A Technical Lemmas

Lemma A.1 (Variational Form of Mutual Information). Let X and Y be two random variables. For
all probability measures () defined on the space of X, we have

I(X;Y) < Ey[Dgr(Px v ||Q)],
with equality for @ = Px.

Proof.
I(X;Y) +DKL(PX||Q)

// z,y log @ %;)dxder/ (z)log E idx
// (z,v) log)’?; dxdy+// (z,y)log i;dxdy
e

= Ey[Dk(P (X|Y)||Q)]
Since D1 (Px||Q) > 0, the equality exists only when Q = Py, which concludes the proof. O

Lemma A.2. Let X,Y, Z be random variables. For all Z-measurable probability measures @Q on
the space of X, I?(X;Y) < Ey\z[Dg(Px|y,z||Q)], with equality for Q = Px|z.

Proof.
I7(X;Y) + Dru(Px£]|Q)

= [eateros 2
= [eateros 20
+//p(x,yIZ)log é(l))dwdy
://p(x,y\z) logp(zé’)z)dﬂ?dy

= Eyz[DxL(P(X]Y, Z)||Q)]
Since D (Px|z||Q) > 0, the equality exists only when @ = Px|z, which concludes the proof. [

p(z
|2
P dxdy

(f xdy+// (x]2) log |))
yl2)
(ylz

Lemma A.3. Let X,Y,Z be random variables. For all Z-measurable probability measures Q)
defined on the space of X, 1(X;Y|Z) = Ez[I%(X;Y)] < Ey,z[Dxi(Px|v,z||Q)]. with equality
for Q = PX|Z

Proof. Take the expectation on the inequality of Lemma B.2 to obtain the result. O

Lemma A.4. (Donsker-Varadhan representation[Corollary 4.15[46]]) Let P and Q) be two prob-
ability measures defined on a set X. Let g : X — R be a measurable function, and let
E,~qlexp g(z)] < co. Then

Dk (P||Q) = SI;p{]ExNP[g(x)] —log Ezqlexp g(z)]}

Lemma A.S. (Decoupling Estimate[Xu and Raginsky [15]]) Consider a pair of random variables
X and'Y with joint distribution Px y, let X be an independent copy of X, and Y an mdependent
copy of Y, such that Pg - = Px Py. For arbitrary real-valued function f : X x Y — R, lff(X, Y)
is o-subgaussian under,Pj(y, then:

[E[f(X,Y)] - E[f(X,Y)]] < V202I(X;Y)

Lemma A.6. Let Q be an arbitrary distribution on W, and let S be an arbitrary sample of examples.
The solution to the optimization problem

. 1
P* = arg I%f {IEWNP[RS(W)] + BDKL(P|Q)} .
is given by the Gibbs distribution

e~ PRS0 dQ(w)

dP*(w) = e

EWNQE_

Lemma A.7. (Data Processing Inequality) Given random variables X,Y, Z,V, and the Markov
Chain:
X =Y =2

then we have
I(X;2) < I(X:Y),1(X; Z) < I(Y; Z).
For Markov chain
VoX—-Y—>Z,

we have
I(X;Z|V) <I(X;Y|V),I(X; Z|V)<I(Y; Z|V)
Proof. Since
I(X:Y,2)=1(X; Z) + [(X;Y|Z) = I(X;Y) + [(X; Z|Y),
and with the Markov Chain, we have X 1l Z|Y, therefore
I(X;Z|Y)=H(X|Y)-H(X|Y,Z)=0.
In addition, I(X;Y|Z) > 0,50 I(X; Z) < I(X;Y).
Z,X,Y)=1Z X))+ I(Z;)Y|X)=1Z:)+ [(Z; X|Y)=I1(Y : Z),
with I(Y; Z|X) > 0, we have I(X;Z) < I(Y; Z).
Similarly, for the second Markov chain, we have X 1l Z|Y,V, therefore
I(X;Z|Y,V)=H(X|Y,V)-H(X|Y,Z,V)=0.
IO, ZIV) = (X Z)V) + (G YV, 2) = I(CGY V) + LG ZY,V) = I(XGY V)
So we have I(X; Z|V) < I(X;Y|V), the rest proof is similar and omitted. O
Lemma A.8. Given random variables X,Y, Z1, Zs, and the graph model:
1 —Zy > XY,
then we have
I(X;Y|Z1) < I(X;Y|Z5)
Proof. Apply chain rule, we get:
(XY, 2517,) = I(X;Y|Z1) + [(X; Z2|Y, Z1) = 1(X; Z5|Z1) + 1(X; Y| Za, Z7)
From the graph model, we have Y Il Z;,Y Il Z5 and (X,Y) UL Z;|Z5. Hence
I(X;Y |22, Z1) = H(X|Z2,Z1) — H(X|Y, Z2, Z1) = H(X|Z2) — H(X|Y, Z2) = I(X;Y|Z2)

Moreover,
I(X,Y; 25| 20) = I(X; 22| Z0) + I(Y'; 22| X, 1)
IY; Z5|20) + 1(Z2; XY, Z1)
= 1(Z2; X|Y, Z1)
the last equality is obtained with Y 1l Zy and Y 1l Zi, since I(Y; Z5|X,Z1) > 0, we get
I(X; Z5|Zy) < I(X; Zo|Y, Zy). Consequently, we have I(X;Y|Z;) < I(X;Y|Z5), conclude the
proof. O

15

B Proof

B.1 Proof of Theorem 5.1

Theorem (Meta-generalization error bound for joint training). Suppose all tasks use the same loss
U(Z,w), which is o-subgaussian for any w € W, where Z ~ p, pi ~ 7.Then, the meta generalization
error for joint training is upper bounded by

202

|ger/£éta(T7 -Ametaa -Abuse)‘ S \/I(U, Wl:n; Sl:n) .
nm

Proof. In contrast to previous works [I12, |1} 20], which separately bound the environment-level and
task-level error and then combine the two terms, we consider U, 7., as a collection and directly
bound the whole term. By using the chain rule for mutual information, the final result can then be
split into an environment-level and a task-level contribution.

Similar to Lemma 2.5, let & = (U, W1.,,) € U x W™ be a collection of random variables such that
& N Sy, andlet ® = (U, Wq.,) € U X W™ be an in dependant copy of ® such that & 1L Sy,
i.e., @ is distributed according to Py w,.,, = Es,,,, Pu,w,.,.|5..,.- Let

n

ar 1 11y
f(®,51,) = - > [Rs, (W) = - > o D UWi, Zig).
i=1 " =1

=1
For any A € R, let
Vi o (A) LlogEs o [6A<f<<i>,sm>—E[f(é,smn}
yP1lin WP lin
=logEg 5, [N 5] = AEg g, [£(®, S1n)] -
Moreover,
I(®; S1.,) = DxL(Ps,s,,,||Po Ps,.,)

= sup {Eo.s5,,,[9(®, S1.)] — 10g By g, [e® 5]}
g

> AEss,., [f(®, S1:n)] —logEg 5, [M@50)] 1 vAeR
= AEu,wi.,., 1.0 [f((I)7 Sltn)} -)\EU,VVLn,SLn[f(&)’ Sl:n)} - 1/&5,51:” (>‘)

n n

1 1 ~
= /\EU,WLn,Sl:n n Z[RSZ (Wl)] - /\EU,Wlm,Slm n Z[qu' (WZ)] - 1%,51:” (/\) (1)

i=1 i=1

Since (W;, S;),i = 1, ..., n are mutually independent given U, and S, ...S,, are independent, we
have p(w1:p|$1:m, w) = iy p(w;|s;, u). Hence

n

1 1 ¢
AEU, Wy, S1.m n Z[RS'L (WZ)] = MEu,s.., n Z EW{,\S“U[RSI‘ (WZ)]
i=1 i=1

= AEy,s,., [Rs,., (U)] (2)

Since ® 1l 5., we have that PWlm,\Slm,,U = PVVM,,\U and PWlm,-,Slm,,U = PWM,,,UPSI:n' Hence,

R, (U) =Esmp, B p. [R.(W)]

WS, U

= EunrByyopy, o [Bu(W)].

[RIL(W)] = IEILNT]ES‘MNHTHEWNP~

w|O

16

Therefore

1 . 1 < .
B 051 D s (Wi) = ABg i By o, [n > Rsi(Wi)]

=1

-) n i
= AEU,WI;" E ZESV\‘HWL‘TRS{, (Wl)

- L]
=)‘EU Wiin n Z]EHiNTESi‘ILiNH;n Rsg, (Wt)]

i=1

1 n
=)\Ef],WLn E ZEMiNT Z Z; JNNzg(WU Zi ;])
i=1

]_1

n

= AEgEy, o Z pirr | = > Bz o l(Wi, Zi)

j=1
/\EU[Z]EW |U = pirT Ry,)]

J
-
:/\EUEMNTEMUR;L(W): Eg R (U)

1
m

= MEy.s,.,. R (U). 3)
If we use Equations (2) and (3)), then Equation (T]) becomes
_AEUvsl:n [RT(U) - RS]:n (U)] < I((I)§ Sl:n) + 1/)&)’51;"()\) s VA eR. 4)

Since this inequality is also valid when A is negative, this implies that we also have
1
Evs,., [R-(U) = Rs,,, (U)] < 5 [[(@:S1a) + 55, (V)] . ¥A>0.
Consequently,

joi 1
genjmeta(Ta Ameta;Abase) < < [I((I); Sl:n) + 1,&&,751:”(—)\)} s YA >0.

- A
Since ¢(W, Z) is o-subgaussian, we have that f(®, S1.,) = 1 3" | L i UW;, Zi ;) is ="
subgaussianﬂ Hence,
A202
Vs 5. N < Yo YA eR.
Thus, we have
gen{geta(r, Ametas -Abase) < (L) + a , VA>0.
A 2nm
By using the value of A that minimizes the r.h.s. of the above equation, we have
; 2021(®; S1.n,
genjrgela(’ra -AmetaaAbase) > 7(!) . (5)
nm
Returning to Equation @), we have for A > 0:
1 2021(®; S1.,,
By, [Ro(U) ~ R, (U)]) 2~ [1003 S10) 455, ()] 2 —) 2200 5],
Hence, we also have
; 2021(®; S1.
genjnoleta(Tv »Ametaa-Abase) Z — 7(!) . (6)
nm
Then, Equations (3)) and (6) together imply that
[t 2021 (I); S n
’genjmela T, AmetaaAbase) >~ 7(!) 5
nm
which gives the theorem. O

>More discussion on subgaussianity can be found in Section

17

B.2 Benefits of Meta Learning

The task specific empirical risk Rg(W) is independent of the meta parameter U, given the task
specific parameter W, which gives the implicit independence assumption S Ll U|W. We thus have
I(U; S|W) = 0, and the following two possible decompositions:

I(S;UW)=IW;S|U)+ I(U;S)=IW;S)+ I(U; S|W) =1I(W;5).

Since I(U; S) > 0, we obtain I(W; S|U) < I(W; S).

As mentioned in the main paper, Theorem 5.1 can cover the PAC Bayes bound of Amit and Meir
[1] with the variational form of mutual information. Their work has built a connection between
PAC Bayes meta-learning and Hierarchical Variational Bayes. In Appendix A.3 of [1]], they give
the generative graph model for meta learning where U — W — S (their notation used 1/ instead
of U). They assumed that S is independent of U given W, in Bayes learning, this implies that
p(S|W,U) = p(S|W). Based on the graph model, they obtained a similar optimization objective
as their PAC-Bayes meta learning algorithm, which minimizes the expected empirical risk plus the
PAC Bayes bound. Germain et al. [47] has given a more obvious connection between PAC Bayes
learning and Bayes learning, where optimizing the PAC Bayes bound together with the expected
empirical risk gives the so called Gibbs algorlthm (see Lemma[A]6). When using the negative log
loss, i.e., Rg(W) = —Llogp(S|W) = —L > log p(Z;|W), the output of Gibbs algorithm
coincides with the Bayes "Posterior. Therefore, Wlthout the independence assumption, Rs (W) should
be defined as Rg (W, U), which corresponds to —--log p(S|W, U) in Bayes learning.

B.3 Proof of Theorem 5.2

Theorem (Meta-generalization error bound for alternate training). Suppose all tasks use the same
loss £(Z,w), which is o-subgaussian for any w € W, where Z ~ p, p ~ 7. Then we have

2021500 (U, Wins S10,) _ \/QUQI(U, Wins S1,1S%,)

nNMyg

|genfnlém('r, Anmetas Abase)| < ES’{:n \/

nMyq

Proof. The proof technique is analogous to Theorem 5.1. Let & = (U, Wi.,,) be a collection of
random variables where ® € U x W" such that ¢ and \S;.,, follow the joint distribution Pg, Stim-

Then let ® be an independent copy of @, such that & 1l {S}* S 1 ie,® ~ Eg, Pgy)s,., - Define

1:n>

Mya

f %ZRS‘E Z ZZ WZ)ZZj

For any A\ € R, denote the cumulant generation function of P, SYa |SY,.

Ui sy sy, (V) =108 Eq g (g [N g 1o, U(®)

1:in

= log]Eé-,sﬁnwsaﬂn [P 5E] = NEg g jx, (@, ST)]

In addition, the disintegrated mutual information is given as:

18

ISf;n(cI); STon) = DxL(Ps s |sv Pci>|s;rmPS{in|S‘{m)
= sup {Ep,syjn\s‘{m[g(@y St —1logEg gu |gr {60@ . ")} }

g
> XEa.sp, 157, /(8. 5T)] — logEq gy sy [¥/®55)]
w5, (25 515)]
B)\EUvWI:mSX‘inIS‘{m [/ (%, 515)] — 1/’&>,S}§n|sgm()\)

= AEy w5y

1 n
= ABU, W15, 158, > Rsp(W.

~ ARG s st ZRS“ ~ Vs sp,sr, N D
Since given U, (W;,S¥),i = 1,...,n are mutually independent, we have p(wi.,|s.,,u) =
[T, p(w;|s¥, u). Thus
1 n
AE Y Wi 81, 18,0 > [Ren(Wi)] = AEy,sp (st *Z:]Evms‘r [Rsp (W)
i=1 i=1
= AEu,sy, sy, [Rsy., (U)] ®)

Since we have ® 1L {S}2,, St 1, thus Py, S0 = P

| W have:
m

[RM(W)] EMNT]ESWNMWEWNP

idlig

RT(U) Elel/nL T]EWNP

WSO

= BBy [Ru(7)

(R (W)

Moreover, we have S, 1l S} . so that Pwmysﬁwﬁlsl{m = PVT/M,UPSY‘?W,IS‘{:” = PW1 . UPSf‘n'
Then we can also prove.

1 — - 1 — -
AEg v, 50 (st ﬁZRSZ“(Wi) =AEg i, 1o Esp ~un, anRSZi‘(Wi)]
=1 =

= AE;

U,Wi.n|SE *ZES ~umuTRSVﬂ(W)

i=1

1in

S)
= Eg i st | D BB, e [Rsza(w,-)]]

1in
L =1
[1 n Mya
=)‘EU,VT/lzn\S‘l"m n E :E#i"“" i,5 ™~ Wu Z; J)]
=1
Mya

= \E U|sy., ZEW1|U /,LtNT ZEZlJNMZE(WHZZ])]

=)\EmsngT(U) = AEy sy |sv, Rr(U) ®)

19

Therefore, by combining Equations (7), (), and (9), we have for any A,
|SY., [R (U)] < ISl n((p Sl n) + ¢<i>,SV“ | ST (A)

1in

AEy,su (v [Rs,,, (U)] — AEy,gn

1:n

Since /(W Z) is o-subgaussian, and & L 1n, f(i) Sy) =iy, e me UWi, Zij) is

VYA € R. For A < 0 we have

-subgaussian. Hence, ¥ gu |gr A <2 Srm

1560 (93 51%) + Y s, () _ \/20215‘f:n<<1>;5;?n>

NMya

Ev,su sy [R:(U) = Rs,, (U)] < Y

NMyy

Similarly, for A > 0 we have

Eyse s [Rr(U) — Rs, ,(U)] > Y Lo

NMya

1570 (®; 5Y2,) + 95 gn (s (A) S _\/ 20215 (®; S1)

Then, the following concludes the proof:

202[51 ”(Silan)

MMy,

‘genamlf:ta(Tv Ametas -Abase)| = ES‘{:TL |EU,S{“§"\S'{:" [RT(U) - RSLn(U)H < ES'I':,L\/
O

B.4 Proof of Theorem 6.1

Theorem. Based on Theorem 5.1, for the SGLD algorithm that satisfies Assumptions 1 & 2, the
mutual information for joint training satisfies

I(®; S1.) < Zt | 5 log(1 + (nd+k))
Specifically, if oy = \/ni, and 1y = § for ¢ > 0, we have:
|gen]meta (7_ Ametaa Abase)

\/clogT +c.

def

(@, ...,®T) and the corre-
sponding sequence of samplings as B[T] o (B}, ..., BL,). The output of the algorithm is defined

Proof. Define the sequence of parameters for T iterations as ®!71 =

as ® = f(®!1), which can be the last iterate &7 or the average output % Zthl ®!. From the figure
about the parameter updating strategy for joint training illustrated in Section 6, we get the following
Markov chain:

Sy — BTN 5 017 5 @

Therefore, by applying Lemmal[A]7 to the above Markov chain, we have:
I(®; S1.0) < 1(9T); 81.) < 1017 BY) Z 1(®*; B oY),
The last equality comes from the mutual information chain rule. Combing the sample strategy with
Assumption 1 and the update rule, we obtain:
1(@% B} ol=Y) = 1(@%; B, |o'7Y)
= h((I)t|¢)t 1) - h(®t|¢t71) Bin) :
Conditioned on =1 = ¢*~1, we have ®' = ¢!~ — 1, G(¢'~1, BL.,)) + £'. Then
h(q) _¢t71|(1)t71 d)t 1) (‘I)t|<1)t 1 ¢t71)-

Note that £* and 17,G(¢' !, Bt.,) are independent. So we have

E(l|0" — ¢'[3) = E(lneG (6", Bz + lIE'13) < nfL? + (nd + K)o}

20

The Gaussian distribution is the one having the largest entropy among the variables with the same
second order moment. Hence,

o d+k RL? + (nd + k)o?
h@tét 1 _ gt—1 <’I'L log (27 t t
(@6 = ') < "0 pog(ame TE LML,

for all ¢! 1.
In addition,

d k
= h(¢") = z 2+ log 2meoy.
So we obtain
T
nd +k nZL? 2L2
I(®; S1.0) < log(1
(@581a) €35 o1+ T o7 Z

t=1 t=1

Hence, for the SGLD algorithm with o, = /7, constant ¢ > 0, ; = §; since Zt 1 % <logT +1,
we have

202(I(U, Wi.n; Siin))

|gen{gieta (Ta Ameta, -Abase)| < \/

nm

- n; L?

- 202
t=1

< 9L oeT T
clo c.

T /nm &

B.5 Proof of Theorem 6.2

Theorem. Based on Theorem 5.2, for the Meta-SGLD that satisfies Assumption 1, if we set
o = 20/ Ork = A28tk /Vt,k Where v, and vy, i, are the inverse temperatures. The meta

generalization error for alternate training satisfies

2021(U, W1.,; S¥4 | ST
genmm(T,SGLD,SGLDHg\/ g (» YVl 1.n| 1.n) < g /7€U+€Wa
My NMya
where
T T || K
mve et 13 - Bt,m,uk;z,kna
t=1 - t=1 i=1 k=1

Proof. To prove the above theorem, we need to introduce some basic notations to present the sampling
results and the intermediate output of each gradient step, by which we can apply the Markov structure
and the mutual information chain rule.

e for K inner iterations:

— The sequence of validation data samplings at outer iteration ¢ for task ¢ and the task
batch:

Bl) = (Bl Bl k) B i) = (B k) -+ BlL e, 1])
— The sequence of train data samplings at outer iteration ¢ for task ¢ and the task batch:

By k) = (Bl By k) B, i) = (BY 4 (k) - Bi1, k)

21

— the sequence of task specific parameters at outer iteration ¢ of task ¢ and the task batch:

K K
Wz[t] (Wzltv aWzl,i)?Wl[t ! = (W[] . I/V|[] \]t>

— The output of base learner at outer iteration ¢ of task ¢ and the task batch:
K
Wi = g(Wi[,t]),Wft = Wity Wir 1 0)
* for T outer iterations:

The sequence of meta parameters as UT) = (U, ..., UT);
validation data sequences as BY* = (B}, ..., Bva);
I[T] I It

tr tr .
train data sequences as By =~ = (BY,, - BL.);

Output of meta learner is defined as U = f(U!");
Output sequence of base learner is defines as Wy, = Wiy ey Wi,)

Based on the definition above, we have the following Markov chains:

.= B, —» UM U (10)
o = Blir) = Wiy = Wi (1)
BY = BY o — Wi = wy, (12)
By = BY, g = W = Wiy (13)
And the graph model:
= By = Wiy, UT) ST, (14)

In fact, the algorithm has a nest-loop structure, we just list the above simple sub-structures for the
first step of the proof. By combining the above Markov chains and the independence of the sample
strategy, we obtain

I(U, Wy SY ST) < I(Um Wln,S |S) I(U[T],WI[T LSy |st)

T]7

Apply Lemma [A]7, the first and the last inequality are obtained with Markov chain (I0). The
second inequality is obtained with (TT)). The third inequality comes from Lemma[A]8 and the graph

model(T4).

Furthermore, we can apply (12), (I3), the information chain rule together with the updating rules, to
obtain the following decomposition:

T
(U[] WI[T BIT]|BI[T):ZI(Ut WIHB}ﬂBIUUtileIFl)
t=1

I
[M]=

{1(Wy,; BP|BY,, U™ ") + I(U"; B}*| B}, ,W,,, U 1)}

t=1
T b

<4 [rwl BB U 1)]+I<U%B}3331,U“,Wh>}
t=1 \i=1

-
M- -
M= 115 -

T
I(WhsBY, (U, B, WY + > 1(UY By B, U™ W)
t=1

t=1 i=
T b
- E, o [De(P .
> B st Wi (PR B e e i WP e, wist)
=1 i=1 k=1
T
+) Epyp By vt [DKL(PUqB;j,B‘;t,Ut*l,WIt||PUt\B‘;t,Ut71,WIt)} : (16)

1

~
I

22

Remark. Here, the KL divergence is for every single iteration, it’s not for the full trajectory. In
addition, the randomness brought by sampling and previous updates is implied by the expectation. To
empirically evaluate the bound, we can sample the variables presented in the expectation to compute
the KL divergence.

Recall the following updates rules:

W’kt = Wft—l _ Bt;kVRB;’,t,k (Wzlft_l) + Ct,k

Z7

U'=U"" =0 VRpy (U) + £

For the SGLD algorithm, we use the typical choices of oy = /20 /v, ¢k = \/28¢.k/ Ve, k> Where 4
and ~; ; are the inverse temperatures. Then, the update rules give

_ ~ 1\ 27
PUt‘BlIrt}Ut—l’WIt NN(Ut 1*T]tVRBtIrt(Ut 1),4)

Ve
t—1 % -1y 2Nt
Pyripy oy ve-rwy, ~ N(UT™ —mVERpy g (U, ?)
P, NWwE? VRpe (Wi, 20k
wr s, owiot Y NV =BV Ree (W), %k)
P, NWwE? VR w1y, 2k
Wi, B, o wh Y NV = BunVRer sy, (W), Ve k)

Let €} = VRpy pr (U'™!) — VRpy (U*1), then we have

nillefl3 _ meveller|13
20,52 4

DKL(PUt\B}‘“;,B‘{t,WIt ||PU‘\B‘{t,W1t) = (17)

Similarly, let €; , = VRpe pu k(Wf;I) VEge (Wff 1), we have

Brawvenlled I3
DKL(PWiIit‘Wik,t_l’BZi\t || ktIWk 1 Br[ir,t,k) = f (18)

Combine Theorem 5.2 and equations(I3)), (T6), (17).(I8), we have

202(1(U, Wy.p; SY2,15T.))

NNy,

|genit,, (7, SGLD, SGLD)| < ¢

| 1¢|

K
2: 77t%||€t\|2 Z Z t’YtHemkHz
Bva Blr Uf 1w/ +]E tk7Brtka 172

t=1 i=1 k=1

which concludes the proof. O

C On Subgaussianity

We list the two subgaussian assumptions of Xu and Raginsky [[15] and Bu et al. [37] respectively as
follows:

Assumption (a) Vw € W, {(w, Z) is o-subgaussian for Z ~ .
Assumption (b) ¢ (W, Z) is o-subgaussian under Py, 7 = Pw x p, where W is an independent
copy of Wand W 1L Z.

Xu and Raginsky [[15]] directly use Assumption (a) to conclude Assumption (b) in their proof. Two
counter examples have been proposed to challenge this conclusion in Appendix section C of [39]
and section IV of [37]. However, we notice that these two counterexamples are based on the case of
unbounded loss with no constraint on the parameter W output by the learning algorithm. We now
compare the two assumptions mentioned above in detail for unbounded loss and bounded loss.

23

C.1 unbounded loss

Counterexample for Assumption (a) => (b) (Negrea et al. [39])

Consider W = Z = R with £(w, z) = w + z. Assume that W 1 Z, W ~ Cauchy, Z ~ N(0,02).
Thus, {(w, Z) is o-subgaussian for any w € W, because ¥y, z)(A) = log E 5[(w:2)~ELw.2)] —

2(7'2 . T i
log E[e*?] = exp” . While £(W, Z) is not subgaussian since the Cauchy distribution does not
have well-defined moments higher than the zeroth moment.

Counterexample for Assumption (b) => (a) (Bu et al. [37])

Consider W = Z = R and the square loss function /(w,z) = ||w — z||3. Assume W ~
N(p,03:14),Z ~ N(u,0%1s). Then £(w, Z) is not subgaussian for all w € W, since when
w]|3 — oo the variance of £(w, Z) is not bounded. However, W — Z ~ N(0, (03, + 0%)1a),
so {(W,Z) = |W — Z||} ~ (03, + %)X has bounded CGF for A\ < 0, which can induce one-
sided bound in our theorem with 02 = 2d(c3, + 0%)?. However, in this condition, the loss is
sub-exponential but not subgaussian as claimed by Bu et al. [37]] in assumption (b).

C.2 bounded loss

For a bounded loss function ¢(w, z) € [a, b], the two assumptions are equivalent. £(w, Z) is (o)

2
subgaussian Vw € W, Z ~ p. Similarly, (W, Z) is (b;za)-subgaussian under Py, , = Pw x i. The

counter example of [39]] does not apply because the Cauchy distribution is truncated and, consequently,
has well-defined moments.

C.3 Discussion

Based on the above analysis, we can conclude the following. For a bounded loss, the two assumptions
are equivalent. In contrast, Assumption (b) is a stronger assumption than Assumption (a) when the
loss function is unbounded. At the same time, we found that Assumption (b) is also hard to ensure
and is often replaced by the sub-exponential assumption as a relaxation for unbounded loss.

What we need for proving Theorem [5.1]and [5.2]is actually the extension of assumption (b). However,
in practice, the parameters output from an algorithm should always be bounded. Moreover, for
complex data sets used in deep learning, people often adopt a bounded loss or truncate the unbounded
loss to ensure the theoretical guarantee. The inconsistency between the two assumptions should not
cause too many problems. Hence, we extended Assumption (a) to avoid confusion and too much
discussion in the main paper, although the more rigorous version should make use of Assumption (b).

D Additional Experimental Results

D.1 Synthetic Data

In this section, we present a more direct visualization for the 2D mean estimation experiment
described in Section 7.1. We compare the results of three different train-validation split settings in
Figure 4] The yellow cross in the figure is the actual environment mean (—4, —4). Note that we have
set the task batch size as |I;| = 5. The five clusters in the graph are the task batch data points at the
last epoch, which corresponds to five different p1; ~ 7, Vi € [|I;|]. We use small dots to represent the
data points, and big dots to show the estimated cluster mean W; and the estimated environment mean
U.

Figure @]illustrates that the distances from the estimated U to the yellow cross are slightly different for
these three settings. When m,, = 1 the estimated mean U is much closer to the actual environment
mean. This result is coherent with the bound estimation results in Section 7.1, where we got the
tightest gradient incoherence bound with m,, = 1. While the gradient norm bound is largest for
mya = 1, which indicates that the gradient norm bound may not be as reliable as the gradient
incoherence bound since it may be much looser and won’t give too much information.

Comparison with the observed generalization error

24

s 4 4
o Predicted U mean ® Predicted U mean e
° ® W mean Task 3884 ur
2 oW 2] ® WmeanTask337) W
N " W mean Task 403 . M
oW W mean Task 17479 "
° T 0{ ® Wmean Task 19658 o True
True U mean
- R -2 % “}‘}’ -2 o Fge
AT % S Bt
o W S
4 % -4 ° " .
100 o
o S - .
~ 6 ?_9‘ 6 g
% 290,
" % s % . %
10
-10
-10 8 © - 2 ° 2 4 -10 -8 -6 -4 -2 [2 4 10 s s s 2 3 2 4
(a) mya =15 (b) my, =1 () my, =8

Figure 4: Visualization for simulated data results

We calculated the observed generalization error by evaluating the expected difference between the
train loss and test loss. And we list the results of synthetic data under different train-validation split
settings in Table[T] Table[2]and Table[3]

Table 1: my,. = 8, Myg = 8

epoch 20 40 60 80 100 120 140 160 180
Train-Test gap 0.0697 0.0371 0.0908 0.0241 0.1072 0.1492 0.1775 0.1432 0.1581
Lipschitz 19.77 27.63 337 38.84 4337 4747 5124 5475 58.05
G_norm 6.009 7.506 8.807 9.856 10.643 11.558 12.386 13.275 14.014

G_inco (Ours) 0251 0.3462 04315 0.4976 0.5529 0.6112 0.6480 0.6983 0.7424

Table 2: my,. = 15, My =1

epoch 20 40 60 80 100 120 140 160 180
Train-Test gap 0.06857 0.03689 0.09728 0.0327 0.1113 0.1628 0.04986 0.06426 0.1674
Lipschitz 55.79 77.96 95.09 109.6 1224 1339 144.6 154.5 163.8
G_norm 17.29 21.39 25.07 28.04 30.24 3279 35.15 37.63 39.73

G_inco (Ours) 0.1774 0.2486 0.3127 03661 0.4074 0.4481 0.4817 0.5182 0.5468

Table 3: my,. = 1,mMyg = 15

epoch 20 40 60 80 100 120 140 160 180
Train-Test gap 0.2389 0.06293 0.3155 0.1718 0.1822 0.2196 0.1687 0.1814 0.1923
Lipschitz 14.21 19.86 2422 2791 31.17 3412 36.83 3935 41.72
G_norm 4484 5.579 6.572 7363 7953 8.632 9249 9899 1042

G_inco (Ours) 0.7801 1.048 1.286 1.45 1.617 1.76 1.89 2018 2.149

Where Train-Test gap is the observed generalization error, G_inco is the whole gradient incoherence

a2 (evtew)
NMya

bound, i.e: , G_norm is the corresponding bound w.r.t. gradient norm.

Thus, we can see that the gradient-incoherence bound is much closer to the estimation of the actual
gap but can be improved in the future.

D.2 Omniglot

Now we give additional experimental results for the deep few-shot benchmark — Omniglot. We
compare the test accuracy for Meta-SGLD with three train-validation split settings, i.e., My, =
{1,8,15}. The test accuracy for MAML and Meta-SGLD with {0, 1,4, 10} fine-tune steps are
illustrated in Table[dl

Under the same experiment settings, Meta-SGLD achieves slightly better performance than our
reproduced MAML. However, our test accuracy is not comparable to the original results of MAML [2].

25

We only trained the model with 2000 epochs, and the other hyper-parameter settings are also different
from [2l]. Moreover, our Meta-SGLD code is modified based on [48]. This realization version of
MAML is claimed by the author to have worse performance than original MAML. We would like to
re-emphasize that our experiments were conducted to validate our theories but not to achieve SOTA

results.

Comparing experimental results for different train-validation split settings, we note that the train
loss at last epoch for m,, = 1 is smaller than m,,, = 8, while the best test accuracy is obtained
with m,,, = 8. Non-rigorously we think the generalization error of m,,, = 8 should be smaller than
mye = 1. The consistent result was verified by the gradient-incoherence bound, which is the tightest
for m,q = 8. For m,, = 15, i.e., training with 1-shot data, both the test accuracy, train loss and the
estimated bound were the worst.

Table 4: Test Accuracy for Omniglot, train with 2000 epochs

5-way Test Accuracy

Algorithm My = 1D Mya = 8 Mya = 1
MAML 0-step 20.7% 20.13% 20.26%
MAML 1-step 88.43% 95.8% 92.43%
MAML 4-step 90.77% 96.97% 96.14%
MAML 10-step 91.06% 97.07% 96.53%
Meta-SGLD 0-step 19.48% 20.06% 20.29%
Meta-SGLD 1-step 88.8% 95.95% 92.8%
Meta-SGLD 4-step 91.1% 96.97% 96.1%
Meta-SGLD 10-step 91.26% 97.1% 96.53%

Comparison with the observed generalization error

Similar to the synthetic setting, we calculated the observed generalization error by evaluating the
expected difference between the train loss and test loss. And we list the results of Omniglot data
under different train-validation split setting in the following Table 3] [6] and [7}

Table 5: my = 8, Myg = 8

epoch 200 400 600 800 1000 1200 1400 1600 1800

Train-Test gap 0.01896 0.00364 0.008821 0.01856 0.01366 0.0001578 0.04087 0.02269 0.01669
Lipschitz 4.8159 6.8108 8.3415 9.6319 10.7688 11.7966 12.7418 13.6215 14.4478
G_norm 0.1835 0.2765 0.3578 0.4292 04959 0.5557 0.6134 0.6679 0.7204

G_inco (Ours) 0.109 0.1372 0.1617 0.1841 0.2057 0.2252 0.2444 0.2625 0.2798

Table 6: my,. = 15, My =1

epoch 200 400 600 800 1000 1200 1400 1600 1800
Train-Test gap 0.01508 0.02493 0.1099 0.07129 0.01425 0.07677 0.007417 0.04808 0.04199
Lipschitz 9.3429 13.2129 16.1824 18.6858 20.8914 22.8854 24.719 26.4258 28.0287
G_norm 0.4536 0.6265 0.8012 0.9641 1.115 1.265 1.409 1.55 1.688

G_inco (Ours) 0.123 0.1572 0.2146 0.2787 0.3437 04154 04775 0.5275 0.5848

Table 7: my,. = 1,mMyq = 15

epoch 200 400 600 800 1000 1200 1400 1600 1800
Train-Test gap 0.0474 0.001597 0.02478 0.01946 0.02008 0.006832 0.05856 0.09882 0.0331
Lipschitz 45.8866 64.8935 79.4779 91.7732 102.6056 112.3988 121.4046 129.7869 137.6598
G_norm 0.9537 0.9639 09756 09861 0.9974 1.011 1.025 1.039 1.053
G_inco (Ours) 09534 0.9619 0.971 0.9785 0.9863 0.9959 1.006 1.015 1.025

Where Train-Test gap is the observed generalization error, G_inco is the whole gradient incoherence

. 2 . . :
bound, i.e: w, G_norm is the corresponding bound w.r.t. gradient norm.
v va

26

E Experiment Details

Although we have described the detailed algorithm in the main paper to obtain a data-dependent
estimate bound, we offer a more structural pseudo-code in section [g We used Monte Carlo simula-
tions to estimate our generalization error bound in Theorem 6.2. Recall the accumulated gradient
incoherence for meta learner and base learner are respectively denoted as:

T |I|] K

Z 77t’7t||€gH2 ZZZ Bt,k%,kHe?ji,kH%
€y = EBW B" Ut—l _— = E va k-,—l— .
2 B e Bl Wi 2

t=1 i=1 k=1

In our experiments, the two terms are separately estimated. Since we have

RBm Ut |I | ZRB Wk,
i€l

€t =VR By BY, (U1~ VR pr (U'™1) is related to the last inner step output W/5. To estimate e,
I

we conducted 10 times Monte Carlo simulations for the corresponding inner path at each iteration ¢,

the gradients are calculated with back-propagation. For eyy, it’s much simpler, we just conducted 10

times Monte Carlo simulations at each inner step, see more details in the code. Our code is modified
based on Long [48] and Amit [49].

E.1 Synthetic Data

Network Structure For Synthetic Data, the model structure is quite simple. It is a 2D mean
estimation. For a single task with parameter w, to estimate the mean, we need to calculate the loss
(W, Z) = ||W — Z||3. Hence, we constructed a single layer that conducts W — Z. Then the output
of this layer and the pseudo target (always set to 0) were taken as input to a square loss function.

Hyper parameters values
task numbers n 20000
sample numbers m 16
outer Loop inverse temperature 7, 10000
Inner Loop inverse temperature ¢ j 10000
Outer Loop learning rate 7, 0.2
Inner Loop learning rate 3; j 0.4
task batch size |I;| 5
epoch/Outer Loop iterations 7' 200
Inner Loop updates K 4
Mya {1,8,15}
My {15a 87 1}
data dimension 2
loss square loss
test update step 10

Table 8: Synthetic Data Experiment Setting

Training Details The hyper parameter settings and training details for Synthetic data set are presented
in Table

Compute Resource All experiments for Synthetic data were tested on a machine runing macOS
system with an Intel Core i5 CPU, 8G memory.

Subgaussian parameter For the synthetic data, we want to estimate the mean for each sub-task,
where we have for task ¢, Z ~ N (u;,0.11,), d = 2. The task mean p; is sampled from the truncated
normal distribution N'((—4, —4)7, 5I) with p; € [—12,4] x [—12, 4]. Thus we have ||p;||3 < 288.
W is the independent copy of the SGLD algorithm output . To estimated the o2 that satisfies the
subgaussian loss, We consider the worst case where the output is obtained with a single example
7' and one inner step update. So we have W = 0 — 23(0 — Z’) + € =~ 0.8Z’, since the inner loop
learning rate in our experiment setting is 0.4(the noise added is quite small, which can be ignored).
Hence, W ~ N(0.8;,0.0641,). Moreover, we have W 1. Z and {(W,Z) = ||W — Z||3, so

27

W — Z ~ N (0.2, 071,), 07 = 0.164. Furthermore, £(W, Z) ~ a13(k), k = 0.04||11;]|3, which
is a noncentral chi-squared distribution(Bu et al. [37] analyzed ERM, where ¢ (W, Z) follows central
chi-squared distribution). Thus the CGF of £(W, Z) is given by:

1/7(1;[/,2)()\) = —(d+k)o?\ - glog(l — 207\ + f;lz:%)\
= g(—QU?)\ —log(1 —207\)) + kalz)\lzjjj\%)\, A€ (—oo, %22)
Let u < 262, and note that —u — log(1 — u) < “;, u < 0.
i,z (A) = g(—u —log(1 —u)) + Q(flfu) < dTuQ + %”2 = (2k + d)ofA2 A < 0.

So the subgaussian parameter o2 in our assumption can be expressed as 02 = 2(2k + d)o} =
2(2 % 0.04|pi]|3 + d)(0.164)2, where d = 2 and ||11;]| < 288. So we obtain 02 = 0.164 * 0.164 *
4% (14 0.04 % 288) = 1.3469.

E.2 Omniglot

Network Structure We used a CNN network architecture for Omniglot data set, which consists of
a stack of modules. The first three modules are the same, each of which is a 3 x 3 2d convolution
layer of 64 filters and stride 2 followed by a Relu layer and a batch normalization layer. Then the
fourth module is a 2 x 2 2d convolution layer of 64 filters and stride 1, followed by a Relu layer and
a batch normalization layer. Through the aforementioned modules, we got a 64 x 1 x 1 feature map.
This feature map was further taken into a fully connected layer which output the logits for a 5-way
classification. Finally, the cross-entropy loss is calculated with the logits and the corresponding
labels.

Training Details The hyper parameter settings and training details for Omniglot data set are outlined
in Table

Compute Resource The experiments for Omniglot were run on a server node with 6 CPUs and 1
GPU of 32GB memory.

Subgaussian parameter For Omniglot data, we used the cross entropy loss, which is unbounded.
And the data distribution is too complex that we cannot obtain a similar closed form estimation
for the subgaussian parameter. To assure the theoretic guarantee, we can adopt a variation of the
loss function which is clipped to [0, 2] and hence 1-subgaussian. Actually, such clip is not always
necessary. As we discussed in section the subgaussian parameter o is related to the independent
copy W of the base learner output for each task. During our experiments, the loss w.r.t W rarely
exceed the clip value.

F Additional Comparison to Related Works

Discussion with Jose and Simeone [20] They adopted different and generally unrealistic assump-
tions to derive the theoretical results. Concretely:

In joint-training (Eq (33) in Jose and Simeone [20]), the task-level error w.r.t. base-learner W is
related to the unknown environment distribution Pr, which is hard to estimate from the observed
data. In contrast, the task-level risk in our paper is associated with the distribution meta-parameter U,
which can be evaluated efficiently. Besides, when m — oo and the number of task 7 is limited, their
bound always has a non-zero term. This does not fit the reality since the new task already has enough
samples to learn.

In the alternate-training (meta train-validation) settings, they assumed the task parameters W and
5?4 are conditionally independent given S*" (Eq A(8) in their paper). This is an unrealistic condition
in meta-learning since W depends on the meta-parameter U, where U is updated by S73,. As a result,
if we set m = 1 (each task has only one sample), then n — oo, the upper bound in Eq(3) of [20] will
converge to 0, which is problematic since task distribution can be arbitrary noisy and the task-level

28

Hyper parameters values
task numbers n (12
sample numbers m 16
outer Loop inverse temperature -y, 100000000
Inner Loop inverse temperature y; j 100000000
Outer Loop learning rate 7, 1073 % 0.96 500
Inner Loop learning rate 3; j 0.3 % 0.96 000
n-way classification 5
task batch size |I;| 32
epoch/Outer Loop iterations T’ 2000
Inner Loop updates K 4
Mya {1, 8, 15}
M {15,8,1}
loss Cross entropy
test update step 10
image size 28%28
image channel 1

Table 9: Omniglot Experiment Setting

error (with one sample) can be quite large. Besides, this bound is irrelevant to the train validation
split, which is inconsistent with the previous work such as [33} [35]].

Therefore, our theoretical results are not directly comparable. Even if we ignore all these unrealistic
theoretical assumptions and directly compare the results in Jose and Simeone [20], their theoretical
results in noisy iterative approaches still depend on the Lipschitz constant of the neural network
(Eq (45) in their paper), which is vacuous in deep learning.

Discussion with recent theoretical analysis on the support-query approach

Denevi et al. [33] first studied train-validation split for meta-learning in biased linear regression model.
They proved a generalization bound and concluded that there exists a trade-off for train-validation
split, which is consistent with Theorem 5.2 in our paper. Specifically, they constructed two datasets:
For the simple unimodal distribution, the optimal split is m;,, = 0. For the bimodal distribution, the
optimal split is my, € (0, m — 1].

Bai et al. [34] proposed a theoretical analysis of train-validation split in linear centroid meta-learning
(parameter transfer). By comparing the train-val (alternate training) and train-train (joint training)
method, they showed that train-validation split is necessary for the agnostic setting, where the
train-val meta loss is an unbiased estimator w.r.t. the meta-test loss while the train-train loss is
biased(consistent with our Theorem 5.1). When it is realizable (noiseless scenario), the train-train
model can achieve better excess loss.

Saunshi et al. [35]] analyze the train-valid splitting for linear representation learning (representation
transfer). They proved that the train-validation split encourages learning a low-rank representation. In
the noiseless setting, the train-val method already enables low-rank representation, so it’s preferable
to set a smaller train-split and larger validation-split.

While our work focus on general settings with randomized algorithms and does not specify the
form of base-learner and meta-learner, which can be applied in non-linear representation, non-linear
classifier, and non-convex loss. Besides, the relations of our papers are as follows:

1. Our theory can recover the stochastic version of the above parameter and representation transfer
settings. If we consider the linear model with &/ = W C R? and Py is approximated by a
Gaussian distribution (U, 1), the problem is analogous to parameter-transfer meta-learning. If
U C R¥, W C Rkt (where U € RF is the shared representation parameter, V € R¢ is the
parameter of the linear classifier, W = (U, V) € R(**+4) is the whole task parameter) and the prior
of stochastic linear classifier V' is approximated by a Gaussian distribution N'(0, 1), the setting is
similar to the representation transfer paradigm.

2. Since our bounds are based on the generic settings (flexible data distribution, algorithm, and loss
choice), the two training modes are not directly comparable in our problem. However, we agree on

29

the potential limit of joint training (asymptotically biased in the agnostic setting) and believe it is
highly interesting to explore the specific conditions to understand the benefits and limitations of these
training modes as the future work.

G Pseudo Code

Algorithm 1: Meta-SGLD for Few-Shot Learning

Require: Task environment 7;

Require: initial learning rates 7, 3o, inverse temperature ;
randomly initialize U 0.

fort < 1toT do

Sample task data batch B; ~ piy, -, Vi € Iy;

Randomly split By, to B} and B}*;

learning rate decay, get 7;;

for i « 110 |I;| do

for k < 1to K do
learning rate decay, get ¢ ;
if GLD then
‘ Use full batch, Bl”"tk = Bff,; and Bfrtk = B/%
else
Sample B}, , from B}";;
Sample Bﬁ§7k from B;’g;
end
Update parameter with gradient descent:;
if £ == 1 then
k=1 _ rrt—1.
| Wit =uth
end
k_k w 2
Calculate Ev. go ! Bevelletokll with Monte Carlo simulation;
i,t, k> 1, t, k> i,t
; k—1 k—1
M/?kt =Wy - /Bt,kVRB;{t,k(Wi,t)+ ¢hFs
end
end
w2
Calculate Egw pr o1 w,, % with Monte Carlo Simulation;
t t v

Ut=ut"1-— Tltvﬁ diel, RBZ?t(Wﬁ) +&
end

30

