A resource-eflicient method for repeated HPO and NAS
problems
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We evaluate the algorithms on NAS tasks concatenating in a sequence the tuning tasks
from FCNET and NAS201 and also HPO tasks by tuning an XGBoost classifier on a
sequence of “similar” datasets. To crate datasets similar to each other, we pre-process the
same dataset with different features transformers and encoders.

All sequences are formed by 20 tuning tasks and the results are averaged over 25 runs with
different seeds (and tasks permutations).

Data scientists do not create machine learning models in a single shot. They try different
features, transformations, target variables, etc. During this procedure they often avoid
using running HPO and NAS procedures due to their high cost and long execution time.

At the same time, hyperparameter configurations often perform similarly if the learning
tasks on which they are used are similar. However, defining the similarity between learning
tasks is far from trivial and it is often impossible for non-expert users.

As first step, we would like to verity that our algorithm can identity configurations leading
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BALMIX BANK CCDEFAULT COVTYPE FCNET NAS201

SH-Autorange(BB) 0.630 0.691 0.950 0.181 0.077 -
HB-Autorange(BB) 0.611 0.666 0.932 0.174 0.075 -

RUSH 0.546 0.693 0.978 0.209 0.079 31.897
SH 0.553 0.698 0.980 0.210 0.080 32.433
RUSH-HB 0.537 0.678 0.968 0.186 0.075 31.355
HB 0.542 0.691 0.978 0.186 0.078 31.908
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Table 1: Average prediction performance obtained by different optimizers. For BANK and
CCDEFAULT we report 1-F1, for COVTYPE we report 1-Flmicro, for FCNET

Data scientist icon from Flaticon.com and NAS201 the prediction error. In all cases lower is better.

Can we speedup HNAS when it is performed
on a sequence of related tasks?

Since RUSH performs an aggressive pruning by leveraging the optimal configurations iden-
tified over the sequence, it save resources by performing less evaluations at higher resource
levels.
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We formalize the problem as a sequence of “Best arm identification” (BAI) problems. Each
hyperparameter configuration (or architecture) is an arm in the bandit problem and the
coal of the learner is to identify the one with the highest reward.
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Input: 7 (halving hyper-parameter), B (budget)
Apl <0
s <0
while a new task is available do
ALY« set of new arms
AY «— Anew ) A*
n < |A)]
for k=0,...,[log, n| —1 do

Figure 1: Number of evaluated candidates per resources level. Lower is better.

Our algorithm does not explicitely account for the different cost associated to different
hyperparameters configurations. However, the total time necessary for the tuning is related
to the waiting time and often, especially in cloud environments, to cost.

In the following table we report the time gained (in percentage) by using RUSH instead
of Successive Halving and Hyperband.
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Theorem 1 If the budget B provided to the algorithm for each step of the sequence
1,...,S is larger than |logn| max (Qn + D o a7 (A)2), zn) then RUSH will cor-
rectly identify the best arm.
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We can guarantee that when the budget is “large enough”, RUSH will identity the best arm.
(see the paper for all the details).
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