ(Xt)]

−1) .
Therefore

v = −[∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1∇2φ(X0)[∇2φ(Xt)]
−1)

− [∇2φ(Xt)]
−1∇2φ(X0)[∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1) .
Putting together with the expression in Lemma 1, ‖µ̂‖2∇2φ is∥∥∇2φ(X0)[∇2φ(Xt)]

−1∇f(Xt)−∇f(X0) +∇2φ(X0)[∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1)∥∥2
[∇2φ(Xt)]−1

≤ 2
∥∥∥[∇2φ(Xt)]

−1/2[∇2φ(X0)]1/2
∥∥∥2
op

∥∥∥[∇2φ(X0)]1/2[∇2φ(Xt)]
−1∇f(Xt)− [∇2φ(X0)]−1/2∇f(X0)

∥∥∥2
2

+ 2
∥∥∥[∇2φ(Xt)]

−1/2∇2φ(X0)[∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1)∥∥∥2
2

≤ 2ηγ2‖∇φ(Xt)−∇φ(X0)‖2[∇2φ(X0)]−1 + 2η2‖[∇2φ(Xt)]
−1/2 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1) ‖22
≤ 2ηγ2‖∇φ(Xt)−∇φ(X0)‖2[∇2φ(X0)]−1 + 8η2ζ2d2

where we used relative smoothness assumption 4 and Lemma 4. The first term will go to zero as
t→ 0, whereas the second term will be responsible for the non-vanishing bias w.r.t the diminishing
step size (as long as∇3φ 6= 0 so ζ 6= 0).

Now we are ready to state the main recursion, drawing doses of inspiration from [23].

Proof of Proposition 2. Denoting G0(x) and µ̂0(x) as the diffusion/drift term at time t when xt = x
with x0 at time t = 0, the Fokker-Planck equation for the conditional density ρt|0(xt|x0) takes the
form written below
∂ρt(x)

∂t
=

∫
∂ρt|0(x|x0)

∂t
ρ0(x0)dx0

=

∫ [
−∇ · (ρt|0(∇ ·G0(x)−G0(x)∇f(x))) + 〈∇2, ρt|0G0(x)〉 − ∇ · (ρt|0µ̂0(x))

]
ρ0(x0)dx0

= ∇ ·
(
ρ0|t

∫
−(ρt(∇ ·G0(x)−G0(x)∇f(x))) +∇ · (ρtG0(x))dx0

)
−∇ ·

(
ρt

∫
ρ0|tµ̂0(x)dx0

)
= ∇ ·

(
ρ0|t

∫
G0(x)∇ρt + ρtG0(x)∇f(x)dx0

)
−∇ ·

(
ρt

∫
ρ0|tµ̂0(x)dx0

)
= ∇ ·

(
ρ0|t

∫ (
ρtG0(x)∇ log

ρt
π(x)

)
dx0

)
−∇ ·

(
ρt

∫
ρ0|tµ̂0(x)dx0

)
︸ ︷︷ ︸

Eρ0|t [µ̂(x0,x)|xt=x],func of x

where for the second equality above we used Lemma 3 from [23] and (10). We will see that
the first part corresponds to exponential decay to an unbiased limit (similar to what happens in
Lemma 1) and the second corresponds to the biased shifted drift introduced by discretization. Let
M = exp(2ζD/

√
α), since a>b = 2(

√
Ma)>( 1

2
√
M
b) ≤M‖a‖22 + 1

4M ‖b‖
2
2 by Young’s inequality,

d

dt
Hπ(ρt) =

∫
dρt
dt

log
ρt
π
dx

16



=

∫
∇ ·
(
ρ0|t

∫
ρtG0∇ log

ρt
π(x)

dx0

)
log

ρt
π
dx−

∫
∇ ·
(
ρt

∫
ρ0|tµ̂0dx0

)
log

ρt
π
dx

= −
∫
ρ0|t

∫
ρt

〈
∇ log

ρt
π
G0,∇ log

ρt
π

〉
dx0dx+

∫
ρt

∫
ρ0|t〈µ̂0,∇ log

ρt
π
〉dx0dx

= −Eρ0,t
[∥∥∥∇ log

ρt
π

∥∥∥2
G

]
+ Eρ0,t

[
〈µ̂,∇ log

ρt
π
〉
]

≤ − 1

M
Eρt
[∥∥∥∇ log

ρt
π

∥∥∥2
[∇2φ]−1

]
+ Eρ0,t

[
〈µ̂,∇ log

ρt
π
〉
]

≤ −2β

M
Hπ(ρt) +MEρ0,t [‖µ̂‖2∇2φ] +

1

4M
Eρt

[∥∥∥∇ log
ρt
π

∥∥∥2
[∇2φ]−1

]
≤ − 3β

2M
Hπ(ρt) +MEρ0,t [‖µ̂‖2∇2φ]

where we used integration by parts, Mirror LSI and Lemma 4. Now using Lemma 5,

Eρ0,t [‖µ̂‖2∇2φ] ≤ 2Mγ2Eρ0,t [‖∇φ(xt)−∇φ(x0)‖2[∇2φ(x0)]−1 ] + 8ζ2d2E[‖∇2φ(x0)[∇2φ(xt)]
−1‖2op] .

The first term can be bounded as (since z0 is independent from x0)

Eρ0,t [‖yt − y0‖2∇2φ∗(y0)
] = Eρ0,t

[∥∥∥−t · ∇f(x0) +
√

2t∇2φ(x0) · z0
∥∥∥2
[∇2φ(x0)]−1

]
= t2Eρ0 [‖∇f(x0)‖2[∇2φ(x0)]−1 ] + 2tE[‖z0‖22]

≤ t2L2 + 2td

and the second term is bounded using Lemma 4 as 8ζ2d2η2t := 8ζ2d2((1− exp(−1/16ζ2t)) · (1−
ζ(tL + 2

√
td))−4 + exp(−1/16ζ2t) · exp(4ζD/

√
α)). Putting things together, we have for ρt

evolving according to (10), if 0 ≤ t ≤ h ≤ min(1/2ζL, 1/16ζ2d,D/
√
αL,D2/4αd),

d

dt
Hπ(ρt) ≤ −

3β

2M
Hπ(ρt) + 2M2γ2(t2L2 + 2td) + 8Mζ2d2η2t

≤ − 3β

2M
Hπ(ρt) + 12M2γ2dh+ 8Mζ2d2η2h

where η2h → 1 as h→ 0. This can be rewritten as

d

dt

(
e

3β
2M tHπ(ρt)

)
≤ e

3β
2M t

(
12M2γ2dh+ 8Mζ2d2η2h

)
.

Integrate it for 0 ≤ t ≤ h, we have for h ≤ 2M
3β ,

e
3β
2M hHπ(ρh)−Hπ(ρ0) ≤ 2M

3β
(e

3βh
2M − 1)(12M2γ2dh+ 8Mζ2d2η2h)

≤ 24M2γ2dh2 + 16Mζ2d2η2hh ,

where we used ea ≤ 1 + 2a for a ∈ (0, 1]. Therefore we end up with

Hπ(ρh) ≤ e−
3β
2M hHπ(ρ0) + e−

3β
2M h(24M2γ2dh2 + 16Mζ2d2η2hh)

≤ e−
3β
2M hHπ(ρ0) + 24M2γ2dh2 + 16Mζ2d2η2hh

and identifying xk+1 ∼ ρh and xk ∼ ρ0 finishes the proof.

We have the following initial bound on the KL divergence with x ∼ ρ0 = N (x∗, 1γ I).

Lemma 6 (Initialization). Under Assumption 4 or 6 and Assumption 5, we have Hπ(ρ0) ≤ f(x∗) +
d
2 log( γ

2πe ) + γ
2αEρ0 [‖∇φ(x∗) − ∇φ(x)‖22], where x∗ satisfies ∇f(x∗) = 0. Moreover, under

Assumption 7, we have Hπ(ρ0) ≤ d
2 log( γ

2πe ) + f(x∗) + γEρ0 [Dφ(x, x∗)].
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Proof. From relative smoothness assumption 4 or 6, let yt = y + t(y∗ − y) for y, y∗, where
x∗ = ∇φ∗(y∗) is the staionary point (i.e., ∇f(x∗) = 0). For f̃(y) = f(∇φ∗(y)), this also gives
∇f̃(y∗) = 0 and

|f̃(y)− [f̃(y∗) + 〈∇f̃(y∗), y − y∗〉]|

= |
∫ 1

0

[∇f̃(y∗)−∇f̃(yt)]
>(y∗ − y) dt|

≤
∫ 1

0

‖[∇2φ(x∗)]−1∇f(x∗)− [∇2φ(xt)]
−1∇f(xt)‖∇2φ(xt) · ‖y

∗ − y‖[∇2φ(xt)]−1dt

≤ γ
∫ 1

0

‖y∗ − yt‖[∇2φ(xt)]−1 · ‖y∗ − y‖[∇2φ(xt)]−1dt

≤ γ

2α
‖y∗ − y‖22

where we used Cauchy-Schwarz and φ being α-strongly convex implies φ∗ is 1/α-smooth. Therefore

f̃(y) ≤ f̃(y∗) + 〈∇f̃(y∗), y − y∗〉+
γ

2α
‖y∗ − y‖22

and rewriting,

f(x) ≤ f(x∗) +
γ

2α
‖∇φ(x∗)−∇φ(x)‖22 . (25)

For x ∼ ρ0 = N (x∗, 1γ I) Gaussian centered at x∗, we have

Hπ(ρ0) = −H(ρ0) + Eρ0 [f ] ≤ d

2
log(

γ

2πe
) + f(x∗) +

γ

2α
Eρ0 [‖∇φ(x∗)−∇φ(x)‖22] ,

where we used that for normal distribution H(ρ0) = d
2 log 2πe

γ .

With Assumption 7, instead of (25), we have

f(x) = f(x∗) +

∫ 1

0

∫ t

0

(x− x∗)>∇2f(xs)(x− x∗)ds dt

≤ f(x∗) + γ

∫ 1

0

∫ t

0

(x− x∗)>∇2φ(xs)(x− x∗)ds dt

= f(x∗) + γ

∫ 1

0

(x− x∗)>(∇φ(xt)−∇φ(x∗))dt

= f(x∗) + γ
[
φ(x)− φ(x∗)− (x− x∗)>∇φ(x∗)

]
=: f(x∗) + γDφ(x, x∗)

which gives

Hπ(ρ0) = −H(ρ0) + Eρ0 [f ] ≤ d

2
log(

γ

2πe
) + f(x∗) + γEρ0 [Dφ(x, x∗)] .

We end this section with a word about the relative smoothness assumptions.

Lemma 7 (Relative Smoothness). For the following conditions:

1. ∇2f̃(y) � γ∇2φ∗(y)

2. ‖[∇2φ(x)]−1∇f(x)− [∇2φ(x′)]−1∇f(x′)‖∇2φ(x′) ≤ γ‖∇φ(x)−∇φ(x′)‖[∇2φ(x′)]−1

3. |f̃(y)− [f̃(y′) + 〈∇f̃(y′), y − y′〉]| ≤ γ
2 ‖y − y

′‖2∇2φ∗(y′)

4. ‖∇f(x)−∇f(x′)‖[∇2φ(x′)]−1 ≤ γ‖∇φ(x)−∇φ(x′)‖[∇2φ(x′)]−1

5. −γ∇2φ(x) � ∇2f(x) � γ∇2φ(x)
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where y = ∇φ(x) and f̃(y) = f(∇φ∗(y)), we have 2⇒ 1, 3 and 4⇒ 5. Moreover, taking x = x∗

for which ∇f(x∗) = 0, condition 2 becomes the same as condition 4.

Proof. We begin by showing ∇2f̃(y) � γ∇2φ∗(y) implies 2 does not hold. Let g(t) = f̃(yt) for
yt = y0 + t · z, then for any ε there exists some δ such that |1/δ · (g′(δ) − g′(0)) − g′′(0)| =

|1/δ · (∇f̃(yδ)−∇f̃(y0))>z − z>∇2f̃(y0)z| ≤ ε, therefore we have from assumption

(∇f̃(yδ)−∇f̃(y0))>z ≥ δz>∇2f̃(y0)z − εδ ≥ δγ‖z‖2∇2φ∗(y0)
− εδ ,

from Cauchy-Schwarz for all ε′

‖∇f̃(yδ)−∇f̃(y0)‖[∇2φ∗(y0)]−1 ≥ δγ‖z‖∇2φ∗(y0) − ε
′ = γ‖yδ − y0‖∇2φ∗(y0) − ε

′ ,

and chain rule ∇f̃(y) = [∇2φ(x)]−1∇f(∇φ∗(y)) gives

‖[∇2φ(xδ)]
−1∇f(xδ)− [∇2φ(x0)]−1∇f(x0)‖∇2φ(x0) ≥ γ · ‖∇φ(xδ)−∇φ(x0)‖[∇2φ(x0)]−1 − ε′

for all ε′, finishing the proof. This lets us conclude that 2⇒ 1.

The proof of Lemma 6 shows that 2⇒ 3.

For 4⇒ 5, ∀v ∈ Rd we have

‖∇2f(x)>v‖[∇2φ(x)]−1 = lim
h→0

‖∇f(x+ vh)−∇f(x)‖[∇2φ(x)]−1

h

≤ lim
h→0

γ · ‖∇φ(x+ vh)−∇φ(x)‖[∇2φ(x)]−1

h

= γ · ‖∇2φ(x)>v‖[∇2φ(x)]−1 ,

therefore∇2f(x)>[∇2φ(x)]−1∇2f(x) � γ2∇2φ(x), which in turn implies 5.

D Proofs for Section 4.3: Alternative Forward Discretization Scheme

Proof of Proposition 3. Following the derivation for Lemma 1, we have that (15) is the same as (in
the primal space)

dXt = −[∇2φ(Xt)]
−1∇f(X0)dt−[∇2φ(Xt)]

−1 Tr
(
∇3φ(Xt)[∇2φ(Xt)]

−1) dt+√2[∇2φ(Xt)]−1dWt .

This means the process follows a weighted Langevin dynamics (10) with G = [∇2φ(Xt)]
−1

and µ̂ = [∇2φ(Xt)]
−1(∇f(Xt) − ∇f(X0)) for (15) since (23) already taught us ∇ · G =

−[∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1).
Now tracing the proof of Proposition 2, we have from Mirror LSI

d

dt
Hπ(ρt) =

∫
dρt
dt

log
ρt
π
dx

= −Eρt
[∥∥∥∇ log

ρt
π

∥∥∥2
G

]
+ Eρ0,t

[
〈µ̂,∇ log

ρt
π
〉
]

≤ −Eρt
[∥∥∥∇ log

ρt
π

∥∥∥2
[∇2φ]−1

]
+ Eρ0,t [‖µ̂‖2∇2φ] +

1

4
Eρt

[∥∥∥∇ log
ρt
π

∥∥∥2
[∇2φ]−1

]
≤ −3β

2
Hπ(ρt) + Eρ0,t [‖µ̂‖2∇2φ] .

Using Assumption 1, 3, 5, 6 and (14), we have forM = exp(2ζD/
√
α), ηt = (1−exp(−1/16ζ2t))·

(1− ζ(tL+ 2
√
td))−2 + exp(−1/16ζ2t) ·M ,

Eρ0,t [‖µ̂‖2∇2φ] ≤ γ2 · Eρ0,t
[
‖∇φ(xt)−∇φ(x0)‖2[∇2φ(xt)]−1

]
≤ γ2 · E

[∥∥∥∥−t∇f(x0) +
√

2

∫ t

0

[∇2φ(xs)]
1/2dWs

∥∥∥∥2
[∇2φ(xt)]−1

]
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≤ 2γ2t2ηtL
2 + 4tγ2Md ,

where we used Itô’s isometry, (a+ b)2 ≤ 2a2 + 2b2 and Lemma 4.

If 0 ≤ t ≤ h ≤ min(1/2ζL, 1/16ζ2d,D/
√
αL,D2/4αd),

d

dt
Hπ(ρt) ≤ −

3β

2
Hπ(ρt) + 2γ2h2ηhL

2 + 4hγ2Md .

Written differently,

d

dt

(
e

3β
2 tHπ(ρt)

)
≤ e

3β
2 t
(
2γ2h2ηhL

2 + 4hγ2Md
)
.

Integrate it for 0 ≤ t ≤ h, we have for h ≤ 1
6β ,

e
3β
2 hHπ(ρh)−Hπ(ρ0) ≤ 2

3β
(e

3βh
2 − 1)(2γ2h2ηhL

2 + 4hγ2Md)

≤ 24γ2h3ηhL
2 + 16h2γ2Md

where we used ea ≤ 1 + 2a for a ∈ (0, 1]. Altogether this gives us

Hπ(ρh) ≤ e−
3β
2 hHπ(ρ0) + e−

3β
2 h(24γ2h3ηhL

2 + 16h2γ2Md)

≤ e−
3β
2 hHπ(ρ0) + 24γ2h3ηhL

2 + 16h2γ2Md.

Iterating the recursion,

Hπ(ρk) ≤ e−
3β
2 hkHπ(ρ0) +

24γ2h3ηhL
2

1− e− 3β
2 h

+
16h2γ2Md

1− e− 3β
2 h

≤ e−
3β
2 hkHπ(ρ0) +

22γ2ηhL
2h2

β
+

15γ2Mhd

β

≤ e−
3β
2 hkHπ(ρ0) +

50hdγ2(ηh +M)

β

where we used 1− e−a ≥ 3a/4 for a ∈ (0, 1/4]. Now using Lemma 6 for initialization, picking the
assumed stepsize, after k ≥ Ω̃(Mγ2d/β2δ) iterations, we have Hπ(ρk) ≤ δ.

E Proof for Section 4.4: Alternative Backward Discretization Scheme

Lemma 8 (Implicit in Lemma 6 of [23]). For a matrix S = (I+t∇2f(x))−2, assuming (1)−L·Id �
∇2f � L · Id; (2) ‖∇2f(x)−∇2f(y)‖op ≤M‖x− y‖ for all x, y; (3) 0 ≤ t ≤ min{1/8L, 1/M},
we have

‖∇kS‖op :=

∥∥∥∥ ∂S∂xk
∥∥∥∥
op

≤ 4tM

for all k ∈ [d]. Above (2) also implies ‖∇i∇2f(x)‖op ≤M for all i ∈ [d].

Below we give the main technical argument for this section.
Lemma 9 (SDE Derivation). If t ≤ O(1/γ, 1/K), under Assumption 3,5,7, the backward discretiza-
tion dynamics in (18) follows the SDE in (10) with

4

9
[∇2φ(Xt)]

−1 � G � 4[∇2φ(Xt)]
−1

and ‖µ̂‖2∇2φ = O(t2γ2L2 + t2α−1d3K2). In particular, the norm decays with t therefore there is
no asymptotic bias with vanishing stepsize.

Proof. For the process in (18), if we introduce Ỹt = Yt + t∇f(∇φ∗(Yt)), then we see that it evolves
as a scaled Brownian motion:

dỸt =
√

2[∇2φ∗(Yt)]
−1/2dWt =

√
2∇2φ(Xt)dWt . (26)
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Therefore if we speculate that Yt takes the form of dYt = µdt+
√

2GdWt, then Itô’s lemma gives

dỸt =
(
∇f(Xt) +

(
I + t[∇2φ(Xt)]

−1∇2f(Xt)
)>
µ+ Tr(

√
G
>
T
√
G)
)
dt

+
√

2(I + t[∇2φ(Xt)]
−1∇2f(Xt))

>
√
GdWt

for T = t[∇2φ(Xt)]
−1 ∂∇2f(Xt)

∂Yt
+ t∂[∇

2φ(Xt)]
−1

∂Yt
∇2f(Xt). Comparing this with the Brownian

motion SDE for Ỹt (26), we have
√
G = (I + t∇2f(Xt)[∇2φ(Xt)]

−1)−1[∇2φ(Xt)]
1/2 ,

µ = −(I + t∇2f(Xt)[∇2φ(Xt)]
−1)−1[∇f(Xt) + Tr(T

√
G
√
G
>

)] .

Now to translate to the primal X-space through mapping ∇φ∗, another application of Itô’s lemma
tells us

dXt = d∇φ∗(Yt) =
√

2[∇2φ(Xt)]
−1
√
GdWt +

[
Tr

(√
G
> ∂2∇φ∗(Yt)

∂Y 2
t

√
G

)
+ [∇2φ(Xt)]

−1µ

]
dt

=
√

2(∇2φ(Xt) + t∇2f(Xt))
−1[∇2φ(Xt)]

1/2 dWt +

[
Tr

(
∂2∇φ∗(Yt)

∂Y 2
t

√
G
√
G
>
)

+ [∇2φ(Xt)]
−1µ

]
dt

=:
√

2G̃ dWt + µ̃ dt

for which
√
G̃ = (∇2φ(Xt) + t∇2f(Xt))

−1[∇2φ(Xt)]
1/2 � 0 by the choice of t and we can

calculate the µ̂ in (10) as

µ̂ = µ̃−∇ · G̃(Xt) + G̃(Xt)∇f(Xt)

= −[∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1G[∇2φ(Xt)]
−1)−∇ · G̃−√G̃[∇2φ(Xt)]

−1/2 Tr(TG)

− t
√
G̃[∇2φ(Xt)]

−1/2∇2f(Xt)
√
G̃[∇2φ(Xt)]

−1/2∇f(Xt)

= −∇ · G̃− t
√
G̃[∇2φ(Xt)]

−1/2∇2f(Xt)
√
G̃[∇2φ(Xt)]

−1/2∇f(Xt)− [∇2φ(Xt)]
−1 Tr(∇3φ(Xt)G̃)

− t
√
G̃[∇2φ(Xt)]

−1/2 Tr

(
∂∇2f(Xt)

∂Yt
[∇2φ(Xt)]G̃

)
+ t
√
G̃[∇2φ(Xt)]

−3/2 Tr(∇3φ(Xt)[∇2φ(Xt)]
−1∇2f(Xt)[∇2φ(Xt)]G̃) .

Moreover, since 0 ≤ t < 1/2γ, under Assumption 7, we have
4

9
[∇2φ(Xt)]

−1 � G̃ � 4[∇2φ(Xt)]
−1 , (27)

establishing the first claim. For the shifted drift ‖µ̂‖2∇2φ, we look at it term by term: using Assumption
3 and (27),

‖t
√
G̃[∇2φ(Xt)]

−1/2∇2f(Xt)
√
G̃[∇2φ(Xt)]

−1/2∇f(Xt)‖2∇2φ ≤ 16t2γ2‖∇f(Xt)‖2[∇2φ(Xt)]−1

≤ 16t2γ2L2 .

For ‖−∇·G̃− [∇2φ(Xt)]
−1 Tr(∇3φ(Xt)G̃)‖2∇2φ, we have using the product rule for the divergence

operator, and writing G̃ as [∇2φ(Xt)]
−1(I + t∇2f(Xt)[∇2φ(Xt)]

−1)−2,∥∥[∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1(I + t∇2f(Xt)[∇2φ(Xt)]
−1)−2

)
− [∇2φ(Xt)]

−1∇ · (I + t∇2f(Xt)[∇2φ(Xt)]
−1)−2

− [∇2φ(Xt)]
−1 Tr

(
∇3φ(Xt)[∇2φ(Xt)]

−1(I + t∇2f(Xt)[∇2φ(Xt)]
−1)−2

) ∥∥2
∇2φ(Xt)

= ‖∇ · (I + t∇2f(Xt)[∇2φ(Xt)]
−1)−2‖2[∇2φ(Xt)]−1

which can be bounded to scale with t provided ∇2f(Xt)[∇2φ(Xt)]
−1 is Lipschitz and

−γI � ∇2f(Xt)[∇2φ(Xt)]
−1 � γI is bounded. Using Lemma 8 with t small, for S :=(

I + t∇2f(Xt)[∇2φ(Xt)]
−1)−2, we have ‖∇kS‖op ≤ 4tK for all k ∈ [d] so with Assumption 5,

‖∇ · S‖2[∇2φ(Xt)]−1 ≤ α−1‖∇ · S‖22 ≤ α−1d2
∑
k∈[d]

‖∇kS‖2op = O(α−1d3t2K2) .
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For the remaining last two terms in µ̂ that is up to constants equal to (by Von Neumann’s trace
inequality and (27) above, using a similar derivation to those in A.1)∥∥t[∇2φ(Xt)]

−1 Tr(∇3φ(Xt)[∇2φ(Xt)]
−1∇2f(Xt))− t[∇2φ(Xt)]

−1∇ · ∇2f(Xt)
∥∥2
[∇2φ(Xt)]−1 ,

the Lipschitz condition required for [∇2φ(Xt)]
−1∇2f(Xt) will give a bound on this quantity as

well, as it simply being the divergence of this former expression. Hence Assumption 7, together
with Lemma 8 give ‖∇k([∇2φ(Xt)]

−1∇2f(Xt))‖op ≤ K for all k ∈ [d] and the term can be upper
bounded as t2α−1‖∇ · ([∇2φ(Xt)]

−1∇2f(Xt))‖22 ≤ O(t2K2d3α−1). Putting things together, we
have ‖µ̂‖2∇2φ ≤ O(t2γ2L2 + t2d3K2α−1) under the assumed condition in the lemma statement.

The important thing to note is that the diffusion and the (shifted) drift term only involves Xt and not
X0, which would introduce errors coming from the stochastic Brownian motion term and prevents a
tighter control. Now we can essentially follow the template in Proposition 3 to finish the proof. The
analysis is a somewhat tedious calculation.

Proof of Proposition 4. Using Mirror LSI and Lemma 9, the claim is just a stone’s throw away,

d

dt
Hπ(ρt) =

∫
dρt
dt

log
ρt
π
dx

= −Eρt
[∥∥∥∇ log

ρt
π

∥∥∥2
G

]
+ Eρ0,t

[
〈µ̂,∇ log

ρt
π
〉
]

≤ −4

9
Eρt
[∥∥∥∇ log

ρt
π

∥∥∥2
[∇2φ]−1

]
+ Eρ0,t [‖µ̂‖2∇2φ] +

1

4
Eρt

[∥∥∥∇ log
ρt
π

∥∥∥2
[∇2φ]−1

]
≤ −β

4
Hπ(ρt) + Eρ0,t [‖µ̂‖2∇2φ]

≤ −β
4
Hπ(ρt) + C · (t2γ2L2 + t2α−1d3K2) .

If 0 ≤ t ≤ h ≤ O(min(1/γ, 1/K)),

d

dt
Hπ(ρt) ≤ −

β

4
Hπ(ρt) + h2C(γ2L2 + α−1d3K2) .

Written differently,
d

dt

(
e
β
4 tHπ(ρt)

)
≤ e

β
4 th2C(γ2L2 + α−1d3K2) .

Integrate it for 0 ≤ t ≤ h, we have for h ≤ 1
β ,

e
β
4 hHπ(ρh)−Hπ(ρ0) ≤ 4

β
(e

βh
4 − 1)h2C(γ2L2 + α−1d3K2)

≤ 2h3C(γ2L2 + α−1d3K2)

where we used ea ≤ 1 + 2a for a ∈ (0, 1]. Altogether this gives us

Hπ(ρh) ≤ e−
β
4 hHπ(ρ0) + e−

β
4 h2h3C(γ2L2 + α−1d3K2)

≤ e−
β
4 hHπ(ρ0) + 2h3C(γ2L2 + α−1d3K2).

Iterating the recursion,

Hπ(ρk) ≤ e−
β
4 hkHπ(ρ0) +

2h3C(γ2L2 + α−1d3K2)

1− e− β4 h

≤ e−
β
4 hkHπ(ρ0) +

12h2C(γ2L2 + α−1d3K2)

β

where we used 1− e−a ≥ 3a/4 for a ∈ (0, 1/4]. Now using Lemma 6 for initialization, picking the
assumed stepsize, after k ≥ Ω̃(

√
γ2L2 + α−1d3K2/δ1/2β3/2) iterations, we haveHπ(ρk) ≤ δ.
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