
A Appendix471

A.1 Active Learning Acquisition Functions472

Traditional BO acquisition functions, such as EI and LCB, use the computed means and variances473

from a surrogate model to compute an acquisition value; maximizing this acquisition value guides474

sampling of the manifold [7, 32, 12]. However, these traditional acquisition functions are static,475

such that they do not actively use any information about the performance of previously sampled476

experiments to guide sampling. Hence, we implement an active learning approach into the acquisition477

functions to develop two novel functions, EI Abrupt and LCB Adaptive, that dynamically adapt478

their sampling based on the quantity and quality of previously sampled experiments. In contrast to a479

static acquisition function, these dynamic acquisition functions are initialized with an initial set of480

hyperparameter values to guide their search but then tune these values as sampling progresses. The481

developed EI Abrupt and LCB Adaptive functions are used within the ZoMBI framework to further482

accelerate optimization and avoid pigeonholing, see line 9 of Algorithm 1.483

EI Abrupt uses actively learned information about the quality of previously measured experiment484

target values, y, to change sampling policies. For example, if the value of y plateaus for three or485

more experiments in a row, EI Abrupt will abruptly switch from a greedy sampling policy to a486

more explorative sampling policy. Specifically, this information feedback received by the function487

determines if the current round of sampling should exploit the surrogate mean values, µ(X), or488

explore the surrogate variances, σ(X). EI Abrupt computes an acquisition value, a ∈ [0, 1], for489

a given X , wherein the X with the highest a is selected by the acquisition function as the next490

suggested experiment to measure. EI Abrupt is implement for a minimization problems as:491

aEI Abrupt(X, y;β, ξ, η) =

{(
µ(X)− y∗ − ξ

)
Φ(Z) + σ(X)ψ(Z), if |∇{yn−3...n}| ≤ η

µ(X)− βσ(X), otherwise

Z =
µ(X)− y∗ − ξ

σ(X)
,

(3)

where y∗ is the lowest measured target value thus far (i.e., the running minimum), Φ(·) is the492

cumulative density function of the normal distribution, ψ(·) is the probability density function of493

the normal distribution, and |∇{yn−3...n}| is the absolute value of the gradient of the set of target494

values of the last three sampled experiments; a gradient of 0 indicates a plateau. Moreover, β = 0.1,495

ξ = 0.1, and η = 0 are hand-tuned initialization hyperparameters used for the rest of the paper for496

EI Abrupt. These hyperparameters were selected based on a priori domain knowledge of EI Abrupt497

performance on a variety of different problems. The most important hyperparameter for efficient498

sampling is β, whose ideal value is non-obvious, but it is found that β = 0.1 allows EI Abrupt to499

switch into an explorative sampling policy while still having a strong weight on the surrogate means,500

implying that exploration does not veer far.501

LCB Adaptive uses actively learned information about the quantity of previously sampled experi-502

ments, n, to tune its hyperparameter. For example, as the n increases, LCB Adaptive decays its β503

hyperparameter value to become less explorative and more exploitative. Specifically, this informa-504

tion feedback received by the function determines the contribution of both µ(X) and σ(X) to the505

acquisition value, a. Similar to EI Abrupt, LCB Adaptive computes an acquisition value, a ∈ [0, 1],506

for a given X , wherein the X with the highest a is selected by the acquisition function as the next507

suggested experiment to measure. LCB Adaptive is implemented for a minimization problem as:508

aLCB Adaptive(X,n;β, ϵ) = µ(X)− ϵnβσ(X), (4)
where n is the number of experiments sampled, and β = 3 and ϵ = 0.9 are hand-tuned initialization509

hyperparameters selected based on a priori domain knowledge of the function’s performance on a510

variety of different problems. Having a large β and an ϵ close to 1 supports a gradual decay from511

very explorative to very exploitative, rather than a rapid decay. In the following section (Section A.2),512

the dynamic EI Abrupt and LCB Adaptive are shown to both discover optima in fewer experiments513

and avoid pigeonholing into local minima better than their static counterparts by actively balancing514

the ratio of exploitation to exploration using learned information about the quality and quantity of515

previously sampled experiments.516
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A.2 Acquisition Function Performance517

(a) LCB (b) LCB Adaptive (c) EI (d) EI Abrupt

Figure A.1: Acquisition Function Sampling Density. The colored heatmaps indicate the regions of
a 2D slice from a 5D Ackley function where sampling density is high for each respective acquisition
function: (a) LCB, (b) LCB Adaptive, (c) EI, and (d) EI Abrupt. The contour lines indicate the
manifold topology with local minima as the circular and pointed regions of the contours. The red
"x" indicates the global minimum. For each acquisition function, the left panel shows the sampling
density after n = {20, 40, 80} evaluated experiments without the use of ZoMBI while the right panel
shows the sampling density after n = {20, 40, 80} evaluated experiments with the use of ZoMBI.

Pigeonholing into the local minima of a function occurs when an optimization algorithm has insuffi-518

cient learned knowledge of the manifold topology to continue exploring potentially profitable regions519

or when the algorithm’s hyperparameters are improperly tuned, leading to overly exploitative tenden-520

cies [1, 9]. The ZoMBI algorithm’s anti-pigeonholing capabilities are two-fold: (1) the zooming search521

bounds help the acquisition function to quickly stop sampling local minima once a better performing522

data point is found and (2) actively learned acquisition function hyperparameters use knowledge about523

the domain to help exit a local minimum. Figure A.1 demonstrates the anti-pigeonholing capabilities524

of ZoMBI on optimizing a 5D Ackly function with both static and dynamic acquisition functions,525

compared to that of traditional BO. The needle-like global minimum is indicated by the red "x" and526

the local minima are indicated by the circular and pointed regions of the contour lines. The sampling527

density of each acquisition function is illustrated by the heatmap, where the darker colors indicate528

higher sampling density regions. The goal is to get high sampling density near the red "x". It is529

shown that without ZoMBI being activated, the LCB, LCB Adaptive, and EI acquisition functions all530

end up pigeonholing into local minima. However, EI Abrupt initially pigeonholes into a local minima531

but then switches from an exploitative to an explorative mode to jump out of the local minimum532

and converge closer to the global. Conversely, when running the optimization procedure with ZoMBI533

active, all of the acquisition functions except the most exploitative, EI, converge onto the global534

minimum fast. LCB Adaptive and EI are shown to initially start sampling towards a local minima,535

but as ZoMBI is iteratively activated, the search bounds zoom in closer to the global minimum. Thus,536

with the combination of active learning dynamic acquisition functions and zooming search bounds,537

pigeonholing into sub-optimal local minima can be more readily avoided while optimizing NiaH538

problems, although avoidance is not guaranteed, as shown by the sampling density of EI.539

A.3 Rare Material Search Space Topology540

15



Table A.1: Description of variables from the two real-world Needle-in-a-Haystack materials science
datasets [20].

Training Variable Units Description
Density g/cm3 Density of the entire molecule.
Formation Energy eV/atom Normalized change of energy to form target phase.
Energy Above Hull eV/atom Normalized energy to decompose into stable phase.
Fermi Energy eV Highest energy level at absolute zero.
Band Gap eV Valence to conduction band electron excitation energy

Target Variable Units Description
Poisson’s Ratio, ν Unitless Mechanical deformation perpendicular to the loading direction.
Thermoelectric Merit, ZT Unitless Electrical and thermal potential of a material to produce current.

(a) Raw Dataset Histogram (b) Computed Random Forest Manifold

Figure A.2: Histogram and Random Forest of Poisson’s Ratio Dataset. (a) The Poisson’s
ratio histogram of all 146k materials in the Materials Project Dataset [20, 21] with y-axis in log-
scale. The two needles are called out, indicating the locations of minimum Poisson’s ratio values
νmin = {−1.2,−1.7}. (b) The noisy, non-convex manifold topology generated by an RF regression
of 500 trees on the Poisson’s ratio dataset. A projected 2D slice of the 5D space is illustrate with
z-axis and colorbar indicating the Poisson’s ratio. The slice of space shown indicates the narrow
basin of attraction region containing the νmin = −1.2 needle.

A.4 ZoMBI Algorithm541
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(a) Raw Dataset Histogram (b) Computed Random Forest Manifold

Figure A.3: Histogram and Random Forest of Thermoelectric Merit Dataset. (a) The Thermo-
electric Merit, ZT , histogram of all 1k materials in the dataset computed by BoltzTraP [55, 20] with
y-axis in log-scale. The two needles are called out, indicating the locations of maximum ZT values
ZTmax = {1.4, 1.9}. (b) The noisy, non-convex manifold topology generated by an RF regression
of 500 trees on the ZT dataset. A projected 2D slice of the 5D space is illustrate with z-axis and
colorbar indicating the ZT value. The slice of space shown indicates the narrow basin of attraction
region containing the ZTmax = 1.4 needle.

Algorithm 1: Zooming Memory-Based Initialization (ZoMBI)

Input : X: Set of data points {X1, X2, . . . , Xn}, where Xj ∈ Rd,
y: Set of target values {y1, y2, . . . , yn}, where yj ∈ R,
α: Number of ZoMBI activations,
ϕ: Number of forward experiments per activation,
γ: Set of acquisition function hyperparameters {β, ξ, ϵ, η},
AF : An acquisition function selected by the user

Output : The next experimental condition Xn+1 ∈ Rd and measured target value yn+1 ∈ R
1 for α activations do
2 Compute bounds {Bld,Bud} ← {min,max}X∈X(m){[X]d}
3 Initialize with i LHS data points {Xi} := {X1, X2, . . . , Xi}, where Xj ∈ Rd, [Bld,Bud ]

and target values {yi} := {y1, y2, . . . , yi}, where yj ∈ R
4 Overwrite memory X← {Xi} and y← {yi}
5 for ϕ forward experiments do
6 Let n = i+ ϕ
7 Retrain surrogate model f(X) using target values y
8 Extract set of surrogate means {µ} and variances {σ}
9 Compute set of acquisition values {a} ← AF ({µ}, {σ};γ)

10 Find the best new experimental condition Xn+1 ← arg max
[
{a}

]
11 Measure target value of new experimental condition yn+1 ← f(Xn+1)
12 Append outputs to sets X.append(Xn+1) and y.append(yn+1)
13 end
14 end
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