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1 MERC BASELINES
DialogueRNN [13] is a computational model designed to capture
the emotional dynamics within conversations. It operates through
three principal components: firstly, each participant is depicted by
a dynamic "party state" that evolves in response to their utterances.
Secondly, the conversational context is encapsulated by a "global
state" that is collectively maintained by all participants, integrating
prior utterances and party states to construct a comprehensive
contextual representation. Lastly, the model derives an emotional
representation from the current speaker’s state, alongside the states
of previous speakers, which is subsequently utilized for emotion
classification.
DialogueGCN [5] adeptly captures both speaker-agnostic and
speaker-dependent contextual information within dialogues. The
model employs a sequence-level context encoder to derive compre-
hensive discourse-level representations. Subsequently, it incorpo-
rates a specialized speaker-level context encoder, structured as a
graph network, to elucidate nuanced, speaker-specific contextual
cues. This encoder accounts for both the inter-dependencies and
intra-dependencies among participants, thereby proficiently captur-
ing the dynamic nature of the dialogue. The interactions within the
dialogue are further represented through a directed graph. Further-
more, DialogueGCN utilizes a locality-based convolutional feature
transformation process to enhance the refinement of speaker-level
context encoding features. This methodology facilitates the extrac-
tion of more detailed contextual information, thereby enriching the
understanding of dialogues.
MMGCN [9] represents a sophisticated approach in the realm of
multimodal fusion using graph convolutional networks. This model
encapsulates the encoding of multimodal contextual information
through a spectral-domain graph convolution network, enhanced
by the addition of multiple stacked layers to deepen the GCN archi-
tecture. MMGCN incorporates learned speaker embeddings, aiming
to capture speaker-level contextual information. Such embeddings
are pivotal for simulating dependencies both among different speak-
ers and within the same speaker. Consequently, MMGCN is adept at
leveraging multimodal dependencies and utilizing speaker informa-
tion to model interpersonal and intrapersonal relational dynamics
effectively.
MMDFN [7] leverages modal encoders to monitor the state and
context of a speaker across various modalities. It enhances graph
convolutional layers with a gating mechanism and introduces an
innovative graph-based dynamic fusion module to integrate multi-
modal contextual information. This module employs graph convo-
lution operations to aggregate inter-modal and intra-modal contex-
tual information within designated semantic spaces of each layer.
Simultaneously, it uses a gating mechanism to discern the inher-
ent sequential patterns of contextual information across adjacent
semantic spaces. MMDFN effectively regulates the flow of informa-
tion between layers, reduces redundancy, and enhances the com-
plementarity among modalities. By embedding multimodal context

features into dynamic semantic spaces, it realizes a comprehensive
integration of contextual and semantic information.
M3Net [2] addresses the limitations of the existing MERC frame-
work, which has exhibited constrained capabilities in handling the
multivariate relationships and multi-frequency information inher-
ent to dialogic contexts. M3Net introduces a novel Hypergraph
representation and a tailored Multivariate Propagation module to
effectively model the intricate interconnections present in conver-
sational data. By concurrently implementing both low-pass and
high-pass filtering mechanisms, M3Net is able to selectively extract
salient signals from the node features, thereby achieving state-of-
the-art performance on relevant benchmarks.

2 CONFIDENCE CALIBRATION BASELINES
T-Scale [6] Short for Temperature scaling, is recognized as a straight-
forward yet efficacious calibration technique that enhances the pre-
cision of a model’s confidence assessments. The core of this method
is a single scalar parameter that is fine-tuned by minimizing the
negative log-likelihood (NLL) on a validation subset. The calibra-
tion process is executed in a two-step manner: first, the model’s
softmax logits are computed; these logits are then scaled by divid-
ing by 𝑇 , where 𝑇 > 1. Optimization of 𝑇 is conducted with the
sole objective of NLL minimization on the validation data. Upon
identifying the optimal𝑇 , the model is retrained, with applying the
newly calibrated temperature scaling. Through this adjustment of
the temperature parameter, temperature scaling harmonizes the
model’s confidence scores with the actual probabilities of the pre-
dicted outcomes, thereby ensuring that the confidence estimates
are more representative of the model’s veritable performance.
Ensemble [19] by aggregating predictions frommultiple models, ef-
fectively mitigating uncertainties associated with model parameters
and data. In regions of the feature space that are underrepresented
by the training data, the variability in predictions from individual
ensemble members inherently increases. This increased variability
inversely affects the confidence associated with these predictions.
The process of aggregating predictions across several models helps
to diminish the impact of specific model- and data-related uncer-
tainties, thereby enhancing the reliability and robustness of the
ensemble’s confidence estimates, particularly in areas of the feature
space where individual models may exhibit less certainty.
CRL [14] stands for Correctness Ranking Loss. During the training
process, it estimates the true class probabilities based on the num-
ber of times a sample is correctly classified, arranging them in the
desirable ordinal order of confidence estimates. This helps the clas-
sifier learn ordinal relationships. CRL is an effective regularization
method that can be used to train deep neural networks to mitigate
the well-known issue of overconfident predictions.
FMFP [18] (Flat Minima for Failure Prediction) strategy is predi-
cated on the theory that the confidence gap between correctly and
incorrectly predicted samples is larger in flat minima compared to
sharp minima. By employing Stochastic Weight Averaging (SWA)
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Table 1: Detailed hyperparameter settings.

Hyperparameters IEMOCAP MELD
Batch size 16 16
Epochs 80 15
𝑑𝑣 342 342
𝑑𝑎 1582 300
𝑑𝑡 1024 1024

Dropout rate 0.5 0.4
Weight decay 0.00003 0.00003

Learning rate for network learning 0.0001 0.0001
Optimizer for network learning Adam Adam

The weight of L𝑚 , L𝑐 , L𝑠 0.05, 0.05, 0.05 0.15, 0.15, 0.02
The number of buckets 7 3

The number of graph layer 4 3
The max training step of buckets 1 1
The number of hypergraph layer 3 3
The maximum conversation length 110 33

and Sharpness-Aware Minimization (SAM) as representative meth-
ods, FMFP effectively seeks flat minima in deep neural networks
(DNNs), thereby enhancing the model’s calibration.
CML [12] Based on the principle that the fundamental nature of
information is to reduce uncertainty, a regularization loss is imple-
mented. This loss penalizes samples for which the estimated confi-
dence increases following the removal of a modality. Additionally,
a strategic sampling method is utilized to enhance computational
efficiency. This methodology has demonstrated notable success in
practical applications.

3 FEATURE EXTRACTION
Textual Features: To obtain context-independent utterance-level
feature vectors, we follow [4] to fine-tune the Roberta Large model
to predict emotion labels of utterances. Let an utterance u𝑖 be
a sequence of tokens after applying Byte Pair Encoding (BPE),
denoted as w1,w2, ...,w𝑁 . The emotion label associated with u𝑖 is
represented by e𝑖 , where e𝑖 belongs to the set of emotion labels
𝐸. To prepare the input sequence for the RoBERTa model, we add
a special token [𝐶𝐿𝑆] at the beginning of the original utterance.
The sequence now becomes [𝐶𝐿𝑆],w1,w2, ...,w𝑁 . This modified
sequence is then fed into the Roberta model. The output of the
last layer corresponding to the [𝐶𝐿𝑆] token is used as input to
a small feed-forward network, which performs the classification
into the appropriate emotion class. After fine-tuning the model for
emotion classification, we utilize the model for generating feature
vectors. We pass the BPE tokenized utterance appended with [𝐶𝐿𝑆]
through the model and extract the outputs from the last four layers
corresponding to the [𝐶𝐿𝑆] tokens. The four vectors are combined
through averaging, resulting in a context-independent utterance-
level feature vector with a dimensionality of 1024.
Acoustic Features: Regarding the extraction of acoustic features,
we adopt the methodology outlined in the study by [13], utilizing
the openSMILE toolkit [3] for this purpose. The chosen acoustic
features undergo a subsequent normalization process, after which a
fully connected layer is utilized to achieve dimensionality reduction.
Notably, the dimensions of the resulting acoustic features differ
between datasets: 1582 for IEMOCAP and reduced to 300 for MELD.

Table 2: Comparison of results against various LLMs. ♣, ♠, ♦
and■ results come from [16], [15], [11] and [17], respectively.

Methods IEMOCAP MELD
Ours 71.98 66.85

Zero-shot
♣ ChatGPT 40.07 54.37
♦ ChatGLM 38.60 38.80
♦ ChatGLM2 21.10 21.80
♦ Llama 0.75 9.12
♦ Llama2 2.77 16.28

Few-shot
■ ChatGPT 1-shot 47.46 58.63
■ ChatGPT 3-shot 48.58 58.35

LORA + Backbone
♠ Curie 57.33 65.01

♦ ChatGLM 18.94 40.54
♦ ChatGLM2 52.88 64.85
♦ Llama 55.81 66.15
♦ Llama2 55.96 65.84

Visual Features: For visual facial expression features, we employ
a DenseNet architecture [10], which is pre-trained on the Facial
Expression Recognition Plus (FER+) corpus [1], similar to the ap-
proach used in [9]. The dimension of the visual facial expression
feature is 342 for each dataset.

4 DETAILED HYPERPARAMETER SETTINGS
All re-implementation methods have released their source codes,
ensuring identical settings as the original papers. For the CMERC,
hyperparameters 𝛾𝑚 , 𝛾𝑐 , 𝛾𝑠 , and 𝜏 are manually tuned for each
dataset using hold-out validation. The specific results of the hy-
perparameter search are presented in Table 1. The reported results
are the average score of 5 random runs on the test set. Our experi-
ments are conducted on a single RTX 4090 GPU. The code will be
open-sourced upon acceptance of the paper.

5 COMPARING RESULTS AGAINST LARGE
LANGUAGE MODELS (LLMS)

Table 2 provides a clear comparison of various sentiment analy-
sis methods on the IEMOCAP and MELD datasets. Our approach
achieves notably high accuracy, reaching 71.98% and 66.85% on the
respective datasets, highlighting its superiority in emotion clas-
sification tasks. In contrast, ChatGPT’s performance is compar-
atively lower in the zero-shot scenario, with 40.07% (IEMOCAP)
and 54.37% (MELD). Other zero-shot methods like ChatGLM, Chat-
GLM2, Llama, and Llama2 also fall short of our method. In the
few-shot scenario, ChatGPT 3-shot shows a slight improvement
but still lags behind our approach. In comparison with large models
(LORA [8] + Backbone), our method outperforms models such as
Curie, ChatGLM, ChatGLM2, Llama, and Llama2 on both IEMOCAP
and MELD. Overall, our method excels in comparisons with LLMs,
surpassing ChatGPT not only in zero-shot and few-shot scenarios
but also demonstrating superior performance within the LORA +
Backbone framework compared to other models.
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