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In the supplementary material, we provide the descriptions of the
main notations, explore different emotion knowledge distillation
methods, design a simple framework to validate the generality of the
proposed training paradigm and introduce more visualization results.
The code for our model is in the attachment.

1 THE MAIN NOTATIONS

The main notations in the manuscript and the corresponding descrip-
tions are shown in Table. 1.

2 DETAILS OF THE DATASETS

In this section, we provide details of the two datasets used in the man-
uscript, i.e., StickerChat [2], DSTC10-MOD [1] and SER30K [6].

StickerChat is a multi-modal multi-turn dialog dataset, collected
from public chat groups in messaging apps. The 20 utterances be-
fore each sticker image are stored as the historical context of the
conversation, and together with the sticker image form a sample
pair. It consists of 320, 168 training pairs, 10,000 validation pairs,
and 10, 000 testing pairs. Each sentence in the training set contains
an average of 7.54 words and each dialogue contains an average of
5.81 users. StickerChat contains a total of 174, 695 sticker images
across 3516 topics, and the average number of stickers in a topic is
49.64. Furthermore, the author of the stickers assigns each sticker
with a corresponding emoji tag to convey its semantic or emotional
meaning.

DSTC10-MOD is a competition dataset published by WeChat
Conversation Platform, which consists of real open-domain conver-
sations and is available in both Chinese and English. Following [7],
we only adopt the Chinese version of DSTC10-MOD. It contains
45,000 open-domain dialogs with 307 stickers, each sample consists
of a history dialog and stickers appearing in the dialog. Since the
competition has ended, and to our knowledge the test set is cur-
rently no longer available, all experiments in the main manuscript
are evaluated on the validation set.

SER30K is a large-scale sticker emotion recognition dataset, its
sticker images are crawled from a sticker image website and an-
notated by three expert annotators. The dataset comprises of 1, 887
sticker topics with a total of 30, 739 sticker images, with training, val-
idation, and test sets accounting for 70%, 10%, and 20% respectively.
Each sticker is labeled with one of the seven emotion categories, i.e.,
sadness, disgust, surprise, happiness, fear, anger and neutral. In addi-
tion, about 19% of the images in the dataset contain textual content,
which consists of commonly used phrases in daily conversations,
resulting in relatively shorter text length (most samples have text
lengths lower than 6).

3 DETAILS OF THE TEACHER MODEL

We use the standard ResNet50 [3] as the teacher model for the EKD
module. The batch size is set to 128, training a total of 100 epochs
on SER30K [6]. The input image is scaled to 128 X 128 and then
randomly rotated and randomly horizontally flipped. We apply the
Adam optimizer with a learning rate of 10™%, adjusting its decay
schedule to decrease the learning rate by a factor of 0.1 at the 50th
and 80th epochs. The final classification accuracy of the teacher
model on the SER30K test set is 64.56%, which can be considered
as an upper bound on the performance of the student model.

4 VISUALIZATION RESULTS

Fig. 1 shows visualization results in the StickerChat [2] validation
set, where (a) and (b) are examples of common usages of stickers,
(c) and (d) are two representative failure cases. The main usage of
Stickers in dialogues is Strategic (i.e., maintenance of social status
quo, forming sympathy) and Functional (e.g., substitute for text,
supplement for text) [4, 5]. In (a), the user uses the sticker to express
a different emotion from the dialogue. The sticker in this example
mainly plays a strategic role, forming sympathy among users in the
conversation. The user expresses his attitude toward the story by
“hahaha”, which means he finds the story interesting. But at the end
of the dialogue, he responds with a sticker of a cat cowering under
the quilt, and the textual content in the sticker is weak, pathetic, and
helpless. The user complements his sentiment with such a sticker
and expresses sympathy for his little niece who lost teeth. In (b),
the user uses the sticker to supplement the text. In the historical
dialogue, the user expresses annoyance that the old mouse is not
damaged when he wants to buy a new one. He then responds with
a sticker of a weeping cartoon character to emphasize his negative
emotion.

In (c) and (d) we show two failure cases. We show the Top-6
stickers with the model prediction scores, where the score of the
ground truth sticker is shown with a green background. Some stick-
ers contain textual content, which is closely related to the semantics
and emotions expressed by these stickers. For example, the ground
truth sticker shown in (c) contains textual content, which must be
taken into consideration in order to make an accurate prediction.
However, we did not construct a corresponding branch to analyze
the textual content in the sticker. As a result, the model may mis-rank
the candidate stickers even if the top-ranked sticker seems to match
the conversation. We believe that introducing optical character recog-
nition can improve the understanding of stickers by the model, which
can be a future research direction. Some sticker responses are related
to the user’s personal preferences. We show in (d) that multiple
suitable sticker responses could exist in the candidate set. Since the
StickerChat dataset is collected in real conversation scenarios, the
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sticker responses are related to the user’s characteristics. Although
the sticker with the first ranking score predicted by our model also
matches the conversation, it does not match the user’s preference.
We believe that investigating the modeling of personalized sticker
responses for individual users could be a valuable future research
direction.
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Table 1: Summary of the main notations in the manuscript as well as the corresponding descriptions. Note that all the notations have

been explained in the manuscript.

Notation

Description
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the input multi-turn dialogue
the i-th utterance in the dialogue
the number of utterances in the dialogue
the number of candidate sticker images
the candidate sticker images
the i-th image in the candidate sticker images
the ranking model
the index of the ground truth sticker in S
the negative samples in dialogue-sticker matching
the height and width of the input image
the vision features of image encoder output
the i-th vision feature of the image encoder output
the global vision feature
the length of sequence vision features
the dimension of vision features
the text representations
the i-th word embedding in W
the number of words
the dimension of word embedding
the average of all word features
the number of samples in a mini-batch
the features of vision and language modalities in a common embedding space
the [CLS] token embeddings of Vand W
the probability predicted by multimodal encoder
the dimensions of SER30K image features extracted by the teacher model
the number of clusters for each emotion category in the EKD module
the Emotion Anchor feature matrix in the EKD module
the StickerChat image features extracted by the teacher model
the output of the image encoder for two parallel data augmentations
the [CLS] token embeddings of each sticker
the positive and negative score of the dialogue

the trade-offs between the individual objective functions
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(a) Strategic Usage
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(b) Functional Usage
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Figure 1: Visualization of samples on the StickerChat [2] validatioﬁ set. In (a) and (b) we show the effect of stickers in the dialogue. In

(c) and (d) we show two failure cases.
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