
A resource-efficient method for repeated HPO and NAS
problems

Giovanni Zappella, David Salinas, Cédric Archambeau
Amazon Web Services

A resource-efficient method for repeated HPO and NAS
problems

Giovanni Zappella, David Salinas, Cédric Archambeau
Amazon Web Services

Repeated HNAS

Data scientists do not create machine learning models in a single shot. They try different
features, transformations, target variables, etc. During this procedure they often avoid
using running HPO and NAS procedures due to their high cost and long execution time.

At the same time, hyperparameter configurations often perform similarly if the learning
tasks on which they are used are similar. However, defining the similarity between learning
tasks is far from trivial and it is often impossible for non-expert users.

Can we speedup HNAS when it is performed
on a sequence of related tasks?

Setting

We formalize the problem as a sequence of “Best arm identification” (BAI) problems. Each
hyperparameter configuration (or architecture) is an arm in the bandit problem and the
goal of the learner is to identify the one with the highest reward.
Every BAI problem has an optimal arm and we assume that the arms previously identified
as optimal will be quickly outperformed by other configurations if they are not the best
arm for the problem at hand.

Our Solution: RUSH

Guarantees

Theorem 1 If the budget B provided to the algorithm for each step of the sequence

1, . . . , S is larger than dlog nemax
(

2n +
∑

a=2,...,n γ̄
−1(∆a/2), zn

)
then RUSH will cor-

rectly identify the best arm.

We can guarantee that when the budget is“large enough”, RUSH will identify the best arm.
(see the paper for all the details).

Tuning Tasks

We evaluate the algorithms on NAS tasks concatenating in a sequence the tuning tasks
from FCNET and NAS201 and also HPO tasks by tuning an XGBoost classifier on a
sequence of “similar” datasets. To crate datasets similar to each other, we pre-process the
same dataset with different features transformers and encoders.
All sequences are formed by 20 tuning tasks and the results are averaged over 25 runs with
different seeds (and tasks permutations).

Experimental Results: Predictive Performance

As first step, we would like to verify that our algorithm can identify configurations leading
to models with competitive predictive performance.

Experimental Results: Number of Evaluations

Since RUSH performs an aggressive pruning by leveraging the optimal configurations iden-
tified over the sequence, it save resources by performing less evaluations at higher resource
levels.

Experimental Results: Time Gained

Our algorithm does not explicitely account for the different cost associated to different
hyperparameters configurations. However, the total time necessary for the tuning is related
to the waiting time and often, especially in cloud environments, to cost.
In the following table we report the time gained (in percentage) by using RUSH instead
of Successive Halving and Hyperband.

References

References

[1] Kevin Jamieson et al. “Non-stochastic best arm identification and hyperparameter optimization”. In “Artificial Intelligence
and Statistics”, pp. 240–248. 2016.

[2] Zohar Karnin et al. “Almost optimal exploration in multi-armed bandits”. In “International Conference on Machine Learning”,
pp. 1238–1246. 2013.

[3] Valerio Perrone et al. “Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning”.
In “Advances in Neural Information Processing Systems”, pp. 12771–12781. 2019.

[4] Danny Stoll et al. “Hyperparameter Transfer Across Developer Adjustments”, 2020.


