
8th ICML Workshop on Automated Machine Learning (2021)

A resource-efficient method for repeated HPO and NAS

Giovanni Zappella zappella@amazon.de
Amazon Web Services, Berlin, Germany

David Salinas dsalina@amazon.fr
Amazon Web Services, Berlin, Germany

Cedric Archambeau cedrica@amazon.de

Amazon Web Services, Berlin, Germany

Abstract

We consider the problem of repeated hyperparameter and neural architecture search
(HNAS).We propose an extension of Successive Halving that leverages information gained in
previous HNAS problems with the goal of saving computational resources. We empirically
demonstrate that our solution is robust to negative transfer and drastically decreases cost
while maintaining accuracy. Our method is significantly simpler than competing transfer
learning approaches, setting a new baseline for transfer learning in HNAS.

1. Introduction

When solving a prediction problem with deep learning it is important to search over network
architectures and to tune the network hyperparameters. However, conditions under which a
deep neural network is deployed might drift away from the experimental conditions considered
when it was developed. Hence, best practice recommends periodically updating the network
architecture and retuning its hyperparameters. Unfortunately, practitioners often do not
perform hyperparameter and architecture search (HNAS) once they have settled on a tuned
deep neural network, because the process of updating and retuning the network can be
time-consuming and costly (e.g., see Klein and Hutter, 2019, Fig.5). Several research groups
proposed solutions for transfer learning in HNAS (see related work in Appendix A) to ease
this process, but most assume a large number of historical evaluations are available. In many
real-world scenarios, sharing evaluations can be problematic as the selected architectures and
hyperparameter configurations can capture confidential information, such as click-rates or
churn-rates, and historical evaluations might reside in models built by competing industrial
players. In this work, we propose an extension of Successive Halving (Jamieson and Talwalkar,
2016; Karnin et al., 2013) which can reduce the usage of computational resources when a
sequence of HNAS problems have to be solved. The method combines the robustness of
testing a large set of candidate configurations and an aggressive pruning strategy which
leverages the best evaluations from previous tuning jobs. This combination allows the
algorithm to work with a small amount of previous evaluations in a reliable way. Our
experiments show that our approach provides great savings when historical evaluations are
available, regardless of their amount, and is robust to negative transfer (Wang et al., 2019).

©2021 G. Zappella, D. Salinas, C. Archambeau.

Zappella et al.

2. Problem setup

We frame repeated HNAS as a sequence of Best Arm Identification (BAI) problems (see
Audibert and Bubeck, 2010; Lattimore and Szepesvári, 2020, Ch. 33, and references therein)
where the total number of steps in the sequence is unknown. Each of the BAI problems
follow the non-stochastic setting described by Jamieson and Talwalkar (2016). At a high
level, each combination of hyperparameters corresponds to an arm in the bandit problem
and each arm pull can be seen as the amount of resources consumed (e.g., one epoch) for
training the model with these hyperparameters. The arms are selected by an independent
procedure (e.g., uniform random sampling) and provided to the tuning algorithm, which
is agnostic to this external procedure. The setting used to define these problems is the
non-stochastic bandit setting: the losses suffered by the learner are not sampled from an
unknown fixed distribution as in the stochastic bandit setting, but become smaller over time
and thus subject to a less restrictive assumption. For example, if a set of arms is defined
as the number of neurons per layer and the number of layers of a neural network, we will
train several neural networks in parallel using different combinations of these values. Each
network will be trained for a number of epochs which is the number of pulls assigned to the
arm representing it. In this example it is easy to see that the initial validation loss of the
network will be large and will get smaller the more we train the network, until convergence
is reached (see ν below).
More formally, in the non-stochastic BAI problem, the learner is provided with a set of
arms A = {a1, . . . , ak}. If the learner decides to play arm a at time t, it will suffer a loss
`a,t ∈ R. We assume that for each arm a, there exists νa such that νa = limt→+∞ `a,t. The
goal of the learner is to identify arg mina∈A νa by using at most a pre-defined number of
arm pulls. The existence of the limit for the losses implies the existence of a non-increasing
function γa that bounds the distance to the limit with |`a,t − νa| ≤ γa(t). We define
γ−1a (α) = min{t ∈ N : γa(t) ≤ α} which gives the the smallest t required to reach a given
distance to the limit and γ̄−1(α) = maxa=1,...,k γ

−1
a (α). Without loss of generality, we assume

ν1 = mini∈A νi and define ∆a = νa − ν1, as well as τa = minτ∈N+ s.t.γa(τ) + ∆a > γ1(τ).
Our setting extends the non-stochastic BAI problem by considering a sequence 1, . . . , S of
such problems. Arms identifiers remain unique across problems but no assumptions are
made and their performance can vary over the sequence. Let ãs be the arm identified as the
best one by the learner. The goal is to minimize

∑S
s=1 ∆ãs without exceeding the budget B

of arm pulls allocated for each problem.

3. Method

In order to provide a simple and effective algorithm for the repeated HNAS problem we make
some additional assumptions. Winkelmolen et al. (2020) empirically demonstrate that a small
set of hyperparameters configurations can provide effective solutions for an heterogeneous
set of tuning tasks. Along the same lines, we assume that the size of the set of optimal
configurations A∗S for a sequence of S tasks satisfies |A∗S | < S. The purpose of this assumption
is to have an algorithm using a fixed maximum amount of resources over all the tasks in the
sequence (otherwise the resources consumption would grow logarithmically in total number
of arms). In practice, depending on the nature of the application, several heuristics can be

2

A resource-efficient method for repeated HPO and NAS

used to control the size of A∗S when sequences are long. For instance, one could use random
subsampling, a FIFO queue, or cluster the configurations. We will further assume that
configurations previously identified as optimal will quickly be either identified as optimal or
outperformed by the optimal configuration. Hence, we assume ∃z s.t.∀a ∈ A∗S , τa ≤ z. This
assumption formalizes the empirical observations where configurations identified as optimal
on a tasks can perform very poorly on another one, quickly becoming inferior to the best
configuration on the current task. When that is not the case, they are often optimal or very
close to optimal. For convenience we define n to be the cardinality of the union between the
arms provided for the problem at hand and the arms identified as optimal in the previous steps.

Algorithm 1 Repeated Unequal Successive Halving
(RUSH)

Input: η (halving hyper-parameter), B (budget)
|A∗0| ← ∅
s← 0
while a new task is available do

Anews ← set of new arms
A0
s ← Anews ∪A∗s

n← |A0
s|

for k = 0, . . . ,
⌈
logη n

⌉
− 1 do

∀a ∈ Aks , pull it

⌊
B

max(1,bn/ηk+1c)dlogη ne

⌋
times

∀a, ra ← position of a in ranking by loss
r∗ ← min(r(i)),∀i ∈ A∗s
Ak+1
s =
{i ∈ Aks : ri < max(min(r∗ + 1,

⌊
n/ηk+1

⌋
), 1)}

end for

ã← best arm from A
dlogη ne−1
s

if ã 6∈ A∗s then
A∗s+1 ← A∗s ∪ {ã}

end if
s← s+ 1

end while

Based on those assumptions we
can propose a variant of Successive
Halving (SH) (Jamieson and Tal-
walkar, 2016; Karnin et al., 2013),
called Repeated Unequal Succes-
sive Halving (RUSH), using the
previously discovered optimal arms
in A∗S to determine if the optimal
solution for the problem at hand
has already been observed or not.
The algorithm, formally described
in Algorithm 1, works as follows:
for each BAI problem, a set of con-
figurations (arms) is sampled uni-
formly at random from the search
space. RUSH splits the budget in
equal parts to be consumed sequen-
tially. At each step in the sequence
the available budget is allocated
uniformly on the available arms.
At the end of the step the num-
ber of candidates is reduced by a
factor η according to their perfor-
mance. Moreover, RUSH stops the
exploration of any arm under-performing an arm in A∗S , saving resources. This possible
because the value of τ for every arm in A∗S is buonded by z and the algorithm receives a
budget as described in Theorem 1. We can also show that RUSH is able to correctly identify
the best arm for each problem in the sequence. The proof is available in Appendix B.

Theorem 1. If the budget B provided to the algorithm for each step of the sequence 1, . . . , S

is larger than dlog nemax
(

2n+
∑

a=2,...,n γ̄
−1(∆a/2), zn

)
then Algorithm 1 will correctly

identify the best arm.

It is possible to combine RUSH with non-uniform sampling (e.g., Klein et al., 2020),
or other transfer learning techniques (e.g., Perrone et al., 2019) since RUSH and SH are
agnostic to the process generating the set of candidate arms.

3

Zappella et al.

4. Experiments

In order to perform experiments in a realistic environment we created sequences of tuning
tasks obtained by training the same algorithms on different, but related, datasets. We created
six collections of datasets: 3 obtained by pre-processing the same dataset in 20 different
ways and tuning the hyperparameters of an XGBoost classifier, 2 obtained from public NAS
benchmarks and 1 obtained mixing tasks from the three XGBoost-based collections described
above in order to test the robustness of the approach. All the details about the creation of
the datasets are available in Appendix C. For every experiment, we created sequences of 20
tuning tasks training the same algorithm on a random permutations of the datasets in the
considered collection (without replacement if the collection is large enough). We repeated
this operation 25 times for a total of 500 tuning jobs for each experiment. Results were
averaged both over the 25 runs and the 20 datasets in each collection, obtaining a single
predictive performance and cost for each pair (tuning algorithm, dataset collection). We
compare RUSH and a version of Hyperband using RUSH as subroutine instead of SH (called
HB-RUSH) with the ones obtained by state-of-the-art solutions: Successive Halving
(SH) (Jamieson and Talwalkar, 2016), from which we derived RUSH, a bandit algorithm
for non-stochastic best arm identification; Hyperband (HB) (Li et al., 2016), a bandit
method for hyper-parameter tuning using Successive Halving as subroutine with different
level of resources allocation; and we also compared our approach with a different class of
algorithms, the Bounding Box (BB) approach by Perrone et al. (2019). The BB approach
is not designed for the same setting of RUSH, so we provide for every tuning job in the
sequence all the information about all the remaining tuning jobs (past and future), moreover
we do not provide the results of the evaluations obtained with the optimizer but the “ground
truth” values of all the configurations evaluated. This makes the comparison unfair, since
RUSH will have access to information from the same number of tuning tasks only in the last
step of the sequence and it will never have certainty about the performance of the optimal
configuration. On the other hand, even if the comparison is unfair and is not always possible
to run BB in practice, it will provide a good reference point. We selected the BB approach
because it is the best performing algorithms in the Hyperband experiments in (Perrone
et al., 2019). BB is not used in the experiment in Appendix 4.3 since it does not provide
any protection against negative transfer. In our comparison, we set the hyper-parameter
η = 3 for all the instances of RUSH, SH and HB. The budget for HB-RUSH and HB is set
as described in (Li et al., 2016) and for RUSH and SH it is equivalent to a single bracket of
HB.

4.1 Predictive performance comparison.

The results in Table 1 show that the performance of RUSH are on par with the performance
of SH, with differences in the order of the standard deviation on most datasets and tiny
advantages for one or the other in the other cases. A similar trend can be observed for HB-
RUSH and HB. The standard deviation values are reported in Appendix E. Autorange(BB)
displays a trend of slightly better results, but for most datasets the differences are in the
order of the standard deviation. It is important to observe that RUSH performance are
on-par also on BALMIX, which is an heterogeneous set of tasks. Results showing the
robustness of RUSH performances to the choice of the budget are available in Appendix G.

4

A resource-efficient method for repeated HPO and NAS

Dataset BALMIX BANK CCDEFAULT COVTYPE FCNET NAS201

SH-Autorange(BB) 0.630 0.691 0.950 0.181 0.077 –
HB-Autorange(BB) 0.611 0.666 0.932 0.174 0.075 –

RUSH 0.546 0.693 0.978 0.209 0.079 31.897
SH 0.553 0.698 0.980 0.210 0.080 32.433
RUSH-HB 0.537 0.678 0.968 0.186 0.075 31.355
HB 0.542 0.691 0.978 0.186 0.078 31.908

Table 1: Average prediction performance obtained by different optimizers. For BANK and
CCDEFAULT we report 1-F1, for COVTYPE we report 1-F1micro, for FCNET
and NAS201 the prediction error. In all cases lower is better.

Table 2: Number of evaluated candidates per resources level. Lower is better.

4.2 Resources consumption comparison.

Dataset RUSH vs SH HB-RUSH vs HB

BALMIX 41.044 18.336
BANK 34.465 17.345
CCDEFAULT 45.627 18.646
COVTYPE 45.932 26.941
FCNET 0.587 0.657
NAS201 48.547 19.357

Table 3: Average time reduction (in percent-
age) achieved by RUSH and HB-
RUSH compared to SH and HB.
Higher is better.

After observing that the predictive perfor-
mance of the models produced with RUSH
are on-par with other optimizers, we studied
the resources consumption of different opti-
mizers. To this purpose, we track the num-
ber of configurations evaluated by different
optimizers for different resources levels (e.g.,
how many configurations were evaluated for
a certain number of epochs). The number
of configurations evaluated is a proxy met-
ric for the consumption of computational
resources (more configurations evaluated,
more resources used). The results reported in the Table 2 show a very clear trend: HB-RUSH
and RUSH require less evaluations than SH and HB, in some cases even an order of magni-
tude less. Since in modern cloud services customers get billed according to the time spent

5

Zappella et al.

using the computational resources, and since lower computational resources usage could be a
proxy for less resources used (e.g., energy), we would like to quantify the total computation
time saved by using RUSH. The results in Table 3 mostly confirm the findings reported in
the first part of this section with massive reduction of consumed resources on most datasets.
There is a notable exception on which RUSH provides only a small advantage: FCNET. This
is due to the huge variance in the time-per-epoch observed for the configurations available
for FCNET which can make extremely expensive to reach the first checkpoint of evaluation
in the algorithm. An additional investigation is available in Appendix F.

4.3 Negative transfer experiment

Dataset BANK1 INVBANK1

RUSH 0.610755 0.0
SH 0.609984 0.0
HB-RUSH 0.604140 0.0
HB 0.604886 0.0

Table 4: Predictive performance of the mod-
els produced by HPO with different
optimizers and tasks.

To provide further evidence of the robustness
of RUSH, we created an ad-hoc experiment
with two tasks where the ranking by pre-
dictive performance is completely reversed.
The best configuration on one task is the
worst configuration on the other and vice
versa. In this case the information provided
by the previous tasks is not only useless but
detrimental. Considered one of the tasks in
the BANK dataset collection, we created the
inverse (called INVBANK1) simply by setting the F1 score of evaluation of each config-
uration to 1-F1. This is a worst-case scenario which will prevent many transfer learning
algorithms from identifying the optimal solution (e.g., Autorange) or will cause a significant
cost increase since the optimizer will start evaluating poorly performing configuration (e.g.,
BO-related methods). The sequences in this case are composed only by the tasks BANK1
and INVBANK1 and the order is randomly selected. Results are averaged on 25 repetitions.
The results reported in Table 4 show that, in fact, RUSH and HB-RUSH match the perfor-
mance of their “standard” counterparts both in terms of predictive performance. Also, this
performance is achieved without additional cost, see results in Appendix H.

5. Conclusion and future work

In this work we introduced a variant of Successive Halving targeting the common use case
of repeated HNAS. We characterized the problem from a formal perspective and provided
an effective algorithm for solving it. We tested the new algorithm, RUSH, on a number of
different benchmarks involving both Neural Networks (FCNET and NAS201) and tree-based
predictors produced by XGBoost (BANK, COVTYPE and CCDEFAULT). RUSH reduced
the usage of compute required for HNAS. In most cases we observed a double digit cost
reduction and on-par predictive performance. We also created mixed tuning jobs collections
(i.e., BALMIX) and ad-hoc experiments to demonstrate empirically the robustness of RUSH
to negative transfer. We observed lesser improvements when the variance of the evaluation
time of the configurations became extremely high, suggesting that a cost-sensitive version
of RUSH following the one already created for SH and HB (Ivkin et al., 2021) could be of
interest. Another research direction would be to consider RUSH-like approaches for HNAS
in the continual learning setting (e.g., see Aljundi et al. (2019); Borsos et al. (2020)).

6

A resource-efficient method for repeated HPO and NAS

References

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
11254–11263, 2019.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits.
2010.

Zalán Borsos, Mojmı́r Mutnỳ, and Andreas Krause. Coresets via bilevel optimization for
continual learning and streaming. arXiv preprint arXiv:2006.03875, 2020.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. CoRR, abs/2001.00326, 2020. URL http://arxiv.org/abs/2001.

00326.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter
optimization at scale. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1437–1446, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.press/v80/falkner18a.html.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initializing bayesian hyperpa-
rameter optimization via meta-learning. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

Nikita Ivkin, Zohar Karnin, Valerio Perrone, and Giovanni Zappella. Cost-aware adversarial
best arm identification. 2nd NAS Workshop, ICLR, 2021.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperpa-
rameter optimization. In Artificial Intelligence and Statistics, pages 240–248, 2016.

Tinu Theckel Joy, Santu Rana, Sunil Gupta, and Svetha Venkatesh. A flexible transfer
learning framework for bayesian optimization with convergence guarantee. Expert Systems
with Applications, 115:656–672, 2019.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed
bandits. In International Conference on Machine Learning, pages 1238–1246, 2013.

Aaron Klein and Frank Hutter. Tabular benchmarks for joint architecture and hyperpa-
rameter optimization. CoRR, abs/1905.04970, 2019. URL http://arxiv.org/abs/1905.

04970.

Aaron Klein, Louis C. Tiao, Thibaut Lienart, Cedric Archambeau, and Matthias Seeger.
Model-based asynchronous hyperparameter and neural architecture search, 2020.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Efficient hyperparameter optimization and infinitely many armed bandits. CoRR,
abs/1603.06560, 2016. URL http://arxiv.org/abs/1603.06560.

7

http://arxiv.org/abs/2001.00326
http://arxiv.org/abs/2001.00326
http://proceedings.mlr.press/v80/falkner18a.html
http://arxiv.org/abs/1905.04970
http://arxiv.org/abs/1905.04970
http://arxiv.org/abs/1603.06560

Zappella et al.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success
of bank telemarketing. Decision Support Systems, 62:22–31, 2014.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Édouard Duchesnay. Scikit-learn: Machine learning in python. Journal of Ma-
chine Learning Research, 12(85):2825–2830, 2011. URL http://jmlr.org/papers/v12/

pedregosa11a.html.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archam-
beau. Scalable hyperparameter transfer learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31, pages 6845–6855. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

14c879f3f5d8ed93a09f6090d77c2cc3-Paper.pdf.

Valerio Perrone, Huibin Shen, Matthias W Seeger, Cédric Archambeau, and Rodolphe
Jenatton. Learning search spaces for bayesian optimization: Another view of hyperpa-
rameter transfer learning. In Advances in Neural Information Processing Systems, pages
12771–12781, 2019.

David Salinas, Huibin Shen, and Valerio Perrone. A copula approach for hyperparameter
transfer learning. arXiv preprint arXiv:1909.13595, 2019.

Danny Stoll, Jörg K. H. Franke, Diane Wagner, Simon Selg, and Frank Hutter. Hyperpa-
rameter transfer across developer adjustments, 2020.

L. Valkov, Rodolphe Jenatton, Fela Winkelmolen, and C. Archambeau. A simple transfer-
learning extension of hyperband. 2018.

Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding
negative transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11293–11302, 2019.

Fela Winkelmolen, Nikita Ivkin, H. Furkan Bozkurt, and Zohar Karnin. Practical and sample
efficient zero-shot hpo, 2020.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications,
36(2):2473–2480, 2009.

8

http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://proceedings.neurips.cc/paper/2018/file/14c879f3f5d8ed93a09f6090d77c2cc3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/14c879f3f5d8ed93a09f6090d77c2cc3-Paper.pdf

A resource-efficient method for repeated HPO and NAS

Appendix

Appendix A. Related work

In the AutoML literature there are few important families of methods doing transfer learning
for HPO and NAS problems. In the following we will present the main approaches:

• Transfer learning for Bayesian Optimization (BO). There are a number of
approaches for transfer learning in Bayesian Optimization (e.g, Joy et al. (2019);
Feurer et al. (2015); Perrone et al. (2018); Salinas et al. (2019)) but they are often
focusing on scenarios with large amounts of evaluations from which to transfer (e.g.,
see Feurer et al. (2015); Perrone et al. (2018)) or do not provide guarantees about
the resources consumption to achieve “optimal” performance in presence of negative
transfer (e.g., Salinas et al. (2019)). Algorithms such Successive Halving or Hyperband
are significantly more resource-efficient (Falkner et al., 2018), also because they make
a different trade-off between end to end wall-clock time and resources consumption.
This trade-off favors a large number of parallel computations and shorter waiting time,
which lead to the usage these algorithms in different practical scenarios, making their
comparison of limited usefulness from a practical perspective.

• Transfer learning for Hyperband. Transfer learning for Hyperband-style algo-
rithms is not an extensively studied topic. Methods such the one in (Valkov et al.,
2018) strongly focus on increasing predictive performance instead of decreasing the
consumption of resources.

• Learning the search space (Perrone et al., 2019) is an effective way to sample
configurations leading to good results, especially when the search space is not correctly
specified. On the other hand, this approach can have some difficulties when the number
of previous HPO evaluations is extremely small or when the set of HPO evaluations
are performed on an heterogeneous set of tasks. Moreover, this kind of improvements
can be combined with a large number of HNAS optimizers, including the one presented
in this paper.

The work described in (Stoll et al., 2020) on the surface may look similar to the setting
considered in this work but there are substantial differences. The main differences is that
we consider a sequence of tasks as an “adjustments” to data transformation procedures,
pre-processing pipelines, etc., while the HT-AA setting is mostly focusing on changes to
hardware, ML algorithms and search space (Section 2). While a changing search space
presents an interesting scientific problem and our approach can be adapted to that, a fixed
search space for a sequence of tasks is a perfectly valid assumption for applications we
are interested in. Moreover, our evaluation is not designed to reach a pre-defined level of
accuracy, but to reach the same performance of Successive Halving using a reduced amount
of resources. A detail that contrast with (Stoll et al., 2020) (Section 5), where the authors
report a trend of decreasing speedup when the target objective becomes “more optimal”.
Last but not least, the HT-AA setting is currently considered for transfer from a single task
to another, while in our case there is no previous knowledge about the similarity among
the tasks and the sequences of tasks presented to the learner in our experiments can be
extremely heterogeneous.

9

Zappella et al.

Appendix B. Proof of Theorem 1

Theorem. If the budget B provided to the algorithm for each step of the sequence 1, . . . , S

is larger than dlog nemax
(

2n+
∑

a=2,...,n γ̄
−1(∆a/2), zn

)
then Algorithm 1 will correctly

identify the best arm.

Proof. This results follows from the fact that when the first term in the max function is
larger, then we are exactly in the same case of (Jamieson and Talwalkar, 2016, Theorem 1).
When the second argument is larger, then we are guaranteed that no arm will be eliminated
before each arm (including the ones in |A∗|) has been pulled at least z times and so, by
definition of z, there is no chance for to discard the optimal arm by eliminating the arms
performing worse than the ones in |A∗| and since the budget is larger than what is required by
Successive Halving, there is no risk in discarding the arms at the bottom of the ranking.

Appendix C. Datasets

For the purpose of these experiments we used two different families of datasets. The first
family comprises public benchmarks developed for the NAS problem:

• FCNET: a collection of NAS problems where the learner needs to identify the best
architecture for a simple neural network on four different datasets. The details about
this collection of benchmarks are provided in (Klein and Hutter, 2019).

• NAS201: a collection of NAS problems where the learner needs to identify the
best architecture for a neural network on three different computer vision datasets
(CIFAR10-valid, CIFAR100 and IMAGENET). The details about this collection of
benchmarks are provided in (Dong and Yang, 2020).

These datasets are not specifically designed to benchmark algorithms in our setting but they
are useful to our purposes since they are widely know and provide a clear reference point to
better understand our results.

The second family is a set of benchmarks developed starting from public datasets and
applying different pre-processing steps as a data scientists would do. The selected datasets,
all from UCI are the following:

• CCDEFAULT (Yeh and Lien, 2009): a binary classification dataset for which the
learner has to predict the default of a credit card customer. The features of each
customers involve demographic information and payments-related information, both
in numerical and categorical form.
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

• BANK (Moro et al., 2014): a binary classification dataset from which the learner has
to predict responses to marketing campaigns sent by a Portuguese banking institution.
Features are both categorical and numerical. The feature causing target leakage has
been dropped.
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

10

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

A resource-efficient method for repeated HPO and NAS

• COVTYPE: a multi-class classification dataset for which the learner has to predict
the vegetation type given information regarding the piece of land considered (e.g.,
altitude). The data points only have numerical features and are categorized in seven
classes.
https://archive.ics.uci.edu/ml/datasets/covertype

For each one of these public datasets we created a collection of 20 derived datasets applying
different pre-processing techniques to different attribute columns. The pre-processing
methods applied to the different features were selected independently and uniformly at
random according to the kind of feature considered (categorical or numerical). We only used
preprocessors acting on a single attribute/feature but nothing prevents the usage of our
approach with more complex preprocessing pipelines.

Preprocessing options available for categorical attributes:

• ONE HOT ENCODER: encodes categorical features using one binary feature per
category.

• BACKWARD DIFFERENCE ENCODER: contrast coding of categorical vari-
ables. Features with zero variance, if taken into consideration, are dropped.

• ORDINAL ENCODER: encodes categorical features into one single ordered feature.

• BASE-N ENCODER: encodes the categories into arrays of their base-N represen-
tation.

• DROP: eliminates the considered feature.

Preprocessing options available for numerical attributes:

• STANDARD SCALER: transforms the features subtracting the mean and dividing
by the standard deviation.

• MINMAX SCALER: transforms the features by subtracting the smallest value and
dividing by the size of the (min,max) range.

• BINARIZER: transforms values to zero if the are below a certain threshold, to one
otherwise. The mean value is used as a threshold.

• QUANTILE TRANSFORMER: transforms numerical features by replacing them
with their quantile identifier.

• DROP: eliminates the considered feature.

The implementations of the categorical features transformers are available in the Category
Encoders package1 and the ones for the numerical features transformer are available in
Scikit-learn (Pedregosa et al., 2011). When not specified, the default hyper-parameters are
used.
To summarize, for each attribute of the original dataset, the entire column is selected,

1. https://contrib.scikit-learn.org/category_encoders/

11

https://archive.ics.uci.edu/ml/datasets/covertype
https://contrib.scikit-learn.org/category_encoders/

Zappella et al.

according to the type of the data, we sample a feature transformer uniformly at random
from a list of five, the transformation is applied, the output of the transformer is added
to the dataset and the original values fed to the transformer are dropped. This process is
repeated 20 times for each original dataset, generating 20 different datasets from each of the
UCI datasets listed above. The BALMIX collection is obtained sampling datasets from the
collections derived from BANK, CCDEFAULT and COVTYPE. For each of the 20 datasets,
we trained XGBoost on 1000 randomly sampled configurations (the same for all the datasets)
using the number of rounds as resources level, tracking the predictive performance using
1-F1 (or 1-F1micro for multi-class) for 512 rounds.
The configurations sampled by the optimizers can sampled uniformly at random from the
search space and the results of their evaluation is obtained by interpolation with nearest
neighbor.

Appendix D. XGBoost search spaces

The following search space has been used in our experiments with XGBoost.
Hyperparameters:

• hp max depth: integer in [1, 8]

• hp learning rate: float in [0.001, 1.0] log-scale

• hp reg lambda: float in [0.000001, 2.0] log-scale

• hp gamma: float in [0.000001, 64.0] log-scale

• hp reg alpha: float in [0.000001, 2.0] log-scale

• hp min child weight: float in [0.000001, 32.0] log-scale

• hp subsample: float in [0.2, 1.0]

• hp colsample bytree: float in [0.2, 1.0]

• hp tree method: categorical in [”exact”, ”hist”, ”approx”]

Appendix E. Standard deviation for predictive performance

In this section we report the standard deviation for the predictive performance measurements
reported in Table 1.

Appendix F. Deep dive on FCNET

We further investigate the results obtained by SH and RUSH on FCNET. We identified a
number of hyperparameters configurations with a disproportionately high cost being sampled
by both SH and RUSH (see Table 6). Moreover, these extremely costly configurations
often do not provide particularly good performance and get pruned at the end of the first
rung. This leads to much cheaper rungs after the first one, and the overall time-cost being
dominated by the first rung. While we have are not in the position of investigate this further,

12

A resource-efficient method for repeated HPO and NAS

Optimizer Dataset Stdev

Autorange(BB)+SH BALMIX 0.254994
BANK 0.022924
CCDEFAULT 0.030943
COVTYPE 0.044704
FCNET 0.000146

Autorange(BB)+HB BALMIX 0.246499
BANK 0.012394
CCDEFAULT 0.023578
COVTYPE 0.046303
FCNET 0.000112

RUSH BALMIX 0.353384
BANK 0.024797
CCDEFAULT 0.010956
COVTYPE 0.068631
FCNET 0.000101
NAS201 0.263551

SH BALMIX 0.349033
BANK 0.021733
CCDEFAULT 0.008713
COVTYPE 0.065947
FCNET 0.000124
NAS201 0.626832

HB-RUSH BALMIX 0.349084
BANK 0.035077
CCDEFAULT 0.023711
COVTYPE 0.064896
FCNET 0.000043
NAS201 0.184094

HB BALMIX 0.356893
BANK 0.025858
CCDEFAULT 0.010542
COVTYPE 0.070216
FCNET 0.000043
NAS201 0.282075

Table 5: Standard deviation on the average performance obtained in the first experiment

it is possible that the huge time variance could be due to external events happening during
the training process (e.g., other processes running on the same machine). These extreme
conditions are not present in NAS201. Since none of the algorithm used in our experiments
directly controls the time-cost associated with the evaluation of different configurations, but
RUSH relied to lower the numbers of configurations evaluated to reduce cost, the possibilities

13

Zappella et al.

Table 6: Distribution of the cost of different configurations at the minimum resources level.

to directly impact the total cost are limited. An interesting scientific challenge will be to
design an algorithm explicitly controlling the cost.

Appendix G. Results with different budget values

To validate the robustness of RUSH respect to the available budget, we run a comparison
between RUSH and SH with different budget levels. The results reported in 7 show that in
some cases RUSH can be slightly better but, in general, there is no significant difference
between RUSH and SH.

Table 7: Performance of the model vs budget allocated for the optimizer. Each point on the
x-axis correspond to a different budget provided to the optimizer and each point
on the y-axis correspond to the best performance obtained when the budget of
the optimizer is exhausted. Results are averaged on all the datasets of the same
category.

14

A resource-efficient method for repeated HPO and NAS

Appendix H. Negative transfer additional results

In this section we report the time difference between RUSH, Successive Halving and Hyper-
band. Higher percentages means significant cost reductions, while percentages close to zero
mean there is no significant difference.

Dataset Time SH vs SH-RUSH Time HB vs HB-RUSH

BANK -0.0609 -0.5168
INVBANK -0.2811 -1.0856

Table 8: Time gain, in percentage, observed by comparing SH with RUSH and HB with
HB-RUSH.

15

	Introduction
	Problem setup
	Method
	Experiments
	Predictive performance comparison.
	Resources consumption comparison.
	Negative transfer experiment

	Conclusion and future work
	Related work
	Proof of Theorem 1
	Datasets
	XGBoost search spaces
	Standard deviation for predictive performance
	Deep dive on FCNET
	Results with different budget values

	Negative transfer additional results

