
A Technical Lemmas

Lemma A.1 (Variational Form of Mutual Information). Let X and Y be two random variables. For
all probability measures Q defined on the space of X , we have

I(X;Y) ≤ EY [DKL(PX|Y ||Q)],

with equality for Q = PX .

Proof.
I(X;Y) +DKL(PX ||Q)

=

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy +

∫
p(x) log

p(x)

q(x)
dx

=

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy +

∫∫
p(x, y) log

p(x)

q(x)
dxdy

=

∫∫
p(x, y) log

p(x|y)

q(x)
dxdy

= EY [DKL(P (X|Y)||Q)] .

Since DKL(PX ||Q) ≥ 0, the equality exists only when Q = PX , which concludes the proof.

Lemma A.2. Let X,Y, Z be random variables. For all Z-measurable probability measures Q on
the space of X , IZ(X;Y) ≤ EY |Z [DKL(PX|Y,Z ||Q)], with equality for Q = PX|Z .

Proof.
IZ(X;Y) +DKL(PX|Z ||Q)

=

∫∫
p(x, y|z) log

p(x, y|z)
p(x|z)p(y|z)

dxdy +

∫∫
p(x|z) log

p(x|z)
q(x)

dx

=

∫∫
p(x, y|z) log

p(x, y|z)
p(x|z)p(y|z)

dxdy

+

∫∫
p(x, y|z) log

p(x|z)
q(x)

dxdy

=

∫∫
p(x, y|z) log

p(x|y, z)
q(x)

dxdy

= EY |Z [DKL(P (X|Y,Z)||Q)]

Since DKL(PX|Z ||Q) ≥ 0, the equality exists only when Q = PX|Z , which concludes the proof.

Lemma A.3. Let X,Y, Z be random variables. For all Z-measurable probability measures Q
defined on the space of X , I(X;Y |Z) = EZ [IZ(X;Y)] ≤ EY,Z [DKL(PX|Y,Z ||Q)], with equality
for Q = PX|Z .

Proof. Take the expectation on the inequality of Lemma B.2 to obtain the result.

Lemma A.4. (Donsker-Varadhan representation[Corollary 4.15[46]]) Let P and Q be two prob-
ability measures defined on a set X . Let g : X → R be a measurable function, and let
Ex∼Q[exp g(x)] ≤ ∞. Then

DKL(P ||Q) = sup
g
{Ex∼P [g(x)]− logEx∼Q[exp g(x)]}.

Lemma A.5. (Decoupling Estimate[Xu and Raginsky [15]]) Consider a pair of random variables
X and Y with joint distribution PX,Y , let X̃ be an independent copy of X , and Ỹ an independent
copy of Y , such that PX̃,Ỹ = PXPY . For arbitrary real-valued function f : X ×Y → R, if f(X̃, Ỹ)
is σ-subgaussian under PX̃,Ỹ , then:

|E[f(X,Y)]− E[f(X̃, Ỹ)]| ≤
√

2σ2I(X;Y)

14

Lemma A.6. Let Q be an arbitrary distribution onW , and let S be an arbitrary sample of examples.
The solution to the optimization problem

P ∗ = arg inf
P

{
EW∼P [RS(W)] +

1

β
DKL(P ||Q)

}
.

is given by the Gibbs distribution

dP ∗(w) =
e−βRS(w)dQ(w)

EW∼Qe−βRS(W)
.

Lemma A.7. (Data Processing Inequality) Given random variables X,Y, Z, V , and the Markov
Chain:

X → Y → Z,

then we have
I(X;Z) ≤ I(X;Y) , I(X;Z) ≤ I(Y ;Z).

For Markov chain
V → X → Y → Z ,

we have
I(X;Z|V) ≤ I(X;Y |V), I(X;Z|V) ≤ I(Y ;Z|V)

Proof. Since

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) = I(X;Y) + I(X;Z|Y) ,

and with the Markov Chain, we have X ⊥⊥ Z|Y , therefore

I(X;Z|Y) = H(X|Y)−H(X|Y,Z) = 0 .

In addition, I(X;Y |Z) ≥ 0, so I(X;Z) ≤ I(X;Y).

I(Z;X,Y) = I(Z;X) + I(Z;Y |X) = I(Z;Y) + I(Z;X|Y) = I(Y : Z) ,

with I(Y ;Z|X) ≥ 0, we have I(X;Z) ≤ I(Y ;Z).

Similarly, for the second Markov chain, we have X ⊥⊥ Z|Y, V , therefore

I(X;Z|Y, V) = H(X|Y, V)−H(X|Y,Z, V) = 0 .

I(X;Y,Z|V) = I(X;Z|V) + I(X;Y |V,Z) = I(X;Y |V) + I(X;Z|Y, V) = I(X;Y |V)

So we have I(X;Z|V) ≤ I(X;Y |V), the rest proof is similar and omitted.

Lemma A.8. Given random variables X,Y, Z1, Z2, and the graph model:

Z1 → Z2 → X ← Y ,

then we have
I(X;Y |Z1) ≤ I(X;Y |Z2)

Proof. Apply chain rule, we get:

I(X;Y,Z2|Z1) = I(X;Y |Z1) + I(X;Z2|Y,Z1) = I(X;Z2|Z1) + I(X;Y |Z2, Z1)

From the graph model, we have Y ⊥⊥ Z1, Y ⊥⊥ Z2 and (X,Y) ⊥⊥ Z1|Z2. Hence

I(X;Y |Z2, Z1) = H(X|Z2, Z1)−H(X|Y, Z2, Z1) = H(X|Z2)−H(X|Y,Z2) = I(X;Y |Z2)

Moreover,
I(X,Y ;Z2|Z1) = I(X;Z2|Z1) + I(Y ;Z2|X,Z1)

= I(Y ;Z2|Z1) + I(Z2;X|Y, Z1)

= I(Z2;X|Y, Z1)

the last equality is obtained with Y ⊥⊥ Z2 and Y ⊥⊥ Z1, since I(Y ;Z2|X,Z1) ≥ 0, we get
I(X;Z2|Z1) ≤ I(X;Z2|Y,Z1). Consequently, we have I(X;Y |Z1) ≤ I(X;Y |Z2), conclude the
proof.

15

B Proof

B.1 Proof of Theorem 5.1

Theorem (Meta-generalization error bound for joint training). Suppose all tasks use the same loss
`(Z,w), which is σ-subgaussian for any w ∈ W , where Z ∼ µ, µ ∼ τ .Then, the meta generalization
error for joint training is upper bounded by

|genjoi
meta(τ,Ameta,Abase)| ≤

√
2σ2

nm
I(U,W1:n;S1:n) .

Proof. In contrast to previous works [12, 1, 20], which separately bound the environment-level and
task-level error and then combine the two terms, we consider U,W1:n as a collection and directly
bound the whole term. By using the chain rule for mutual information, the final result can then be
split into an environment-level and a task-level contribution.

Similar to Lemma 2.5, let Φ = (U,W1:n) ∈ U ×Wn be a collection of random variables such that
Φ 6⊥⊥ S1:n, and let Φ̃ = (Ũ , W̃1:n) ∈ U ×Wn be an in dependant copy of Φ such that Φ̃ ⊥⊥ S1:n,
i.e., Φ̃ is distributed according to PU,W1:n = ES1:nPU,W1:n|S1:n

. Let

f(Φ, S1:n)
def
=

1

n

n∑
i=1

[RSi(Wi)] =
1

n

n∑
i=1

1

m

m∑
j=1

`(Wi, Zi,j).

For any λ ∈ R, let

ψΦ̃,S1:n
(λ)

def
= logEΦ̃,S1:n

[
eλ(f(Φ̃,S1:n)−E[f(Φ̃,S1:n)]

]
= logEΦ̃,S1:n

[eλf(Φ̃,S1:n)]− λEΦ̃,S1:n
[f(Φ̃, S1:n)] .

Moreover,

I(Φ;S1:n) = DKL(PΦ,S1:n ||PΦPS1:n)

= sup
g

{
EΦ,S1:n [g(Φ, S1:n)]− logEΦ̃,S1:n

[eg(Φ̃,S1:n)]
}

≥ λEΦ,S1:n [f(Φ, S1:n)]− logEΦ̃,S1:n
[eλf(Φ̃,S1:n)] , ∀λ ∈ R

= λEU,W1:n,S1:n
[f(Φ, S1:n)]− λEŨ,W̃1:n,S1:n

[f(Φ̃, S1:n)]− ψΦ̃,S1:n
(λ)

= λEU,W1:n,S1:n

1

n

n∑
i=1

[RSi(Wi)]− λEŨ,W̃1:n,S1:n

1

n

n∑
i=1

[RSi(W̃i)]− ψΦ̃,S1:n
(λ) (1)

Since (Wi, Si), i = 1, ..., n are mutually independent given U , and S1, ...Sn are independent, we
have p(w1:n|s1:n, u) =

∏n
i=1 p(wi|si, u). Hence

λEU,W1:n,S1:n

1

n

n∑
i=1

[RSi(Wi)] = λEU,S1:n

1

n

n∑
i=1

EWi|Si,U [RSi(Wi)]

= λEU,S1:n [RS1:n(U)] (2)

Since Φ̃ ⊥⊥ S1:n, we have that PW̃1:n|S1:n,Ũ
= PW̃1:n|Ũ and PW̃1:n,S1:n,Ũ

= PW̃1:n,Ũ
PS1:n

. Hence,

Rτ (Ũ) = ES∼µm,τEW̃∼PW̃ |S,Ũ [Rµ(W̃)] = Eµ∼τES|µ∼µmEW̃∼PW̃ |Ũ [Rµ(W̃)]

= Eµ∼τEW̃∼PW̃ |Ũ [Rµ(W̃)] .

16

Therefore

λEŨ,W̃1:n,S1:n

1

n

n∑
i=1

RSi(W̃i) = λEŨ,W̃1:n
ES1:n∼µnm,τ

[
1

n

n∑
i=1

RSi(W̃i)

]

= λEŨ,W̃1:n

[
1

n

n∑
i=1

ESi∼µm,τRSi(W̃i)

]

= λEŨ,W̃1:n

[
1

n

n∑
i=1

Eµi∼τESi|µi∼µmi RSi(W̃i)

]

= λEŨ,W̃1:n

 1

n

n∑
i=1

Eµi∼τ

 1

m

m∑
j=1

EZi,j∼µi`(W̃i, Zi,j)


= λEŨEW̃1:n|Ũ

 1

n

n∑
i=1

Eµi∼τ

 1

m

m∑
j=1

EZi,j∼µi`(W̃i, Zi,j)


= λEŨ

[
1

n

n∑
i=1

EW̃i|ŨEµi∼τRµi(W̃i)

]
= λEŨEµ∼τEW̃ |ŨRµ(W̃) = λEŨRτ (Ũ)

= λEU,S1:n
Rτ (U) . (3)

If we use Equations (2) and (3), then Equation (1) becomes
−λEU,S1:n

[Rτ (U)−RS1:n
(U)] ≤ I(Φ;S1:n) + ψΦ̃,S1:n

(λ) , ∀λ ∈ R. (4)

Since this inequality is also valid when λ is negative, this implies that we also have

EU,S1:n
[Rτ (U)−RS1:n

(U)] ≤ 1

λ

[
I(Φ;S1:n) + ψΦ̃,S1:n

(−λ)
]
, ∀λ > 0 .

Consequently,

genjoi
meta(τ,Ameta,Abase) ≤

1

λ

[
I(Φ;S1:n) + ψΦ̃,S1:n

(−λ)
]
, ∀λ > 0 .

Since `(W̃ , Z) is σ-subgaussian, we have that f(Φ̃, S1:n) = 1
n

∑n
i=1

1
m

∑m
j=1 `(W̃i, Zi,j) is σ√

nm
-

subgaussian.5 Hence,

ψΦ̃,S1:n
(λ) ≤ λ2σ2

2nm
∀λ ∈ R .

Thus, we have

genjoi
meta(τ,Ameta,Abase) ≤

I(Φ;S1:n)

λ
+
λσ2

2nm
, ∀λ > 0 .

By using the value of λ that minimizes the r.h.s. of the above equation, we have

genjoi
meta(τ,Ameta,Abase) ≤

√
2σ2I(Φ;S1:n)

nm
. (5)

Returning to Equation (4), we have for λ > 0:

EU,S1:n [Rτ (U)−RS1:n(U)] ≥ − 1

λ

[
I(Φ;S1:n) + ψΦ̃,S1:n

(λ)
]
≥ −

√
2σ2I(Φ;S1:n)

nm
.

Hence, we also have

genjoi
meta(τ,Ameta,Abase) ≥ −

√
2σ2I(Φ;S1:n)

nm
. (6)

Then, Equations (5) and (6) together imply that∣∣∣genjoi
meta(τ,Ameta,Abase)

∣∣∣ ≤√2σ2I(Φ;S1:n)

nm
,

which gives the theorem.
5More discussion on subgaussianity can be found in Section C.

17

B.2 Benefits of Meta Learning

The task specific empirical risk RS(W) is independent of the meta parameter U , given the task
specific parameter W , which gives the implicit independence assumption S ⊥⊥ U |W . We thus have
I(U ;S|W) = 0, and the following two possible decompositions:

I(S;U,W) = I(W ;S|U) + I(U ;S) = I(W ;S) + I(U ;S|W) = I(W ;S) .

Since I(U ;S) ≥ 0, we obtain I(W ;S|U) ≤ I(W ;S).

As mentioned in the main paper, Theorem 5.1 can cover the PAC Bayes bound of Amit and Meir
[1] with the variational form of mutual information. Their work has built a connection between
PAC Bayes meta-learning and Hierarchical Variational Bayes. In Appendix A.3 of [1], they give
the generative graph model for meta learning where U → W → S (their notation used ψ instead
of U). They assumed that S is independent of U given W , in Bayes learning, this implies that
p(S|W,U) = p(S|W). Based on the graph model, they obtained a similar optimization objective
as their PAC-Bayes meta learning algorithm, which minimizes the expected empirical risk plus the
PAC Bayes bound. Germain et al. [47] has given a more obvious connection between PAC Bayes
learning and Bayes learning, where optimizing the PAC Bayes bound together with the expected
empirical risk gives the so called Gibbs algorithm (see Lemma A.6). When using the negative log
loss, i.e., RS(W) = − 1

m log p(S|W) = − 1
m

∑m
i=1 log p(Zi|W), the output of Gibbs algorithm

coincides with the Bayes Posterior. Therefore, without the independence assumption, RS(W) should
be defined as RS(W,U), which corresponds to − 1

m log p(S|W,U) in Bayes learning.

B.3 Proof of Theorem 5.2

Theorem (Meta-generalization error bound for alternate training). Suppose all tasks use the same
loss `(Z,w), which is σ-subgaussian for any w ∈ W , where Z ∼ µ, µ ∼ τ . Then we have

|genalt
meta(τ,Ameta,Abase)| ≤ EStr

1:n

√
2σ2IS

tr
1:n(U,W1:n;Sva

1:n)

nmva
≤

√
2σ2I(U,W1:n;Sva

1:n|Str
1:n)

nmva
.

Proof. The proof technique is analogous to Theorem 5.1. Let Φ = (U,W1:n) be a collection of
random variables where Φ ∈ U × Wn such that Φ and S1:n follow the joint distribution PΦ,S1;n

.
Then let Φ̃ be an independent copy of Φ, such that Φ̃ ⊥⊥ {Sva

1:n, S
tr
1:n}, i.e., Φ̃ ∼ ES1:nPΦ|S1:n

. Define

f(Φ, Sva
1:n) =

1

n

n∑
i=1

[RSva
i

(Wi)] =
1

n

n∑
i=1

1

m

mva∑
j=1

`(Wi, Zi,j) .

For any λ ∈ R, denote the cumulant generation function of Φ̃, Sva
1:n|Str

1:n as:

ψΦ̃,Sva
1:n|Str

1:n
(λ) = logEΦ̃,Sva

1:n|Str
1:n

[e
λ(f(Φ̃,Sva

1:n)−EΦ̃,Sva
1:n|S

tr
1:n

[f(Φ̃,Sva
1:n)]

]

= logEΦ̃,Sva
1:n|Str

1:n
[eλf(Φ̃,Sva

1:n)]− λEΦ̃,Sva
1:n|Str

1:n
[f(Φ̃, Sva

1:n)]

In addition, the disintegrated mutual information is given as:

18

IS
tr
1:n(Φ;Sva

1:n) = DKL(PΦ,Sva
1:n|Str

1:n
||PΦ̃|Str

1:n
PSva

1:n|Str
1:n

)

= sup
g

{
EΦ,Sva

1:n|Str
1:n

[g(Φ, Sva
1:n)]− logEΦ̃,Sva

1:n|Str
1:n

[
eg(Φ̃,S

va
1:n)
]}

≥ λEΦ,Sva
1:n|Str

1:n
[f(Φ, Sva

1:n)]− logEΦ̃,Sva
1:n|Str

1:n

[
eλf(Φ̃,Sva

1:n)
]

= λEU,W1:n,Sva
1:n|Str

1:n
[f(Φ, Sva

1:n)]

− λEŨ,W̃1:n,Sva
1:n|Str

1:n
[f(Φ̃, Sva

1:n)]− ψΦ̃,Sva
1:n|Str

1:n
(λ)

= λEU,W1:n,Sva
1:n|Str

1:n

1

n

n∑
i=1

RSva
i

(Wi)

− λEŨ,W̃1:n,Sva
1:n|Str

1:n

1

n

n∑
i=1

RSva
i

(W̃i)− ψΦ̃,Sva
1:n|Str

1:n
(λ) (7)

Since given U , (Wi, S
tr
i), i = 1, ..., n are mutually independent, we have p(w1:n|str

1:n, u) =∏n
i=1 p(wi|str

i , u). Thus

λEU,W1:n,Sva
1:n|Str

1:n

1

n

n∑
i=1

[RSva
i

(Wi)] = λEU,Sva
1:n|Str

1:n

1

n

n∑
i=1

EWi|Str
i ,U

[RSva
i

(Wi)]

= λEU,Sva
1:n|Str

1:n
[R̃S1:n

(U)] (8)

Since we have Φ̃ ⊥⊥ {Sva
1:n, S

tr
1:n}, thus PW̃1:n|S1:n,Ũ

= PW̃1:n|Ũ , we have:

Rτ (Ũ) = ES∼µm,τEW̃∼PW̃ |S,Ũ [Rµ(W̃)] = Eµ∼τES|µ∼µmEW̃∼PW̃ |Ũ [Rµ(W̃)]

= Eµ∼τEW̃∼PW̃ |Ũ [Rµ(W̃)]

Moreover, we have Str
1:n ⊥⊥ Sva

1:n, so that PW̃1:n,Sva
1:n,Ũ |Str

1:n
= PW̃1:n,Ũ

PSva
1:n|Str

1:n
= PW̃1:n,Ũ

PSva
1:n

.
Then we can also prove:

λEŨ,W̃1:n,Sva
1:n|Str

1:n

[
1

n

n∑
i=1

RSva
i

(W̃i)

]
= λEŨ,W̃1:n|Str

1:n
ESva

1:n∼µnmva,τ

[
1

n

n∑
i=1

RSva
i

(W̃i)

]

= λEŨ,W̃1:n|Str
1:n

[
1

n

n∑
i=1

ESi∼µmva,τ
RSva

i
(W̃i)

]

= λEŨ,W̃1:n|Str
1:n

[
1

n

n∑
i=1

Eµi∼τESi|µi∼µmva
i

[RSva
i

(W̃i)]

]

= λEŨ,W̃1:n|Str
1:n

 1

n

n∑
i=1

Eµi∼τ [
1

mva

mva∑
j=1

EZi,j∼µi`(W̃i, Zi,j)]


= λEŨ |Str

1:n

 1

n

n∑
i=1

EW̃i|ŨEµi∼τ [
1

mva

mva∑
j=1

EZi,j∼µi`(W̃i, Zi,j)]


= λEŨ |Str

1:n

[
Eµ∼τEW̃ |Ũ [Rµ(W̃)]

]
= λEŨ |Str

1:n
Rτ (Ũ) = λEU,Sva

1:n|Str
1:n
Rτ (U) (9)

19

Therefore, by combining Equations (7), (8), and (9), we have for any λ,

λEU,Sva
1:n|Str

1:n
[R̃S1:n(U)]− λEU,Sva

1:n|Str
1:n

[Rτ (U)] ≤ IS
tr
1:n(Φ;Sva

1:n) + ψΦ̃,Sva
1:n|Str

1:n
(λ)

Since `(W̃ , Z) is σ-subgaussian, and Φ̃ ⊥⊥ Sva
1:n, f(Φ̃, Sva

1:n) = 1
n

∑n
i=1

1
mva

∑mva
j=1 `(W̃i, Zij) is

σ√
nmva

-subgaussian. Hence, ψΦ̃,Sva
1:n|Str

1:n
(λ) ≤ λ2σ2

2nmva
,∀λ ∈ R. For λ < 0 we have

EU,Sva
1:n|Str

1:n
[Rτ (U)− R̃S1:n

(U)] ≤
IS

tr
1:n(Φ;Sva

1:n) + ψΦ̃,Sva
1:n|Str

1:n
(λ)

−λ
≤

√
2σ2IS

tr
1:n(Φ;Sva

1:n)

nmva

Similarly, for λ > 0 we have

EU,Sva
1:n|Str

1:n
[Rτ (U)− R̃S1:n

(U)] ≥
IS

tr
1:n(Φ;Sva

1:n) + ψΦ̃,Sva
1:n|Str

1:n
(λ)

−λ
≥ −

√
2σ2IS

tr
1:n(Φ;Sva

1:n)

nmva

Then, the following concludes the proof:

|genalt
meta(τ,Ameta,Abase)| = EStr

1:n
|EU,Sva

1:n|Str
1:n

[Rτ (U)− R̃S1:n
(U)]| ≤ EStr

1:n

√
2σ2IS

tr
1:n(Φ;Sva

1:n)

nmva

B.4 Proof of Theorem 6.1

Theorem. Based on Theorem 5.1, for the SGLD algorithm that satisfies Assumptions 1 & 2, the
mutual information for joint training satisfies

I(Φ;S1:n) ≤
∑T
t=1

nd+k
2 log(1 +

η2
tL

2

(nd+k)σ2
t
) .

Specifically, if σt =
√
ηt, and ηt = c

t for c > 0, we have:

|genjoi
meta(τ,Ameta,Abase)| ≤ σL√

nm

√
c log T + c .

Proof. Define the sequence of parameters for T iterations as Φ[T] def
= (Φ1, ...,ΦT) and the corre-

sponding sequence of samplings as B[T]
1:n

def
= (B1

1:n, ..., B
T
1:n). The output of the algorithm is defined

as Φ = f(Φ[T]), which can be the last iterate ΦT or the average output 1
T

∑T
t=1 Φt. From the figure

about the parameter updating strategy for joint training illustrated in Section 6, we get the following
Markov chain:

S1:n → B
[T]
1:n → Φ[T] → Φ .

Therefore, by applying Lemma A.7 to the above Markov chain, we have:

I(Φ;S1:n) ≤ I(Φ[T];S1:n) ≤ I(Φ[T];B
[T]
1:n) =

T∑
t=1

I(Φt;B
[T]
1:n|Φ[t−1]) .

The last equality comes from the mutual information chain rule. Combing the sample strategy with
Assumption 1 and the update rule, we obtain:

I(Φt;B
[T]
1:n|Φ[t−1]) = I(Φt;Bt1:n|Φt−1)

= h(Φt|Φt−1)− h(Φt|Φt−1, Bt1:n) .

Conditioned on Φt−1 = φt−1, we have Φt = φt−1 − ηtG(φt−1, Bt1:n) + ξt. Then

h(Φt − φt−1|Φt−1 = φt−1) = h(Φt|Φt−1 = φt−1) .

Note that ξt and ηtG(φt−1, Bt1:n) are independent. So we have

E(||Φt − φt−1||22) = E(||ηtG(φt−1, Bt1:n)||22 + ||ξt||22) ≤ η2
tL

2 + (nd+ k)σ2
t .

20

The Gaussian distribution is the one having the largest entropy among the variables with the same
second order moment. Hence,

h(Φt|Φt−1 = φt−1) ≤ nd+ k

2
log(2πe

η2
tL

2 + (nd+ k)σ2
t

(nd+ k)
)

for all φt−1.

In addition,

h(Φt|Φt−1, Bt1:n) = h(Φt−1 − ηtG(Φt−1, Bt1:n) + ξt|Φt−1, Bt1:n)

= h(ξt) =
nd+ k

2
log 2πeσ2

t .

So we obtain

I(Φ;S1:n) ≤
T∑
t=1

nd+ k

2
log(1 +

η2
tL

2

(nd+ k)σ2
t

) ≤
T∑
t=1

η2
tL

2

2σ2
t

.

Hence, for the SGLD algorithm with σt =
√
ηt, constant c > 0, ηt = c

t ; since
∑T
t=1

1
t ≤ log T + 1,

we have

|genjoi
meta(τ,Ameta,Abase)| ≤

√
2σ2(I(U,W1:n;S1:n))

nm

≤

√√√√ σ2

nm

T∑
t=1

η2
tL

2

2σ2
t

≤ σL√
nm

√
c log T + c .

B.5 Proof of Theorem 6.2

Theorem. Based on Theorem 5.2, for the Meta-SGLD that satisfies Assumption 1, if we set
σt =

√
2ηt/γt, σt,k =

√
2βt,k/γt,k, where γt and γt,k are the inverse temperatures. The meta

generalization error for alternate training satisfies

|genalt
meta(τ, SGLD, SGLD)| ≤

√
2σ2I(U,W1:n;Sva

1:n|Str
1:n)

nmva
≤ σ
√
nmva

√
εU + εW ,

where

εU =

T∑
t=1

EBva
It
,Btr
It
,WIt ,U

t−1

ηtγt‖εut ‖22
2

, εW =

T∑
t=1

|It|∑
i=1

K∑
k=1

EBva
i,t,k,B

tr
i,t,k,W

k−1
i,t

βt,kγt,k‖εwt,i,k‖22
2

.

Proof. To prove the above theorem, we need to introduce some basic notations to present the sampling
results and the intermediate output of each gradient step, by which we can apply the Markov structure
and the mutual information chain rule.

• for K inner iterations:

– The sequence of validation data samplings at outer iteration t for task i and the task
batch:

Bva
i,t,[K] = (Bva

i,t,1, ..., B
va
i,t,K), Bva

It,[K] = (Bva
1,t,[K], ..., B

va
|It|,t,[K])

– The sequence of train data samplings at outer iteration t for task i and the task batch:

Btr
i,t,[K] = (Btr

i,t,1, ..., B
tr
i,t,K), Btr

It,[K] = (Btr
1,t,[K], ..., B

tr
|It|,t,[K])

21

– the sequence of task specific parameters at outer iteration t of task i and the task batch:

W
[K]
i,t = (W 1

i,t, ...,W
K
i,t),W

[K]
It

= (W
[K]
1,t , ...,W

[K]
|It|,t) ;

– The output of base learner at outer iteration t of task i and the task batch:

Wi,t = g(W
[K]
i,t),WIt = (W1,t, ...,W|It|,t)

• for T outer iterations:

– The sequence of meta parameters as U [T] = (U1, ..., UT);
– validation data sequences as Bva

I[T]
= (Bva

I1
, ..., Bva

IT
);

– train data sequences as Btr
I[T]

= (Btr
I1
, ..., Btr

IT
);

– Output of meta learner is defined as U = f(U [T]);
– Output sequence of base learner is defines as WI[T]

= (WI1 , ...,WIT)

Based on the definition above, we have the following Markov chains:
Sva

1:n → Bva
I[T]
→ U [T] → U (10)

Str
1:n → Btr

I[T] →WI[T]
→W1:n (11)

Btr
It → Btr

It,[K] →W
[K]
It
→WIt (12)

Btr
i,t → Btr

i,t,[K] →W
[K]
i,t →Wi,t (13)

And the graph model:
Str

1:n → Btr
I[T] → (WI[T]

, U [T])← Sva
1:n (14)

In fact, the algorithm has a nest-loop structure, we just list the above simple sub-structures for the
first step of the proof. By combining the above Markov chains and the independence of the sample
strategy, we obtain

I(U,W1:n;Sva
1:n|Str

1:n) ≤ I(U [T],W1:n;Sva
1:n|Str

1:n) ≤ I(U [T],WI[T]
;Sva

1:n|Str
1:n)

≤ I(U [T],WI[T]
;Sva

1:n|Btr
I[T]

) ≤ I(U [T],WI[T]
;Bva

I[T]
|Btr
I[T]

) (15)

Apply Lemma A.7, the first and the last inequality are obtained with Markov chain (10). The
second inequality is obtained with (11). The third inequality comes from Lemma A.8 and the graph
model(14).

Furthermore, we can apply (12), (13), the information chain rule together with the updating rules, to
obtain the following decomposition:

I(U [T],WI[T]
;Bva

I[T]
|Btr
I[T]

) =

T∑
t=1

I(U t,WIt ;B
va
It |B

tr
It , U

t−1,WIt−1)

=

T∑
t=1

{
I(WIt ;B

va
It |B

tr
It , U

t−1) + I(U t;Bva
It |B

tr
It ,WIt , U

t−1)
}

≤
T∑
t=1

{
b∑
i=1

[
I(W

[K]
i,t ;Bva

i,t|Btr
i,t, U

t−1)
]

+ I(U t;Bva
It |B

tr
It , U

t−1,WIt)

}

≤
T∑
t=1

b∑
i=1

K∑
k=1

I(W k
i,t;B

va
i,t,k|U t−1, Btr

i,t,k,W
k−1
i,t) +

T∑
t=1

I(U t;Bva
It |B

tr
It , U

t−1,WIt)

=

T∑
t=1

b∑
i=1

K∑
k=1

EBva
i,t,k,B

tr
i,t,k,W

k−1
i,t

[
DKL(PWk

i,t|Btr
i,t,k,B

va
i,t,k,W

k−1
i,t
||PWk

i,t|Btr
i,t,k,W

k−1
i,t

)
]

+

T∑
t=1

EBva
It
,Btr
It
,Ut−1

[
DKL(PUt|Bva

It
,Btr
It
,Ut−1,WIt

||PUt|Btr
It
,Ut−1,WIt

)
]
. (16)

22

Remark. Here, the KL divergence is for every single iteration, it’s not for the full trajectory. In
addition, the randomness brought by sampling and previous updates is implied by the expectation. To
empirically evaluate the bound, we can sample the variables presented in the expectation to compute
the KL divergence.

Recall the following updates rules:

W k
i,t = W k−1

i,t − βt,k∇RBtr
i,t,k

(W k−1
i,t) + ζt,k

U t = U t−1 − ηt∇R̃Bva
It

(U t−1) + ξt .

For the SGLD algorithm, we use the typical choices of σt =
√

2ηt/γt, ζk =
√

2βt,k/γt,k, where γt
and γt,k are the inverse temperatures. Then, the update rules give

PUt|Btr
It
,Ut−1,WIt

∼ N (U t−1 − ηt∇R̃Btr
It

(U t−1),
2ηt
γt

)

PUt|Bva
It
,Btr
It
,Ut−1,WIt

∼ N (U t−1 − ηt∇R̃Bva
It
,Btr
It

(U t−1),
2ηt
γt

)

PWk
i,t|Btr

i,t,k,W
k−1
i,t
∼ N (W k−1

i,t − βt,k∇RBtr
i,t,k

(W k−1
i,t),

2βt,k
γt,k

)

PWk
i,t|Btr

i,t,k,B
va
i,t,k,W

k−1
i,t
∼ N (W k−1

i,t − βt,k∇RBtr
i,t,k,B

va
i,t,k

(W k−1
i,t),

2βt,k
γt,k

)

Let εut = ∇R̃Bva
It
,Btr
It

(U t−1)−∇R̃Btr
It

(U t−1), then we have

DKL(PUt|Bva
It
,Btr
It
,WIt
||PUt|Btr

It
,WIt

) =
η2
t ||εut ||22
2σ2

t

=
ηtγt||εut ||22

4
(17)

Similarly, let εwt,i,k = ∇RB̃tr
i,t,k,B̃

va
i,t,k

(W k−1
i,t)−∇RB̃tr

i,t,k
(W k−1

i,t), we have

DKL(PWk
i,t|W

k−1
i,t ,Bva

i,t,k,B
tr
i,t,k
||PWk

i,t|W
k−1
i,t ,Btr

i,t,k
) =

βt,kγt,k||εwt,i,k||22
4

(18)

Combine Theorem 5.2 and equations(15), (16), (17),(18), we have

|genalt
meta(τ,SGLD,SGLD)| ≤

√
2σ2(I(U,W1:n;Sva

1:n|Str
1:n))

nmva

≤ σ
√
nmva

√√√√ T∑
t=1

EBva
It
,Btr
It
,Ut−1,WIt

ηtγt||εut ||22
2

+

T∑
t=1

|It|∑
i=1

K∑
k=1

EBva
i,t,k,B

tr
i,t,k,W

k−1
i,t

βkt γ
k
t ||εwt,i,k||22

2

which concludes the proof.

C On Subgaussianity

We list the two subgaussian assumptions of Xu and Raginsky [15] and Bu et al. [37] respectively as
follows:

Assumption (a) ∀w ∈ W , `(w,Z) is σ-subgaussian for Z ∼ µ.

Assumption (b) `(W̃ , Z) is σ-subgaussian under PW̃ ,Z = PW × µ, where W̃ is an independent
copy of W and W̃ ⊥⊥ Z.

Xu and Raginsky [15] directly use Assumption (a) to conclude Assumption (b) in their proof. Two
counter examples have been proposed to challenge this conclusion in Appendix section C of [39]
and section IV of [37]. However, we notice that these two counterexamples are based on the case of
unbounded loss with no constraint on the parameter W output by the learning algorithm. We now
compare the two assumptions mentioned above in detail for unbounded loss and bounded loss.

23

C.1 unbounded loss

Counterexample for Assumption (a) => (b) (Negrea et al. [39])

ConsiderW = Z = R with `(w, z) = w + z. Assume that W̃ ⊥⊥ Z, W̃ ∼ Cauchy, Z̃ ∼ N (0, σ2).
Thus, `(w,Z) is σ-subgaussian for anyw ∈ W , becauseψ`(w,Z)(λ) = logEZ [eλ(`(w,Z)−E`(w,Z))] =

logE[eλZ] = exp
λ2σ2

2 . While `(W̃ , Z̃) is not subgaussian since the Cauchy distribution does not
have well-defined moments higher than the zeroth moment.

Counterexample for Assumption (b) => (a) (Bu et al. [37])

Consider W = Z = Rd and the square loss function `(w, z) = ‖w − z‖22. Assume W̃ ∼
N (µ, σ2

W Id), Z ∼ N (µ, σ2
ZId). Then `(w,Z) is not subgaussian for all w ∈ W , since when

‖w‖22 → ∞ the variance of `(w,Z) is not bounded. However, W̃ − Z ∼ N (0, (σ2
W + σ2

Z)Id),
so `(W̃ , Z̃) = ‖W̃ − Z‖22 ∼ (σ2

W + σ2
Z)χ2

d has bounded CGF for λ < 0, which can induce one-
sided bound in our theorem with σ2 = 2d(σ2

W + σ2
Z)2. However, in this condition, the loss is

sub-exponential but not subgaussian as claimed by Bu et al. [37] in assumption (b).

C.2 bounded loss

For a bounded loss function `(w, z) ∈ [a, b], the two assumptions are equivalent. `(w,Z) is (b−a)
2 -

subgaussian ∀w ∈ W, Z ∼ µ. Similarly, `(W,Z) is (b−a)
2 -subgaussian under PW̃ ,Z = PW ×µ. The

counter example of [39] does not apply because the Cauchy distribution is truncated and, consequently,
has well-defined moments.

C.3 Discussion

Based on the above analysis, we can conclude the following. For a bounded loss, the two assumptions
are equivalent. In contrast, Assumption (b) is a stronger assumption than Assumption (a) when the
loss function is unbounded. At the same time, we found that Assumption (b) is also hard to ensure
and is often replaced by the sub-exponential assumption as a relaxation for unbounded loss.

What we need for proving Theorem 5.1 and 5.2 is actually the extension of assumption (b). However,
in practice, the parameters output from an algorithm should always be bounded. Moreover, for
complex data sets used in deep learning, people often adopt a bounded loss or truncate the unbounded
loss to ensure the theoretical guarantee. The inconsistency between the two assumptions should not
cause too many problems. Hence, we extended Assumption (a) to avoid confusion and too much
discussion in the main paper, although the more rigorous version should make use of Assumption (b).

D Additional Experimental Results

D.1 Synthetic Data

In this section, we present a more direct visualization for the 2D mean estimation experiment
described in Section 7.1. We compare the results of three different train-validation split settings in
Figure 4. The yellow cross in the figure is the actual environment mean (−4,−4). Note that we have
set the task batch size as |It| = 5. The five clusters in the graph are the task batch data points at the
last epoch, which corresponds to five different µi ∼ τ,∀i ∈ [|It|]. We use small dots to represent the
data points, and big dots to show the estimated cluster mean Wi and the estimated environment mean
U .

Figure 4 illustrates that the distances from the estimated U to the yellow cross are slightly different for
these three settings. When mva = 1 the estimated mean U is much closer to the actual environment
mean. This result is coherent with the bound estimation results in Section 7.1, where we got the
tightest gradient incoherence bound with mva = 1. While the gradient norm bound is largest for
mva = 1, which indicates that the gradient norm bound may not be as reliable as the gradient
incoherence bound since it may be much looser and won’t give too much information.

Comparison with the observed generalization error

24

(a) mva = 15 (b) mva = 1 (c) mva = 8

Figure 4: Visualization for simulated data results

We calculated the observed generalization error by evaluating the expected difference between the
train loss and test loss. And we list the results of synthetic data under different train-validation split
settings in Table 1, Table 2 and Table 3.

Table 1: mtr = 8,mva = 8
epoch 20 40 60 80 100 120 140 160 180
Train-Test gap 0.0697 0.0371 0.0908 0.0241 0.1072 0.1492 0.1775 0.1432 0.1581
Lipschitz 19.77 27.63 33.7 38.84 43.37 47.47 51.24 54.75 58.05
G_norm 6.009 7.506 8.807 9.856 10.643 11.558 12.386 13.275 14.014
G_inco (Ours) 0.251 0.3462 0.4315 0.4976 0.5529 0.6112 0.6480 0.6983 0.7424

Table 2: mtr = 15,mva = 1
epoch 20 40 60 80 100 120 140 160 180
Train-Test gap 0.06857 0.03689 0.09728 0.0327 0.1113 0.1628 0.04986 0.06426 0.1674
Lipschitz 55.79 77.96 95.09 109.6 122.4 133.9 144.6 154.5 163.8
G_norm 17.29 21.39 25.07 28.04 30.24 32.79 35.15 37.63 39.73
G_inco (Ours) 0.1774 0.2486 0.3127 0.3661 0.4074 0.4481 0.4817 0.5182 0.5468

Table 3: mtr = 1,mva = 15
epoch 20 40 60 80 100 120 140 160 180
Train-Test gap 0.2389 0.06293 0.3155 0.1718 0.1822 0.2196 0.1687 0.1814 0.1923
Lipschitz 14.21 19.86 24.22 27.91 31.17 34.12 36.83 39.35 41.72
G_norm 4.484 5.579 6.572 7.363 7.953 8.632 9.249 9.899 10.42
G_inco (Ours) 0.7801 1.048 1.286 1.45 1.617 1.76 1.89 2.018 2.149

Where Train-Test gap is the observed generalization error, G_inco is the whole gradient incoherence

bound, i.e:
√

σ2(εU+εW)
nmva

, G_norm is the corresponding bound w.r.t. gradient norm.

Thus, we can see that the gradient-incoherence bound is much closer to the estimation of the actual
gap but can be improved in the future.

D.2 Omniglot

Now we give additional experimental results for the deep few-shot benchmark – Omniglot. We
compare the test accuracy for Meta-SGLD with three train-validation split settings, i.e., mva =
{1, 8, 15}. The test accuracy for MAML and Meta-SGLD with {0, 1, 4, 10} fine-tune steps are
illustrated in Table 4.

Under the same experiment settings, Meta-SGLD achieves slightly better performance than our
reproduced MAML. However, our test accuracy is not comparable to the original results of MAML [2].

25

We only trained the model with 2000 epochs, and the other hyper-parameter settings are also different
from [2]. Moreover, our Meta-SGLD code is modified based on [48]. This realization version of
MAML is claimed by the author to have worse performance than original MAML. We would like to
re-emphasize that our experiments were conducted to validate our theories but not to achieve SOTA
results.

Comparing experimental results for different train-validation split settings, we note that the train
loss at last epoch for mva = 1 is smaller than mva = 8, while the best test accuracy is obtained
with mva = 8. Non-rigorously we think the generalization error of mva = 8 should be smaller than
mva = 1. The consistent result was verified by the gradient-incoherence bound, which is the tightest
for mva = 8. For mva = 15, i.e., training with 1-shot data, both the test accuracy, train loss and the
estimated bound were the worst.

Table 4: Test Accuracy for Omniglot, train with 2000 epochs
5-way Test Accuracy

Algorithm mva = 15 mva = 8 mva = 1
MAML 0-step 20.7% 20.13% 20.26%
MAML 1-step 88.43% 95.8% 92.43%
MAML 4-step 90.77% 96.97% 96.14%
MAML 10-step 91.06% 97.07% 96.53%
Meta-SGLD 0-step 19.48% 20.06% 20.29%
Meta-SGLD 1-step 88.8% 95.95% 92.8%
Meta-SGLD 4-step 91.1% 96.97% 96.1%
Meta-SGLD 10-step 91.26% 97.1% 96.53%

Comparison with the observed generalization error

Similar to the synthetic setting, we calculated the observed generalization error by evaluating the
expected difference between the train loss and test loss. And we list the results of Omniglot data
under different train-validation split setting in the following Table 5, 6 and 7:

Table 5: mtr = 8,mva = 8
epoch 200 400 600 800 1000 1200 1400 1600 1800
Train-Test gap 0.01896 0.00364 0.008821 0.01856 0.01366 0.0001578 0.04087 0.02269 0.01669
Lipschitz 4.8159 6.8108 8.3415 9.6319 10.7688 11.7966 12.7418 13.6215 14.4478
G_norm 0.1835 0.2765 0.3578 0.4292 0.4959 0.5557 0.6134 0.6679 0.7204
G_inco (Ours) 0.109 0.1372 0.1617 0.1841 0.2057 0.2252 0.2444 0.2625 0.2798

Table 6: mtr = 15,mva = 1
epoch 200 400 600 800 1000 1200 1400 1600 1800
Train-Test gap 0.01508 0.02493 0.1099 0.07129 0.01425 0.07677 0.007417 0.04808 0.04199
Lipschitz 9.3429 13.2129 16.1824 18.6858 20.8914 22.8854 24.719 26.4258 28.0287
G_norm 0.4536 0.6265 0.8012 0.9641 1.115 1.265 1.409 1.55 1.688
G_inco (Ours) 0.123 0.1572 0.2146 0.2787 0.3437 0.4154 0.4775 0.5275 0.5848

Table 7: mtr = 1,mva = 15
epoch 200 400 600 800 1000 1200 1400 1600 1800
Train-Test gap 0.0474 0.001597 0.02478 0.01946 0.02008 0.006832 0.05856 0.09882 0.0331
Lipschitz 45.8866 64.8935 79.4779 91.7732 102.6056 112.3988 121.4046 129.7869 137.6598
G_norm 0.9537 0.9639 0.9756 0.9861 0.9974 1.011 1.025 1.039 1.053
G_inco (Ours) 0.9534 0.9619 0.971 0.9785 0.9863 0.9959 1.006 1.015 1.025

Where Train-Test gap is the observed generalization error, G_inco is the whole gradient incoherence

bound, i.e:
√

σ2(εU+εW)
nmva

, G_norm is the corresponding bound w.r.t. gradient norm.

26

E Experiment Details

Although we have described the detailed algorithm in the main paper to obtain a data-dependent
estimate bound, we offer a more structural pseudo-code in section G. We used Monte Carlo simula-
tions to estimate our generalization error bound in Theorem 6.2. Recall the accumulated gradient
incoherence for meta learner and base learner are respectively denoted as:

εU =

T∑
t=1

EBva
It
,Btr
It
,WIt ,U

t−1

ηtγt‖εut ‖22
2

, εW =

T∑
t=1

|It|∑
i=1

K∑
k=1

EBva
i,t,k,B

tr
i,t,k,W

k−1
i,t

βt,kγt,k‖εwt,i,k‖22
2

.

In our experiments, the two terms are separately estimated. Since we have

R̃Bva
It

(U t−1) =
1

|It|
∑
i∈It

RBva
i,t

(WK
i,t) ,

εut = ∇R̃Bva
It
,Btr
It

(U t−1)−∇R̃Btr
It

(U t−1) is related to the last inner step output WK
i,t . To estimate εU ,

we conducted 10 times Monte Carlo simulations for the corresponding inner path at each iteration t,
the gradients are calculated with back-propagation. For εW , it’s much simpler, we just conducted 10
times Monte Carlo simulations at each inner step, see more details in the code. Our code is modified
based on Long [48] and Amit [49].

E.1 Synthetic Data

Network Structure For Synthetic Data, the model structure is quite simple. It is a 2D mean
estimation. For a single task with parameter w, to estimate the mean, we need to calculate the loss
`(W,Z) = ||W − Z||22. Hence, we constructed a single layer that conducts W − Z. Then the output
of this layer and the pseudo target (always set to 0) were taken as input to a square loss function.

Hyper parameters values
task numbers n 20000

sample numbers m 16
outer Loop inverse temperature γt 10000

Inner Loop inverse temperature γt,k 10000
Outer Loop learning rate ηt 0.2

Inner Loop learning rate βt,k 0.4
task batch size |It| 5

epoch/Outer Loop iterations T 200
Inner Loop updates K 4

mva {1, 8, 15}
mtr {15, 8, 1}

data dimension 2
loss square loss

test update step 10
Table 8: Synthetic Data Experiment Setting

Training Details The hyper parameter settings and training details for Synthetic data set are presented
in Table 8.

Compute Resource All experiments for Synthetic data were tested on a machine runing macOS
system with an Intel Core i5 CPU, 8G memory.

Subgaussian parameter For the synthetic data, we want to estimate the mean for each sub-task,
where we have for task i, Z ∼ N (µi, 0.1Id), d = 2. The task mean µi is sampled from the truncated
normal distribution N ((−4,−4)T , 5I2) with µi ∈ [−12, 4]× [−12, 4]. Thus we have ||µi||22 ≤ 288.
W̃ is the independent copy of the SGLD algorithm output W . To estimated the σ2 that satisfies the
subgaussian loss, We consider the worst case where the output is obtained with a single example
Z ′ and one inner step update. So we have W = 0− 2β(0− Z ′) + ε ≈ 0.8Z ′, since the inner loop
learning rate in our experiment setting is 0.4(the noise added is quite small, which can be ignored).
Hence, W̃ ∼ N (0.8µi, 0.064Id). Moreover, we have W̃ ⊥⊥ Z and `(W̃ , Z) = ||W̃ − Z||22, so

27

W̃ −Z ∼ N (0.2µi, σ
2
l Id), σ2

l = 0.164. Furthermore, `(W̃ , Z) ∼ σ2
l ′χ2

d(k), k = 0.04||µi||22, which
is a noncentral chi-squared distribution(Bu et al. [37] analyzed ERM, where `(W̃ , Z) follows central
chi-squared distribution). Thus the CGF of `(W̃ , Z) is given by:

ψ`(W̃ ,Z)(λ) = −(d+ k)σ2
l λ−

d

2
log(1− 2σ2

l λ) +
kσ2

l λ

1− 2σ2
l λ

=
d

2
(−2σ2

l λ− log(1− 2σ2
l λ)) + kσ2

l λ
2σ2

l λ

1− 2σ2
l λ
, λ ∈ (−∞, 1

2σ2
l

)

Let u def
= 2σ2

l λ, and note that −u− log(1− u) ≤ u2

2 , u < 0.

ψ`(W̃ ,Z)(λ) =
d

2
(−u− log(1− u)) +

ku2

2(1− u)
≤ du2

4
+
ku2

2
= (2k + d)σ4

l λ
2, λ < 0 .

So the subgaussian parameter σ2 in our assumption can be expressed as σ2 = 2(2k + d)σ4
l =

2(2 ∗ 0.04||µi||22 + d)(0.164)2, where d = 2 and ||µi|| ≤ 288. So we obtain σ2 = 0.164 ∗ 0.164 ∗
4 ∗ (1 + 0.04 ∗ 288) = 1.3469.

E.2 Omniglot

Network Structure We used a CNN network architecture for Omniglot data set, which consists of
a stack of modules. The first three modules are the same, each of which is a 3× 3 2d convolution
layer of 64 filters and stride 2 followed by a Relu layer and a batch normalization layer. Then the
fourth module is a 2× 2 2d convolution layer of 64 filters and stride 1, followed by a Relu layer and
a batch normalization layer. Through the aforementioned modules, we got a 64× 1× 1 feature map.
This feature map was further taken into a fully connected layer which output the logits for a 5-way
classification. Finally, the cross-entropy loss is calculated with the logits and the corresponding
labels.

Training Details The hyper parameter settings and training details for Omniglot data set are outlined
in Table 9.

Compute Resource The experiments for Omniglot were run on a server node with 6 CPUs and 1
GPU of 32GB memory.

Subgaussian parameter For Omniglot data, we used the cross entropy loss, which is unbounded.
And the data distribution is too complex that we cannot obtain a similar closed form estimation
for the subgaussian parameter. To assure the theoretic guarantee, we can adopt a variation of the
loss function which is clipped to [0, 2] and hence 1-subgaussian. Actually, such clip is not always
necessary. As we discussed in section C, the subgaussian parameter σ2 is related to the independent
copy W̃ of the base learner output for each task. During our experiments, the loss w.r.t W̃ rarely
exceed the clip value.

F Additional Comparison to Related Works

Discussion with Jose and Simeone [20] They adopted different and generally unrealistic assump-
tions to derive the theoretical results. Concretely:

In joint-training (Eq (33) in Jose and Simeone [20]), the task-level error w.r.t. base-learner W is
related to the unknown environment distribution PT , which is hard to estimate from the observed
data. In contrast, the task-level risk in our paper is associated with the distribution meta-parameter U ,
which can be evaluated efficiently. Besides, when m→∞ and the number of task n is limited, their
bound always has a non-zero term. This does not fit the reality since the new task already has enough
samples to learn.

In the alternate-training (meta train-validation) settings, they assumed the task parameters W and
Sva are conditionally independent given Str (Eq A(8) in their paper). This is an unrealistic condition
in meta-learning since W depends on the meta-parameter U , where U is updated by Sva1:n. As a result,
if we set m = 1 (each task has only one sample), then n→∞, the upper bound in Eq(3) of [20] will
converge to 0, which is problematic since task distribution can be arbitrary noisy and the task-level

28

Hyper parameters values
task numbers n

(
1200

5

)
sample numbers m 16

outer Loop inverse temperature γt 100000000
Inner Loop inverse temperature γt,k 100000000

Outer Loop learning rate ηt 10−3 ∗ 0.96
t

800

Inner Loop learning rate βt,k 0.3 ∗ 0.96
t

1000

n-way classification 5
task batch size |It| 32

epoch/Outer Loop iterations T 2000
Inner Loop updates K 4

mva {1, 8, 15}
mtr {15, 8, 1}
loss cross entropy

test update step 10
image size 28*28

image channel 1
Table 9: Omniglot Experiment Setting

error (with one sample) can be quite large. Besides, this bound is irrelevant to the train validation
split, which is inconsistent with the previous work such as [33, 35].

Therefore, our theoretical results are not directly comparable. Even if we ignore all these unrealistic
theoretical assumptions and directly compare the results in Jose and Simeone [20], their theoretical
results in noisy iterative approaches still depend on the Lipschitz constant of the neural network
(Eq (45) in their paper), which is vacuous in deep learning.

Discussion with recent theoretical analysis on the support-query approach

Denevi et al. [33] first studied train-validation split for meta-learning in biased linear regression model.
They proved a generalization bound and concluded that there exists a trade-off for train-validation
split, which is consistent with Theorem 5.2 in our paper. Specifically, they constructed two datasets:
For the simple unimodal distribution, the optimal split is mtr = 0. For the bimodal distribution, the
optimal split is mtr ∈ (0,m− 1].

Bai et al. [34] proposed a theoretical analysis of train-validation split in linear centroid meta-learning
(parameter transfer). By comparing the train-val (alternate training) and train-train (joint training)
method, they showed that train-validation split is necessary for the agnostic setting, where the
train-val meta loss is an unbiased estimator w.r.t. the meta-test loss while the train-train loss is
biased(consistent with our Theorem 5.1). When it is realizable (noiseless scenario), the train-train
model can achieve better excess loss.

Saunshi et al. [35] analyze the train-valid splitting for linear representation learning (representation
transfer). They proved that the train-validation split encourages learning a low-rank representation. In
the noiseless setting, the train-val method already enables low-rank representation, so it’s preferable
to set a smaller train-split and larger validation-split.

While our work focus on general settings with randomized algorithms and does not specify the
form of base-learner and meta-learner, which can be applied in non-linear representation, non-linear
classifier, and non-convex loss. Besides, the relations of our papers are as follows:

1. Our theory can recover the stochastic version of the above parameter and representation transfer
settings. If we consider the linear model with U = W ⊆ Rd and PW |U is approximated by a
Gaussian distribution N (U, Id), the problem is analogous to parameter-transfer meta-learning. If
U ⊆ Rk,W ⊆ Rk+d (where U ∈ Rk is the shared representation parameter, V ∈ Rd is the
parameter of the linear classifier, W = (U, V) ∈ R(k+d) is the whole task parameter) and the prior
of stochastic linear classifier V is approximated by a Gaussian distribution N (0, Id), the setting is
similar to the representation transfer paradigm.

2. Since our bounds are based on the generic settings (flexible data distribution, algorithm, and loss
choice), the two training modes are not directly comparable in our problem. However, we agree on

29

the potential limit of joint training (asymptotically biased in the agnostic setting) and believe it is
highly interesting to explore the specific conditions to understand the benefits and limitations of these
training modes as the future work.

G Pseudo Code

Algorithm 1: Meta-SGLD for Few-Shot Learning
Require: Task environment τ ;
Require: initial learning rates η0, β0, inverse temperature γ;
randomly initialize U0;
for t← 1 to T do

Sample task data batch Bi ∼ µm,τ ,∀i ∈ It;
Randomly split BIt to BtrIt and BvaIt ;
learning rate decay, get ηt;
for i← 1 to |It| do

for k ← 1 to K do
learning rate decay, get βt,k;
if GLD then

Use full batch, Btri,t,k = Btri,t and Btri,t,k = Bvai,t ;
else

Sample Btri,t,k from Btri,t;
Sample Bvai,t,k from Bvai,t ;

end
Update parameter with gradient descent:;
if k == 1 then

W k−1
i,t = U t−1;

end

Calculate EBva
i,t,k,B

tr
i,t,k,W

k−1
i,t

βkt γ
k
t ||ε

w
t,i,k||

2
2

2 with Monte Carlo simulation;

W k
i,t = W k−1

i,t − βt,k∇RBtr
i,t,k

(W k−1
i,t) + ζt,k;

end
end
Calculate EBva

It
,Btr
It
,Ut−1,WIt

ηtγt||εut ||
2
2

2 with Monte Carlo Simulation;
U t = U t−1 − ηt∇ 1

|It|
∑
i∈It RBva

i,t
(WK

i,t) + ξt

end

30

