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A APPENDIX

A.1 CONSTRUCTING DATASET VARIATIONS WITH SMALL OBJECTS
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Figure 9: Example images from ImageNetS919 with different relative object sizes.
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Figure 10: The number of samples in each object size condition of ImageNetS919.

In section 5, we use datasets based on ImageNetS and CUB as well as their small object varia-
tions (e.g., ImageNetS-SM and CUB-SM). In this section, we provide more details how those small
variations are constructed.

For each image sample, its object size is computed based on object bounding box. In case of CUB,
the bounding box is obtained directly from available annotations. However, for ImageNetS, only
its pixel-wise segmentation is provided. In this case, object bounding box can be extracted from
the segmentation in terms of minimum and maximum coordinates along X and Y axes of object-
labelled pixels.

Given an image xi of size w × w with the object bounding box represented in terms of mini-
mum/maximum XY coordinates as (pXmin, p

X
max, p

Y
min, p

Y
max), relative object size of the image sxi

is the ratio between the area of object bounding box and the total image area which can be computed
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as follows:

sxi
=

(pXmax − pXmin)(p
Y
max − pYmin)

w2
. (4)

The value of sxi
will be within the range of [0, 1]. Example images with different values of sxi

are
shown in Figure 9.

We use sxi of individual image samples to control object size characteristic of a dataset. In section 5,
the datasets with small objects (i.e., ImageNetS919-SM and CUB-SM), are obtained by thresholding
sxi of image samples such that that their values are not larger than 0.2. In section 5.3, multiple
thresholds of sxi

are employed on the ImageNetS919 dataset in order to study behavior of our
models on different object size conditions. These thresholds are distributed uniformly from 0.05
to 1.0 with the step size of 0.05. The number of samples in each of these object size conditions is
presented in Figure 10.

A.2 ADDITIONAL ZERO-SHOT TRANSFER RESULTS

From table 1, we presented zero-shot performance of GC-CLIP variations with different model
configurations. In this section, we provide full version of the results including performance of ViT-
L/14 and DataComp in Table 3.

A.3 GUIDED CROPPING WITH SUPERVISED MODELS

In the main paper, we mainly focus on applying our Guided Cropping to zero-shot models, i.e., CLIP
and CALIP. We argue that Guided Cropping can be helpful in this case as image encoders of these
models are designed to be generic so that they potentially encode non-discriminative information of
input images.

Concerning our Guided Cropping component alone, it is, in fact, orthogonal to supervision strate-
gies. Theoretically, our Guided Cropping can be employed with supervised models as well. In this
case, models can be supervisedly trained as normal but, during inference, their input images can
be cropped with our Guided Cropping component before forwarding to the models. In this section,
we study behaviors of Guided Cropping when it is integrated with few-shot and fully-supervised
models.

A.3.1 FEW-SHOT MODELS

In this section, we conduct an experiment based on few-shot models, Tip-Adapter and Tip-Adapter-F
(Zhang et al., 2021), to learn classification on ImageNetS919-SM and CUB-SM datasets in few-shot
(n-shots=16 in our experiment). Its performance without and with Guided Cropping (α = 0.2 with
no box augmentation) is shown in the table below. According to the table, our Guided Cropping
generally improves performance of Tip-Adapter variations. This empirically demonstrates benefits
of our Guided Cropping for few-shot models.

A.3.2 FULLY-SUPERVISED MODELS

In this section, we study behaviors of Guided Cropping when it is integrated with pretrained super-
vised models. In this regard, we utilize ImageNet pretrained models with ViT-B/32, ViT-B/16 and
ViT-L/16 backbones from timm (Wightman, 2019), a deep learning library. These models are eval-
uated on ImageNetS919 and ImageNetS919-SM datsets with/without Guided Cropping. The results
are shown in Table 5.

According to the results, optimal performance generally achieves with models without Guided Crop-
ping or with Guided Cropping using large margin ratio, i.e., 0.8, whose crops already cover large
context regions. We can observe this behavior even in the case of small objects (ImageNetS919-
SM). These results indicate that, for these fully-supervised models, unrelated contexts generally do
not degrade classification performance. In contrast, these contexts even improve their performance.
This observation is actually not new and has been discussed in shortcut learning literature (Geirhos
et al., 2020) that supervisedly trained networks can take unintended visual cues (e.g., background,
texture) as shortcuts to gain classification performance on in-distribution samples.
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Table 3: Zero-shot classification accuracies from different datasets and model configurations.

Model Prompt
Guided

Cropping
Box Aug.

Dataset
ImageNetS919 CUB ImageNetS919-SM CUB-SM

C
L

IP
(V

iT
-B

/3
2) Category

- - 63.62 51.83 52.83 49.57

- Random Crop 64.42 52.45 53.47 50.79

✓ - 63.61 52.40 55.18 51.44

✓ Random Crop 64.46 53.12 56.00 52.81

✓ Multi-Margin 64.66 53.12 56.00 53.09

Descriptions

- - 68.54 53.05 55.70 50.14

- Random Crop 69.15 53.62 57.33 50.79

✓ - 68.59 54.07 58.61 53.38
✓ Random Crop 69.07 54.47 59.08 53.09
✓ Multi-Margin 69.62 54.56 60.07 52.95

C
L

IP
(V

iT
-B

/1
6) Category

- - 68.60 56.51 57.75 55.54

- Random Crop 68.81 56.89 58.05 57.41

✓ - 68.06 56.09 58.65 55.97

✓ Random Crop 68.19 56.78 58.35 57.12

✓ Multi-Margin 68.94 57.30 59.81 57.63

Descriptions

- - 72.67 57.78 61.61 56.55

- Random Crop 73.17 58.87 62.13 57.99

✓ - 72.61 58.70 63.28 59.35
✓ Random Crop 72.86 58.99 63.32 58.78

✓ Multi-Margin 73.49 59.34 64.05 59.06

C
L

IP
(V

iT
-L

/1
4)

Category

- - 75.15 63.08 64.78 62.16

- Random Crop 75.30 63.32 64.70 62.59

✓ - 75.00 62.96 66.02 62.16

✓ Random Crop 75.04 63.24 66.54 62.73

✓ Multi-Margin 75.71 63.63 66.92 63.17

Descriptions

- - 78.48 64.65 67.78 63.17

- Random Crop 78.65 64.60 67.65 63.96
✓ - 78.32 64.67 69.07 63.31

✓ Random Crop 78.28 64.88 69.41 63.96
✓ Multi-Margin 79.06 64.76 69.88 62.95

D
at

aC
om

p
(V

iT
-L

/1
4) Category

- - 82.05 85.57 69.88 85.18

- Random Crop 82.10 86.07 69.84 86.04

✓ - 81.87 85.85 71.04 86.26

✓ Random Crop 81.75 85.99 71.04 86.04

✓ Multi-Margin 82.36 86.19 71.51 86.62

Descriptions

- - 82.66 86.04 70.01 86.12

- Random Crop 82.82 86.45 70.48 86.98

✓ - 82.33 86.57 71.25 87.19

✓ Random Crop 82.23 86.62 71.25 87.19

✓ Multi-Margin 82.93 86.83 71.68 87.41

Comparing to cases of other supervision strategies, zero-shot and few-shot models are less likely to
be affected by shortcut learning since exposing to none (or few) of samples on target datasets make
them less likely to learn unintended visual clues from dataset biases.

A.4 LOGIT REFINEMENT ON TOP-K PREDICTIONS

As per our method mentioned in section 4.1, after computing preliminary logits from conventional
CLIP, only top-k predictions are considered and refined with Guided Cropping. We choose k = 5 in
this work. In this section, we will provide reasons why we adopt this top-k refinement strategy. Two
main reasons are given below.
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Table 4: Few-shot performance with Tip-Adapter variations. Accuracies gain from Guided Cropping
integration are given in parentheses.

Model Approach Guided Cropping Dataset
ImageNetS919-SM CUB-SM

V
iT

-B
/3

2 Tip-Adapter - 56.34 53.45
Tip-Adapter ✓ 58.27 (+1.93) 54.53 (+1.08)
Tip-Adapter-F - 62.43 60.22
Tip-Adapter-F ✓ 63.15 (+0.72) 60.07 (-0.15)

V
iT

-B
/1

6 Tip-Adapter - 62.34 61.44
Tip-Adapter ✓ 64.05 (+1.71) 62.30 (+0.86)
Tip-Adapter-F - 68.04 67.12
Tip-Adapter-F ✓ 68.42 (+0.38) 67.05 (-0.07)

V
iT

-L
/1

4 Tip-Adapter - 68.77 70.72
Tip-Adapter ✓ 70.44 (+1.67) 71.94 (+1.22)
Tip-Adapter-F - 72.24 73.88
Tip-Adapter-F ✓ 72.15 (-0.09) 74.32 (+0.44)

Table 5: Classification accuracies of ImageNet pretrained models with/without Guided Cropping on
ImageNet919.

Architecture Guided
Cropping

Margin
Ratio

Box
Aug.

Dataset
ImageNetS919 ImageNetS919-SM

ViT-B/32 - - - 76.82 61.53
ViT-B/32 - - Random Crop 77.71 62.21
ViT-B/32 ✓ 0.2 - 77.11 64.05
ViT-B/32 ✓ 0.2 Random Crop 77.99 65.04
ViT-B/32 ✓ 0.8 - 76.91 62.81
ViT-B/32 ✓ 0.8 Random Crop 78.14 63.84
ViT-B/16 - - - 81.72 68.89
ViT-B/16 - - Random Crop 82.11 69.37
ViT-B/16 ✓ 0.2 - 81.08 68.42
ViT-B/16 ✓ 0.2 Random Crop 81.16 68.85
ViT-B/16 ✓ 0.8 - 81.63 68.51
ViT-B/16 ✓ 0.8 Random Crop 81.94 69.37
ViT-L/16 - - - 86.09 75.62
ViT-L/16 - - Random Crop 86.35 76.35
ViT-L/16 ✓ 0.2 - 85.67 75.92
ViT-L/16 ✓ 0.2 Random Crop 85.69 75.54
ViT-L/16 ✓ 0.8 - 86.21 76.26
ViT-L/16 ✓ 0.8 Random Crop 86.37 76.35

• Potential Accuracy: We found that there is already high chances that the correct classes
are among predicted top-5 classes. To demonstrate this, we analyze top-1, top-5 and top-
10 accuracies of conventional CLIP in Table 6. According to the results, large accuracy
gaps can be noticed between top-1 and top-5 accuracies (24.53% for ImageNetS919 and
31.79% for CUB). In other words, by considering only 5 classes for refinement with Guided
Cropping, upper bounds of final accuracies are already high. It must be noted that, while
this upper bound accuracies can be raised further by considering top-10 classes, the gains
compared to top-5 classes are relatively small. This may not worth introducing additional
computation to the pipeline. Therefore, we decide to perform Guided Cropping based on
predicted top-5 classes in this work.

• Common Bounding Boxes: We notice that visual appearances of top-5 classes are relatively
similar in most cases. OWL-ViT is also likely to produce similar boxes for these classes.
This makes the use of common bounding boxes (e.g., the primary box b0i or the α-margin
box bαi ) among these classes reasonable. To illustrate this, considering each sample in
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Table 6: Top-k accuracies from conventional CLIP (ViT-B/32) with category prompts.

Dataset Accuracy
Top-1 Top-5 Top-10

ImageNetS919 63.62 88.15 92.98
CUB 51.83 83.62 90.63

Figure 13 and 14, its primary box generally contains visual features which are (partially)
similar to each top class making the box become a decent box candidate for all top classes.

A.5 ACCURACIES WITH DIFFERENT OBJECT SIZE CONDITIONS
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Figure 11: Accuracies (ViT-B/16) on subsets of ImageNetS919 with various object size conditions.
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Figure 12: Accuracies (ViT-L/14) on subsets of ImageNetS919 with various object size conditions.

In section 5.3, we study GC-CLIP performance on various object size conditions and show that
GC-CLIP variations outperform baselines especially when target object sizes are small. The plots in
Figure 6 are provided for models with ViT-B/32 backbone. In this section, additional evidences with
other backbones are provided to support our claim. Figure 11 and 12 show similar plots for models
with ViT-B/16 and ViT-L/14 backbones respectively. According to the figures, similar behavior can
be observed. There are accuracy gaps between conventional CLIP and GC-CLIP and the gaps are
larger on datasets with small objects. This demonstrates that our claim is consistent across different
CLIP backbones.

A.6 INFERENCE WITH OWL-VIT

OWL-ViT performs object detection taking images and text prompts as inputs and producing bound-
ing boxes as well as their scores and class labels as outputs. In this work, for each image sample
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Table 7: Accuracies from GC-CLIP (ViT-B/32) with different OWL-ViT inference strategies.

Dataset Prompt Type Box
Aug.

OWL-ViT Inference
Single-Pass Multi-Pass

ImageNetS919-SM Category RAug 54.71 56.00
ImageNetS919-SM Category MAug 55.61 56.00
ImageNetS919-SM Descriptions RAug 57.84 59.08
ImageNetS919-SM Descriptions MAug 59.47 60.07

CUB-SM Category RAug 50.22 52.81
CUB-SM Category MAug 53.09 53.09
CUB-SM Descriptions RAug 51.51 53.09
CUB-SM Descriptions MAug 53.45 52.95

Table 8: Average similarity scores between images and their corresponding prompts (i.e., maximum
logit values) of correctly classified samples of CLIP (with RAug) and GC-CLIP (with MAug) using
ViT-B/32 backbone.

Dataset Prompt Type Accuracy with
CLIP GC-CLIP

ImageNetS919-SM Category 29.39 29.71
ImageNetS919-SM Descriptions 30.17 30.51

CUB-SM Category 33.71 33.89
CUB-SM Descriptions 34.30 34.55

xi, we use OWL-ViT to extract bounding box candidates Bi based on a set of detection prompts
of the top-k classes

{
pdetj |j ∈ Jk

i

}
. Theoretically, there are two possible options to obtain Bi from

OWL-ViT.

• Single Forward Pass (Single-Pass): with this option, an input image and all detection
prompts are forwarded to OWL-ViT at once. With a single forward pass, OWL-ViT will
produce a set of bounding boxes which will be used directly as Bi.

• Multiple Forward Passes (Multi-Pass): with this option, OWL-ViT will perform forward
pass with one detection prompt at a time. In other words, there will be k forward passes
in total. Each forward pass will produce a set of bounding boxes bij based on a detection
prompt pdetj . Bounding boxes estimated from all forward passes will be merged to get Bi

according to equation 2.

As mentioned in section 4.1, we decide to adopt Multi-Pass in our Guided Cropping pipeline as
Multi-Pass is more robust to misdetection (if one pass fails, other passes can act as backup passes).
In this section, we demonstrate empirically that Multi-Pass can lead to better performance.

In this regard, we conduct an experiment to compare GC-CLIP accuracies when Single-Pass and
Multi-Pass are employed. The results are shown in Table 7. According to the results, GC-CLIP with
Multi-Pass is consistently better across datasets and model configurations. This confirms our design
choice to use Multi-Pass in our Guided Cropping pipeline.

A.7 SIMILARITY BETWEEN CROPPED IMAGES AND THEIR PROMPTS

One motivation of our Guided Cropping is that, by minimizing unrelated information, CLIP image
encoder can focus more on target objects leading to better image representations. In section 5.1
better image representations can be indirectly inferred via the improvement of the classification
performance. In this section, we would like to analyze image representations in another perspective.

We argue that, if image representations are better, the representations should be not only less similar
to prompts of other classes but also more similar to prompts of their own classes. In this regard,
we investigate similarities of image embeddings (of the correctly classified samples) to their own
prompts. Here, similarity scores are obtained in terms of maximum predicted logit values. Similar-
ity score results of CLIP and GC-CLIP are shown in Table 8. We can notice that similarity scores
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Table 9: Performance of GC-CLIP (ViT-B/32) on additional datasets using category-based prompts.

Guided
Cropping

Box Aug.
Dataset

ImageNet ImageNetV2 Stanford Dogs ImageNet-A ImageNet-R
- - 58.79 51.88 52.46 29.37 65.26
- Random Crop 59.31 52.21 53.43 29.28 66.24
✓ - 58.95 52.84 53.92 31.41 65.47
✓ Random Crop 59.46 52.94 54.73 31.81 65.99
✓ Multi-Margin 59.84 53.30 54.12 31.97 66.67

between images and their corresponding prompts in case of GC-CLIP are consistently higher. This
indicates that image representations after Guided Cropping are more similar to their prompts ac-
cording to our assumption.

A.8 VISUALIZING EXAMPLE RESULTS

In this section, we present top-5 logits estimated from CLIP and GC-CLIP on example samples
from ImageNetS919 to demonstrate qualitatively that GC-CLIP can refine logits to make correct
predictions. The results are illustrated in Figure 13 and 14.

A.9 RESULTS ON ADDITIONAL DATASETS

In section 5, we aim to study the cases when objects of interest cover small areas of input images.
Therefore, image classification datasets with segmentation/bounding box annotations are chosen for
evaluation that enable us to quantify the performance on objects covering small areas. Hence, we
choose ImageNetS919 and CUB for our evaluation as these datasets provide segmentation/bounding
box annotations from which object sizes of image samples can be obtained. These annotations
enable more insight studies with different object sizes. These datasets are also commonly used in
weakly supervised object localization task (Zhu et al., 2022) as it needs similar annotations during
evaluation.

For completeness, we perform evaluation on additional classification datasets without object size
annotations as well. However, it must be noted that we may not be able to decouple effects of object
size and extraneous image regions in this case. In this section, we present performance of GC-CLIP
on ImageNet (Russakovsky et al., 2015), ImageNetV2 (Recht et al., 2019), Stanford Dogs (Khosla
et al., 2011), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R (Hendrycks et al., 2021a)
datasets.

The results are shown in Table 9. According to the results, even object sizes of these datasets
are not controlled, our GC-CLIP is generally still better than the baselines. The magnitudes of
improvement are generally similar to results in Table 1 in the main paper (refering unconstrained
variants of ImageNetS919 and CUB).

One interesting observation which must be noted here is GC-CLIP performance on out-of-
distribution datasets (i.e., ImageNet-A and ImageNet-R). We can observe that amounts of accuracy
gains from GC-CLIP are different depending on out-of-distribution conditions. GC-CLIP benefits
better on natural adversarial condition (ImageNet-A) than on rendition condition (ImageNet-R). We
attribute this behavior to our dependency of OWL-ViT. In the rendition condition, objects are in
unusual contexts such that OWL-ViT performance is not always consistent.

A.10 COMPARISON WITH CENTRAL CROP

In our work, we demonstrate that image cropping guided by object locations can improve classifica-
tion performance. To further support this argument, we perform experiments comparing our guided
cropping with a deterministic cropping strategy, Central Crop, commonly used for classification (Jia
et al., 2021; Zhai et al., 2022; Touvron et al., 2019).

Central Crop benefits under the assumption that target objects likely to locate at the center of input
images. During inference, an input image will be cropped around its center according to a predefined
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Figure 13: Top-5 logits on example samples improved by Guided Cropping (set 1). Model config-
urations are CLIP (with RAug) and GC-CLIP (with MAug) using ViT-B/32 backbone and prompt
type of descriptions. Red boxes represent primary boxes used in our GC-CLIP pipeline.

cropping ratio from 0.0 to 1.0. The crop ratio of 1.0 refers to the usage of the full images without
cropping. Then, the processed image will be resized to a compatible size for employed models be-
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Figure 14: Top-5 logits on example samples improved by Guided Cropping (set 2). Model config-
urations are CLIP (with RAug) and GC-CLIP (with MAug) using ViT-B/32 backbone and prompt
type of descriptions. Red boxes represent primary boxes used in our GC-CLIP pipeline.

fore performing the inference. We conduct experiments with Central Crop using different cropping
ratios on ImageNetS919-SM. Its performance can be visualized as in Figure 15.

20



Under review as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8 1.0
Crop Ratio

0

10

20

30

40

50

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_32, Prompt=Cat

CenterCrop
GC-CLIP (No.Aug)

(a) Prompt: Category (ViT-B/32)

0.2 0.4 0.6 0.8 1.0
Crop Ratio

10

20

30

40

50

60

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_32, Prompt=Desc.

CenterCrop
GC-CLIP (No.Aug)

(b) Prompt: Descriptions (ViT-B/32)

0.2 0.4 0.6 0.8 1.0
Crop Ratio

0

10

20

30

40

50

60

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_16, Prompt=Cat

CenterCrop
GC-CLIP (No.Aug)

(c) Prompt: Category (ViT-B/16)
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Figure 15: Central crop performance with different cropping ratios compared to GC-CLIP (without
box augmentation) on ImageNetS919-SM.

According to the results, we can see that, models with Central Crop can slightly improve perfor-
mance compared to vanilla models. For example, according to Figure 15b, the model without Cen-
tral Crop (ratio=1.0) achieves the accuracy of 55.61 while the model with Central Crop (ratio=0.9)
achieves the higher accuracy of 56.30. However, on Figure 15, models with Guided Cropping (with-
out box augmentation) consistently outperform Central Crop. This supports the argument that our
cropping approach guided by object locations is preferable over simple cropping at a predefined
location.
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