
A Technical Lemmas

Lemma 6. Let pn(x) =
∑n

i=0
1
i!x

i be the degree-n Taylor polynomial of ex around x = 0. Then for
any k ≥ 1 and any x ∈ R, we have

ex ≥ p2k−1(x).

Proof. The proof is an induction on k. The base case k = 1 is trivial: ex ≥ 1 + x.

Consider the general case p2k+1. Define g(x) = ex − p2k+1(x). It is easy to see that g′(x) =
ex − p2k(x) and g′′(x) = ex − p2k−1(x). By the induction hypothesis, g′′ ≥ 0 and therefore g is
convex. Thus, the minimum of g is given by its stationary points. It is easy to observe that x = 0 is
indeed a stationary point. Thus, minx∈R g(x) = g(0) = 0, which finishes the proof.

Lemma 7. Let σ > 0 and W be the principal branch of the Lambert W function. For any m ∈ N,
we have

1 +W (− m

e(m+ σ2)
) ≤

√
2σ2

m+ σ2
.

Proof. The problem is reduced to proving

1 +W (x) ≤
√
2(1 + ex)

for all − 1
e ≤ x ≤ 0. In fact, the right hand side is exactly the first-order Taylor expansion of the left

hand side at x = − 1
e [e.g., 4].

Square both sides. It is equivalent to prove (1 +W (x))2 ≤ 2(1 + ex) for all x ∈ [− 1
e , 0]. Define

g(x) = (1 +W (x))2 − 2(1 + ex).

The derivative of g in (− 1
e , 0) is

g′(x) = 2

(
W (x)

x
− e

)
.

By the definition of the Lambert W function, we have

ex = W (x)e1+W (x) < W (x)

since −1 < W (x) < 0 for x ∈ (− 1
e , 0). Thus, g′(x) < 0 for x ∈ (− 1

e , 0) and g is a decreasing
function in [− 1

e , 0]. Observe that g(− 1
e ) = 0. Therefore g(x) ≤ 0 for all x ∈ [− 1

e , 0], which
completes the proof.

Next, we present a lemma which states that the error function bounds the posterior covariance trace
in each iteration of Algorithm 1.

Lemma 8. In the t-th iteration of Algorithm 1, we have

tr
(
∇kDt(xt,xt)∇⊤) ≤ Ed,k,σ(bt)

Proof. Without loss of generality, we assume xt = 0. Otherwise, shift the data Dt and xt by −xt,
which does not change the value of the left hand side becauce of stationarity of the kernel k. Let
Z ∈ Rbt×d be arbitrary candidates. Then, we have

tr
(
∇kDt−1∪Z(0,0)∇⊤) ≤ tr

(
∇k(0,0)∇⊤ −∇k(0,Z)(k(Z,Z) + σ2I)−1k(Z,0)∇⊤).

Because the LHS conditions on both Dt−1 and Z but the RHS only conditions on Z. Now, we
minimize Z on both sides.

On the one hand, the LHS becomes tr
(
∇kDt

(0,0)∇⊤). This is because Dt is the union of Dt−1

and the minimizer of the acquisition function αtrace(0,Z) = tr
(
∇kDt−1∪Z(0,0)∇⊤).

On the other hand, the RHS becomes Ed,k,σ(bt) by definition of the error function, which completes
the proof.

Note that the edge case, where the minimizer of the acquisition function argminZ αtrace(0,Z) does
not exist (e.g., when σ = 0), can be handled by a careful limiting argument using the same idea.
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A.1 Lemmas for the RKHS Assumption

By Assumption 1, the kernel function k is four times continuously differentiable. The following
lemma asserts the smoothness of f ∈ H.

Lemma 9. Suppose f ∈ H maps from a compact domain X to R. Then f is L-smooth for some L.

Proof. Since the kernel k is four times continuously differentiable, f is twice continuously differen-
tiable. On a compact domain X , the spectral norm of the Hessian ∥∇f(x)∥ has a maximizer. Define
L = maxx∈X ∥∇f(x)∥. Then f is L-smooth.

Lemma 1. For any f ∈ H, any x ∈ X and any D, we have the following inequality

∥∇f(x)−∇µD(x)∥2 ≤ tr
(
∇kD(x,x)∇⊤)∥f∥2H. (4)

Proof. This is a simple corollary of a standard result in meshless scattered data approximation [e.g.,
28, Theorem 11.4]. The main idea is to express the estimation error as a linear functional, and then
compute the operator norm of that linear functional.

Let λ = δxD : H → R be the composition of the evaluation operator and differential operator, i.e.
λf = Df(x). Wendland [28, Theorem 11.4] provides a bound on (λf − λµD)

2:

(λf − λµD)
2 ≤ λ(1)λ(2)kD(·, ·)∥f∥2H,

where λ(1) applies λ to the first argument of kD and λ(2) applies λ to the second argument of kD.

Pick the linear functional λ : f 7→ ∂
∂xi

f(x) where 1 ≤ i ≤ d. Then, the left hand side becomes
(λf − λµD)

2 = ( ∂
∂xi

f(x) − ∂
∂xi

µD(x))
2. The right hand side λ(1)λ(2)kD(·, ·) is exactly the i-th

diagonal entry of ∇kD(x,x)∇⊤. For each i, use the above inequality, and then summing over all
coordinates finishes the proof.

A.2 Lemmas for Convergence on GP Sample Paths

In this section, we provide a few lemmas for the GP sample path f ∼ GP(0, k). By Assumption 1,
we have the follow lemma which asserts that f is smooth with high probability.

Lemma 3. For 0 < δ < 1, there exists a constant L > 0 such that f is L-smooth w.p. at least 1− δ.

Proof. The proof uses the Borell-TIS inequality. Let f ∼ GP(0, k) be a Gaussian process. Provided
that supx∈X |f(x)| is almost surely finite, the Borell-TIS inequality states that

Pr(sup
x∈X

|f(x)| > u+ E sup
x∈X

|f(x)|) ≤ exp(− u2

2s2
),

where u > 0 is an arbitrary positive constant and s2 = supx∈X E|f(x)|2. Namely, if the supremum
of f is almost surely finite then the supremum of f is bounded with high probability.

Since k is four time continuously differentiable, the second-order derivative ∂2

∂xi∂xj
f exists and is

almost surely continuous. On a compact domain X , the supremum supx∈X | ∂2

∂xi∂xj
f(x)| is almost

surely finite. By the Borell-TIS inequality, the expectation E supx∈X | ∂2

∂xi∂xj
f(x)| is finite and the

supremum supx∈X | ∂2

∂xi∂xj
f(x)| is bounded with high probability. Thus, the Frobenius norm of the

Hessian ∇2f(x) is bounded with high probability by a union bound. Since the spectral norm of
∇f(x) can be bounded by its Frobenius norm, the spectral norm of the Hessian ∥∇f(x)∥ is also
bounded with high probability, which gives the smoothness constant.

The next two lemmas bound the gradient estimation error with high probability.

Lemma 10. Let u ∼ N (0,Σ) be a Gaussian vector. Then for any t > 0

Pr(∥u∥ > t) ≤ 2 exp

(
− t2

2 trΣ

)
.
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Proof. This is a standard concentration inequality result, but we give a self-contained proof here for
completeness. Denote the spectral decomposition Σ = QΛQ⊤. By Markov’s inequality, we have

Pr(∥u∥ > t) = Pr(es∥u∥ > est)

≤ e−stEes∥u∥,

where s > 0 is an arbitrary positive constant. Let ϵ ∼ N (0, I) be a standard Gaussian variable. Then
it is easy to see that ∥u∥ = ∥Λ 1

2 ϵ∥. Then, replacing ∥u∥ with ∥Λ 1
2 ϵ∥ gives

Pr(∥u∥ > t) ≤ e−stEes∥Λ
1
2 ϵ∥

≤ e−stEes∥Λ
1
2 ϵ∥1

= e−st
d∏

i=1

Ees
√
λi|ϵi|

≤ 2e−st
d∏

i=1

Ees
√
λiϵi

= 2e−st+ 1
2 s

2 ∑d
i=1 λi ,

where the first line plugs in ϵ; the second line uses ∥ · ∥2 ≤ ∥ ·∥1; the third line is due to independence
of ϵi; the forth line removes the absolute value resulting an extra factor of 2; the last lines uses the
moment generating function of ϵi. Optimizing the bound over s gives the desired result

Pr(∥u∥ > t) ≤ 2e
− t2

2
∑d

i=1
λi = 2 exp(− t2

2 trΣ
).

Lemma 11. For any 0 < δ < 1, let Ct = 2 log(π
2t2

6δ ). Then, the inequalities

∥∇f(xt)−∇µDt
(xt)∥2 ≤ Ct tr∇kDt

(xt,xt)∇⊤

hold for any t ≥ 1 with probability at least 1− δ.

Proof. Since ∇f(xt) ∼ N (∇µDt
(xt),∇kDt

(xt,xt)∇⊤), applying Lemma 10 gives

Pr(∥∇f(xt)−∇µDt
(xt)∥2 ≥ Ct tr(∇kDt

(xt,xt)∇⊤)) ≤ 2 exp(−1

2
Ct).

The particular choice of Ct makes the probability on the right hand side become 6δ
π2t2 . Using the

union bound over all t ≥ 1 and using the infinite sum
∑∞

t=1
1
t2 = π2

6 finishes the proof.

We provide an important remark. The probability in Lemma 11 is taken over the randomness of f
and the observation noise. On the other hand, the posterior mean gradient ∇µDt is deterministic,
since it is conditioned on the data Dt.

B Bounds on the Error Function Ed,k,σ

This section is devoted to bounding the error function Ed,k,σ(b) in terms of the batch size b. The
results in this section immediately give a bound on the posterior covariance trace by Lemma 8.

Before diving into the proofs, we present some immediate corollaries of Assumption 1 on the
kernel. Because k is stationary, the kernel can be written as k(x,x′) = ϕ(x− x′) for some positive-
definite function ϕ. Observe that ∇k(x,x′) = ∇ϕ(x − x′) and ∇k(x,x′)∇⊤ = −∇2ϕ(x − x′).
Denote the first-order partial derivative ∂iϕ(x) =

∂
∂xi

ϕ(x) and the second-order partial derivative

∂2
i ϕ(x) =

∂2

∂x2
i
ϕ(x). It is easy to see that ϕ is an even function and ∇ϕ is an odd function. In addition,

0 is a maximum of ϕ. Therefore, ∇ϕ(0) = 0 and the Hessian ∇2ϕ(0) is negative semi-definite.

15



B.1 Noiseless Setting

The following is a bound for the error function Ed,k,0 for arbitrary kernels satisfying Assumption 1
in the noiseless setting σ = 0.

Lemma 2. For σ = 0, the error function is bounded by Ed,k,0(b) ≤ Cmax{0, 1 + d− b}, where
C = max1≤i≤d

∂2

∂xi∂x′
i
k(0,0) is the maximum of the Hessian’s diagonal entries at the origin.

Proof. The bound holds trivially for b = 0, 1 and thus a proof is only needed for b ≥ 2, which we
split into two cases 2 ≤ b ≤ d+ 1 and b > d+ 1.

We first focus on the case 2 ≤ b ≤ d+ 1. Let z0 = 0 and zi = hei where i = 1, 2, · · · b− 1, where
ei is the i-th standard unit vector and h > 0 is a constant. Define Z = (z0 z1 · · · zb−1)

⊤. By
the definition of the error function, we have

Ed,k,0(b) ≤ tr
(
∇k(0,0)∇⊤ −∇k(0,Z)k(Z,Z)−1k(Z,0)∇⊤)

=

d∑
i=1

Aii

= C(1 + d− b) +

b−1∑
i=1

Aii,

where we define A = ∇k(0,0)∇⊤ −∇k(0,Z)k(Z,Z)−1k(Z,0)∇⊤ and use the inequality Aii ≤
−∂2

i ϕ(0) ≤ C for b ≤ i ≤ d.

Let us focus on the i-th diagonal entry Aii where 1 ≤ i ≤ b− 1. Then we have

Aii ≤ −∂2
i ϕ(0)− (0 ∂iϕ(−hei))

(
ϕ(0) ϕ(hei)
ϕ(hei) ϕ(0)

)−1(
0

∂iϕ(−hei)

)
= −∂2

i ϕ(0)−
1

(ϕ(0))2 − (ϕ(hei))2
(0 ∂iϕ(−hei))

(
ϕ(0) −ϕ(hei)

−ϕ(hei) ϕ(0)

)(
0

∂iϕ(−hei)

)
= −∂2

i ϕ(0)−
ϕ(0)(∂iϕ(hei))

2

(ϕ(0))2 − (ϕ(hei))2
,

where the first line is because conditioning on the subset z0 and zi does not make the posterior
smaller. Now let h → 0 and compute the limit by L’Hôpital’s rule. We have

lim
h→0

Aii(h) = lim
h→0

−∂2
i ϕ(0)−

ϕ(0)(∂iϕ(hei))
2

(ϕ(0))2 − (ϕ(hei))2

= lim
h→0

−∂2
i ϕ(0)−

ϕ(0)

ϕ(0) + ϕ(hei)
· 2∂iϕ(hei)∂

2
i ϕ(hei)

−∂iϕ(hei)

= 0.

Thus letting h → 0 gives the inequality Ed,k,σ(b) ≤ C(1 + d− b) for 2 ≤ b ≤ d+ 1.

When d > d+ 1, note that Ed,k,σ(b) is an decreasing function in b and thus Ed,k,σ(b) ≤ Ed,k,σ(d+
1) = 0. Both cases can be bounded by the expression Cmax{0, 1 + d− b}.

B.2 Noisy Setting

This section proves bounds on the error function Ed,k,σ for the RBF kernel and the ν = 5
2 Matérn

kernel in the noisy setting. The lemmas in this section will implicitly use the assumption that
k(0,0) = 1. This assumption is indeed satisfied by the RBF kernel and the Matérn kernel, which are
of primary concern in this paper.

Before proving the bound on Ed,k,σ , we need one more technical lemma:

Lemma 12 (Central Differencing Designs). Consider the 2md points Z ∈ R2md×d defined as

z
(i)
j =

{
−hei, j = 1, 2, · · ·m
hei, j = m+ 1,m+ 2 · · · 2m,
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where 1 ≤ i ≤ d, 1 ≤ j ≤ 2m and ei is the i-th standard unit vector. Define

A = ∇k(0,0)∇⊤ −∇k(0,Z)(k(Z,Z) + σ2I)−1k(Z,0)∇⊤.

Then, we have

Aii ≤ −∂2
i ϕ(0)−

2β2
i

(1− αi) + γ
,

for all 1 ≤ i ≤ d and thus

tr(A) ≤ −
d∑

i=1

(∂2
i ϕ(0) +

2β2
i

(1− αi) + γ
),

where αi = ϕ(2hei), βi = ∂iϕ(−hei) and γ = σ2

m .

Proof. Note that A is the posterior covariance at the origin 0 conditioned on Z. Denote Z(i) =(
z
(i)
1 z

(i)
2 · · · z

(i)
m z

(i)
m+1 · · · z

(i)
2m

)⊤
the subset of 2m points that lie on the i-th axis. Then,

the i-th diagonal entry Aii can be bounded by

Aii ≤ −∂2
i ϕ(0)− ∂ik(0,Z

(i))(k(Z(i),Z(i)) + σ2I)−1(∂ik(0,Z
(i)))⊤,

since conditioning on only a subset of points Z(i) would not make the posterior variances smaller
(e.g., the posterior covariance is the Schur complement of a positive definite matrix). The remaining
proof is dedicated to bounding the right hand side.

First, we need to compute the inverse of the 2m× 2m kernel matrix

K̂ = k(Z(i),Z(i)) + σ2I

=

(
11⊤ αi11

⊤

αi11
⊤ 11⊤

)
+ σ2I,

where αi = ϕ(2hei) is a nonnegative constant and 1 is a m dimensional vector (we drop the index
i in the matrix K̂ for notation simplicity). We compute the inverse analytically by forming its
eigendecomposition

K̂ = QΛQ⊤,

where Λ = diag(λ1, λ2, · · · , λ2m) and Q = (q1 q2 · · · q2m). Observe that:

K̂ =

(
1 αi

αi 1

)
⊗ 11⊤ + σ2I,

where ⊗ denotes the Kronecker product. Because the eigenvalues (vectors) of a Kronecker product
equal the Kronecker product of the individual eigenvalues (vectors), and because adding a diagonal
shift simply shifts the eigenvalues, the top two eigenvalues of K̂ are λ1 = m(1 + αi) + σ2 and
λ2 = m(1− αi) + σ2. The remaining 2m− 2 eigenvalues are σ2. The top two eigenvectors are

q1 =
1√
2m

(
1
1

)
, q2 =

1√
2m

(
1
−1

)
,

Next, we cope with the term ∂ik(0,Z
(i)), where the partial derivative is taken w.r.t. the first argument’s

i-th coordinate. Denote v⊤ = ∂ik(0,Z
(i)). Then it is easy to see that

v = βi

(
−1
1

)
,

where βi = ∂iϕ(−hei). Note that v happens to be an eigenvector of K̂ as well, because v ∥ q2. As
a result, Q⊤v has a simple expression Q⊤v = (0 −

√
2mβi 0 · · · 0)⊤. Thus, we have

Aii ≤ −∂2
i ϕ(0)− v⊤QΛ−1Q⊤v

= −∂2
i ϕ(0)−

2mβ2
i

m(1− αi) + σ2

= −∂2
i ϕ(0)−

2β2
i

(1− αi) + γ
.

Summing over the coordinates 1 ≤ i ≤ d finishes the proof.
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With Lemma 12, we are finally ready to present the bounds for the RBF kernel and the Matérn kernel.

Lemma 4 (RBF Kernel). Let k(x1,x2) = exp
(
− 1

2∥x1 − x2∥2
)

be the RBF kernel. We have

Ed,k,σ(2md) ≤ d

(
1 +W

(
− m

e(m+ σ2)

))
= O(σdm− 1

2 ),

where m ∈ N and W denotes the principal branch of the Lambert W function.

Proof. For any Z ∈ R2md×d, the following inequality holds by the definition of error function

Ed,k,σ(b) ≤ tr
(
∇k(0,0)∇⊤ −∇k(0,Z)(k(Z,Z) + σ2I)−1k(Z,0)∇⊤).

Consider the following points z(i)j defined as

z
(i)
j =

{
−hei, j = 1, 2, · · ·m
hei, j = m+ 1,m+ 2 · · · 2m,

where 1 ≤ i ≤ d. The total number of points is exactly 2md. By Lemma 12, we have

Ed,k,σ(b) ≤ −
d∑

i=1

(∂2
i ϕ(0) +

2β2
i

(1− αi) + γ
).

For the RBF kernel, the values of αi and βi are the same for each coordinate 1 ≤ i ≤ d since it is
isotropic:

α = αi = ϕ(2hei) = exp(−2h2), β = βi = ∂iϕ(−hei) = exp
(
− 1

2
h2

)
h.

Plugging the value of α, β, γ and ∂2
i ϕ(0) into the bound on Ed,k,σ , we have

Aii ≤ 1− 2m exp(−h2)h2

m(1− exp(−2h2)) + σ2

≤ 1− 2m exp(−2h2)h2

m(1− exp(−2h2)) + σ2

where the second inequality replaces exp(−h2) with exp(−2h2) in the numerator. Because the
bound holds for arbitrary h, we can apply the transformation h 7→ 1√

2
h, which gives the inequality

Aii ≤ 1− m exp(−h2)h2

m(1− exp(−h2)) + σ2
.

Our goal is to bound Aii in terms of m and σ2. Therefore, we minimize the right hand side over h.
Define g(x) = 1− me−xx

m(1−e−x)+σ2 , where x ≥ 0. The derivative is given by:

g′(x) =
m(m+ (m+ σ2)ex(x− 1))

(m(ex − 1) + σ2ex)2
.

The unique stationary point is x∗ = 1 + W
(
− m

e(m+σ2)

)
, where W is the principal branch of the

Lambert W function. It is easy to see the stationary point x∗ is the global minimizer of g(x) over
R≥0. Plug x∗ into the expression of g. Coincidentally, we have g(x∗) = 1 +W

(
− m

e(m+σ2)

)
as well

— x∗ is a fixed point of g.

In summary, we have shown Aii ≤ 1 +W
(
− m

e(m+σ2)

)
for each coordinate i. Summing Aii over

all d coordinates proves the first inequality Ed,k,σ(2md) ≤ d
(
1 + W

(
− m

e(m+σ2)

))
. The second

inequality is a direction implication of Lemma 7, which completes the proof.

Lemma 5 (Matern Kernel). Let k(·, ·) be the ν = 2.5 Matérn kernel. Then, we have

Ed,k,σ(2md) ≲ σdm− 1
2 + σ

3
2 dm− 3

4 = O(σdm− 1
2 ).
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Proof. The proof is similar to Lemma 4. The difference is that we need to upper bound ∂2
i ϕ(0) +

2β2
i

(1−αi)+γ by a rational function. Otherwise the expression is intractable to minimize.

The Matérn kernel with half integer ν can be written as a product of an exponential and a polynomial.
In particular, for ν = 5

2 , we have

ϕ(x) = (1 +
√
5∥x∥+ 5

3
∥x∥2) exp(−

√
5∥x∥).

When x is in the nonnegative orthant, the gradient is

∇ϕ(x) = exp(−
√
5∥x∥)(

√
5

∥x∥
x+

10

3
x)−

√
5

∥x∥
exp(−

√
5∥x∥)(1 +

√
5∥x∥+ 5

3
∥x∥2)x

= −5

3
exp(−

√
5∥x∥)(1 +

√
5∥x∥)x.

Since the Matérn kernel is isotropic, the αi and βi as in Lemma 12 are the same across different
coordinate i, and their values are

α = αi = ϕ(2hei) = exp(−2
√
5h)(1 + 2

√
5h+

20

3
h2),

β = βi = ∂iϕ(−hei) = −∂iϕ(hei) =
5

3
exp(−

√
5h)(1 +

√
5h)h,

In addition, −∂2
i ϕ(0) =

5
3 . By Lemma 12, we have

Aii ≤ −∂2
i ϕ(0)−

2β2

(1− α) + γ

=
5

3
− 10 exp(−2h)(1 + h)2h2

3(3− exp(−2h)(3 + 6h+ 4h2)) + 9γ
.

Next, we approximate the exponential function exp(−2h) by its Taylor polynomials. By Lemma 6,
use the inequality exp(−2h) ≥ 1− 2h for the numerator and the inequality exp(−2h) ≥ 1− 2h+
2h2 − 4

3h
3 for the denominator. Applying these two inequalities gives

Aii ≤
5

3
− 10(1− 2h)(1 + h)2h2

2h2(3 + 8h3) + 9γ
.

Let h = γ
1
4 and thus γ = h4. Then we have

Aii ≤
5

3
− 10(1− 2h)(1 + h)2h2

2h2(3 + 8h3) + 9h4

=
5h2(27 + 28h)

3(6 + 9h2 + 16h3)

≤ 5

18
h2(27 + 28h)

=
15

2
γ

1
2 +

70

9
γ

3
4

=
15

2
σm− 1

2 +
70

9
σ

3
2m− 3

4

where the third line drops h2 and h3 in the denominator; the forth line plugs in the value h = γ
1
4

back and drops the constants. Summing over the coordinates 1 ≤ i ≤ d gives the first inequality:

Ed,k,σ(2md) ≲ σdm− 1
2 + σ

3
2 dm− 3

4

For large enough m, the bound is dominated by the first term σdm− 1
2 , which completes the proof.

We end this section with a short summary. Lemma 4 and Lemma 5 happen to end up with the
same rate Ed,k,s(2md) = O(σdm− 1

2 ). Replacing 2md with the batch size b, we have shown that
Ed,k,s(b) = O(σd

3
2 b−

1
2 ) for the RBF kernel and ν = 2.5 Matérn kernel.
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B.3 Discussion: Forward Differencing Designs

This section explores an alternative proof for the error function based on forward differencing designs,
as opposed to the central differencing designs in Lemma 12. Similar to the previous section, we
assume k(0,0) = 1, which is indeed satisfied by the RBF kernel and Matérn kernel.

Lemma 13. Consider following (d+ 1)m points Z ∈ R(d+1)m×d defined as

z
(0)
j = 0, j = 1, 2, · · · ,m

z
(i)
j = hei, i ≥ 1, j = 1, 2, · · · ,m

where ei is the i-th standard unit vector. Define

A = ∇k(0,0)∇⊤ −∇k(0,Z)(k(Z,Z) + σ2I)−1k(Z,0)∇⊤.

Then, we have

trA ≤ −
d∑

i=1

(
∂2
i ϕ(0) +

(1 + γ)β2
i

(1 + γ)2 − α2
i

)
where αi = ϕ(hei), βi = ∂iϕ(−hei) and γ = σ2

m .

Proof. The proof is similar to Lemma 12.

Denote Z(i) be the subset of points consisting of z(i)j and z
(0)
j , where j = 1, 2, · · · ,m. Notice that

the i-th diagonal entry Aii can be bounded by

Aii ≤ −∂2
i ϕ(0)− ∂ik(0,Z

(i))(k(Z(i),Z(i)) + σ2I)−1(∂ik(0,Z
(i)))⊤.

We need to invert the 2m× 2m matrix

K̂ = k(Z(i),Z(i)) + σ2I

=

(
11⊤ αi1

⊤

αi1 11⊤

)
+ σ2I.

Again, we resort to the eigendecomposition of K̂ = QΛQ⊤. The top two eigenvalues of K̂ are
λ1 = m(1 + αi) + σ2 and λ2 = m(1− αi) + σ2. The remaining 2m− 2 eigenvalues are σ2. The
top two eigenvectors are

q1 =
1√
2m

(
1
1

)
, q2 =

1√
2m

(
1
−1

)
.

Denote v⊤ = ∂ik
(
0,Z(i)

)
. Note that v can be written as a linear combination of q1 and q2:

v = βi

(
0
1

)
=

1

2
βi

√
2m(q1 − q2).

Then, straightforward calculation gives Q⊤v = 1
2βi

√
2m(1 −1 0 · · · 0)⊤.

Then, we have

Aii ≤ −∂2
i ϕ(0)− v⊤QΛ−1Q⊤v

= −∂2
i ϕ(0)−

1

2
mβ2

i

(
1

m(1 + αi) + σ2
+

1

m(1− αi) + σ2

)
= −∂2

i ϕ(0)−
1

2
β2
i

(
1

1 + αi + γ
+

1

1− αi + γ

)
= −∂2

i ϕ(0)−
β2
i (1 + γ)

(1 + γ)2 − α2
i

.

Summing over all coordinates finishes the proof.
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Lemma 14. Let k(x1,x2) = exp
(
− 1

2∥x1 − x2∥2
)

be the RBF kernel. The forward differencing
designs give a decay rate of Ed,k,σ(b) = O(σdm− 1

2 ).

Proof. Define α = ϕ(hei) and β = ∂iϕ(−hei). Plugging the values of α and β into the bounds in
Lemma 13 yields

Aii ≤ 1− h2 exp(−h2)(1 + γ)

(1 + γ)2 − exp(−h2)
.

The bound holds for arbitrary h. Applying the transformation h 7→
√
h gives

Aii ≤ 1− h exp(−h)(1 + γ)

(1 + γ)2 − exp(−h)

≤ 1− h(1− h)(1 + γ)

(1 + γ)2 − (1− h)

= 1− h(1− h)(1 + γ)

γ2 + 2γ + h

≤ 1− h(1− h)

γ2 + 2γ + h
,

where the second line uses the inequality exp(−h) ≥ 1− h in the numerator and the denominator;
the last line is because γ is nonnegative. Let h = γ

1
2 so that γ = h2. Then we have

Aii ≤ 1− h(1− h)

h4 + 2h2 + h

=
h3 + 3h

h3 + 2h+ 1

≤ h3 + 3h

= γ
3
2 + 3γ

1
2

≲ γ
1
2

= σm− 1
2

where the first line plugs in γ = h2; the third line drops the h3 + 2h in the denominator; the forth
lines plugs in h = γ

1
2 ; the fifth line is because γ

1
2 dominates the bound when m is large. Thus, we

have shown Ed,k,σ(dm+m) = O(σdm− 1
2 ).

The above lemma shows that forward differencing designs achieve the same asymptotic decay rate
as the central differencing designs for the RBF kernel. Though, the leading constant in the big O
notation is slightly larger.

C Convergence Proofs

The following is a useful lemma for biased gradient updates, which bounds the gradient norm via the
cumulative bias. The proof is adapted from a lemma by Ajalloeian and Stich [1, Lemma 2].

Lemma 15. Let f be L-smooth and bounded from below. Suppose the gradient oracle ĝt has
bias bounded by ξt in the t-th iteration. Namely, we have ∥ĝt − gt∥2 ≤ ξt for all t ≥ 0, where
gt = ∇f(xt) is the ground truth gradient. Then the update xt+1 = xt − ηtĝt with ηt ≤ 1

L produces
a sequence {xt}∞t=1 satisfying

min
1≤t≤T

∥∇f(xt)∥2 ≤ 2(f(x1)− f∗)∑T
t=1 ηt

+

∑T
i=1 ηtξt∑T
t=1 ηt
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Proof. By L-smoothness, we have

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

1

2
L∥xt+1 − xt∥2.

Plugging in the update formula xt+1 = xt − ηtĝt, we have

f(xt+1) ≤ f(xt)− ηt∇f(xt)
⊤ĝt +

1

2
Lη2t ∥ĝt∥2

≤ f(xt)− ηt∇f(xt)
⊤ĝt +

1

2
ηt∥ĝt∥2

≤ f(xt)− ηt∇f(xt)
⊤ĝt +

1

2
ηt∥ĝt −∇f(xt) +∇f(xt)∥2

≤ f(xt) +
1

2
ηt(∥ĝt −∇f(xt)∥2 − ∥∇f(xt)∥2)

≤ f(xt)−
1

2
ηt∥∇f(xt)∥2 +

1

2
ηtξt,

where the first inequality uses L-smoothness; the second inequality uses ηt ≤ 1
L ; the fourth inequality

expands the squared Euclidean norm; the last inequality uses the definition of bias. Summing the
inequalities for t = 1, 2, · · · , T and rearranging the terms, we have

T∑
t=1

ηt∥∇f(xt)∥2 ≤ 2(f(x1)− f(xT+1)) +

T∑
t=1

ηtξt

≤ 2(f(x1)− f∗) +

T∑
t=1

ηtξt.

Dividing both sides by
∑T

t=1 ηt gives∑T
t=1 ηt∥∇f(xt)∥2∑T

t=1 ηt
≤ 2(f(x1)− f∗)∑T

t=1 ηt
+

∑T
t=1 ηtξt∑T
t=1 ηt

.

The left hand side is a weighted average, which is greater than the minimum over 1 ≤ t ≤ T , which
completes the proof.

Next, we prove a variant of Lemma 15 for the projected update xt+1 = projX (xt − ηt∇f(xt)). For
the ground truth gradient gt = ∇f(xt), define the gradient mapping

G(xt) =
1

ηt

(
xt − projX (xt − ηtgt)

)
.

For the approximate gradient ĝt = ∇µDt
(xt), define the gradient mapping

Ĝ(xt) =
1

ηt

(
xt − projX (xt − ηtĝt)

)
.

In the following, we introduce two lemmas characterizing the projection operator projX (·).

Lemma 16 (e.g., Lemma 3.1 of Bubeck et al. [2]). Let X be convex and compact. Let x ∈ X and
z ∈ Rd. Then we have

(projX (z)− z)⊤(x− projX (z)) ≥ 0.

As a result, ∥x− z∥2 ≥ ∥projX (z)− z∥2 + ∥x− projX (z)∥2.

Lemma 17. The following holds:

1. ∥G(xt)∥ ≤ ∥gt∥,

2. ∥G(xt)− g∥ ≤ ∥gt∥,

3. ∥Ĝ(xt)−G(xt)∥ ≤ ∥ĝt − gt∥,
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4. g⊤G(xt) ≥ ∥G(xt)∥2.

Proof. (1-2): The first two inequalities are direct corollaries of Lemma 16.

(3): This is proved as follows:

∥Ĝ(xt)−G(xt)∥ =
1

ηt
∥projX (xt − ηtgt)− projX (xt − ηtĝt)∥

≤ ∥ĝt − gt∥,
where the second line is because the projection operator is non-expansive.

(4): By Lemma 16, we have

−ηtG(xt)
⊤(ηtG(xt)− ηtgt) ≥ 0.

Rearranging the terms finishes the proof.

Now we give a lemma proving biased gradient update with the projection operator. The proof is
adapted from a lemma by Shu et al. [22].

Lemma 18. Let f be L-smooth over a convex compact set X . Moreover, assume the gradient
norm ∥∇f(x)∥ is bounded by L′ on X . Suppose the gradient oracle ĝt has bias bounded by
ξt in the t-th iteration: ∥ĝt − gt∥2 ≤ ξt for all t ≥ 0, where gt = ∇f(xt). Then the update
xt+1 = projX (xt − ηtĝt) with ηt ≤ 1

L produces a sequence {xt}∞t=1 satisfying

min
1≤t≤T

∥G(xt)∥2 ≤ 2(f(x1)− f∗)∑T
t=1 ηt

+

∑T
i=1 ηtξt∑T
t=1 ηt

+
L′ ∑T

i=1 ηt
√
ξt∑T

t=1 ηt
,

where G(xt) =
1
ηt

(
xt − projX (xt − ηtgt)

)
is the gradient mapping.

Proof. By L-smoothness, we have

f(xt+1)− f(xt) ≤ g⊤
t (xt+1 − xt) +

1

2
L∥xt+1 − xt∥2

= −ηtg
⊤
t Ĝ(xt) +

1

2
Lη2t ∥Ĝ(xt)∥2

≤ −ηtg
⊤
t Ĝ(xt) +

1

2
ηt∥Ĝ(xt)∥2,

where the second line plugs in the update xt+1 = xt − ηtĜ(xt) and the third line is due to ηt ≤ 1
L .

Now we analyze the two terms separately. For the first term, we have

−ηtg
⊤
t Ĝ(xt) = −ηtg

⊤
t

(
Ĝ(xt)−G(xt)

)
− ηtg

⊤
t G(xt)

≤ −ηtg
⊤
t

(
Ĝ(xt)−G(xt)

)
− ηt

∥∥G(xt)
∥∥2,

where the second inequality uses Lemma 17. For the second term, we have
1

2
ηt
∥∥Ĝ(xt)

∥∥2 =
1

2
ηt
∥∥Ĝ(xt)−G(xt) +G(xt)

∥∥2
=

1

2
ηt
∥∥Ĝ(xt)−G(xt)

∥∥2 + ηt
(
Ĝ(xt)−G(xt)

)⊤
G(xt) +

1

2
ηt
∥∥G(xt)

∥∥2
≤ 1

2
ηt∥ĝt − gt∥2 + ηt

(
Ĝ(xt)−G(xt)

)⊤
G(xt) +

1

2
ηt
∥∥G(xt)

∥∥2
Summing them together, we have

f(xt+1)− f(xt) ≤
1

2
ηt∥ĝt − gt∥2 + ηt

(
Ĝ(xt)−G(xt)

)⊤(
G(xt)− gt

)
− 1

2
ηt
∥∥G(xt)

∥∥2
≤ 1

2
ηt∥ĝt − gt∥2 + ηt

∥∥Ĝ(xt)−G(xt)
∥∥ · ∥gt∥ −

1

2
ηt
∥∥G(xt)

∥∥2
≤ 1

2
ηtξt + ηtL

′
√
ξt −

1

2
ηt∥G(xt)∥2,
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where the second line uses Cauchy-Schwarz inequality.

A telescoping sum gives

T∑
t=1

ηt∥G(xt)∥2 ≤
T∑

t=1

ηtξt + 2L′
T∑

t=1

ηt
√
ξt + 2(f(x1)− f(xT+1)),

which results in

min
1≤t≤T

∥G(xt)∥2 ≤ 2(f(x1)− f∗)∑T
t=1 ηt

+

∑T
i=1 ηtξt∑T
t=1 ηt

+
L′ ∑T

i=1 ηt
√
ξt∑T

t=1 ηt
.

The rest of this section proves all theorems and their corollaries in the main paper.

Theorem 1. Let f ∈ H whose smoothness constant is L. Running Algorithm 1 with constant batch
size bt = b and step size ηt =

1
L for T iterations outputs a sequence satisfying

min
1≤t≤T

∥∇f(xt)∥2 ≤ 1
T

(
2L(f(x1)− f∗)

)
+B2 · Ed,k,0(b). (5)

Proof. By Lemma 1 and Assumption 3, we can bound the bias in the iteration t as

∥∇f(xt)−∇µDt(xt)∥2 ≤ B2 tr
(
∇kDt(xt,xt)∇⊤).

By Lemma 8, the trace in the RHS can be bounded by the error function Ed,k,σ(b). Thus, the gradient
bias is B2Ek,k,σ(b). Applying Lemma 15 with ηt =

1
L and ξt = B2Ek,k,σ(b) finishes the proof.

Corollary 1. Under the same assumptions of Theorem 1, using batch size bt = d+ 1, we have

min
1≤t≤T

∥∇f(xt)∥2 ≤ 1
T

(
2L(f(x1)− f∗)

)
.

Therefore, the total number of samples n = O(dT ) and the squared gradient norm ∥∇f(xt)∥2
converges to zero at the rate O(d/n).

Proof. By Lemma 2, we have Ed,k,σ(d+ 1) = 0. Plugging it into Theorem 1 gives the rate in the
iteration number T . To get the rate in samples n, note that n =

∑T
t=1(d+ 1) = (d+ 1)T . Plugging

T = n
d+1 into the rate finishes the proof.

Theorem 2. For 0 < δ < 1, suppose f is a GP sample whose smoothness constant is L w.p. at least
1− δ. Algorithm 1 with batch size bt and step size ηt =

1
L produces a sequence satisfying

min
1≤t≤T

∥∇f(xt)∥2 ≤ 1
T

(
2L(f(x1)− f∗)

)
+ 1

T

∑T
t=1 CtEd,k,σ(bt) (6)

with probability at least 1− 2δ, where Ct = 2 log
(
(π2/6)(t2/δ)

)
.

Proof. By Lemma 11, we have

∥∇f(xt)−∇µDt
(xt)∥2 ≤ Ct tr

(
∇kDt

(xt,xt)∇⊤)
with probability at least 1− δ. The trace on the RHS can be further bounded by the error function
Ed,k,σ(bt) by Lemma 8. Applying the union bound, with probability at least 1− 2δ, the inequality

∥∇f(xt)−∇µDt
(xt)∥2 ≤ CtEd,k,σ(bt)

holds for all t ≥ 0 and f is L-smooth. Applying Lemma 15 with ηt = 1
L and ξ = CtEd,k,σ(bt)

finishes the proof.
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Corollary 2. Let k(·, ·) be either the RBF kernel or the ν = 2.5 Matérn kernel. Under the same
conditions as Theorem 2, if

bt =


d log2 t;

dt;

dt2,

then min
1≤t≤T

∥∇f(xt)∥2 =


O(1/T ) +O(σd);

O
(
σdT− 1

2 log T
)
= O

(
σd

5
4n− 1

4 log n
)
;

O
(
σdT−1 log2 T

)
= O

(
σd

4
3n− 1

3 log2 n
)
,

with probability at least 1− 2δ. Here, T is the total number of iterations and n is the total number of
samples queried.

Proof. By Theorem 2, with probability at least 1− 2δ, we have

min
1≤t≤T

∥∇f(xt)∥2 ≤ 1
T

(
2L(f(x1)− f∗)

)
+ 1

T

∑T
t=1 CtEd,k,σ(bt)

The proof boils down to bounding the average cumulative bias. The full details is in Appendix D.

Theorem 3. Under the same conditions as Corollary 2, without Assumption 2, using the projected
update rule (7), Algorithm 1 obtains the following rates:

if bt =

{
dt;

dt2,
then min

1≤t≤T
∥G(xt)∥2 =

{
O
(
σd

5
4n− 1

4 log n+ σ
1
2 d

5
8n− 1

8 log n
)
;

O
(
σd

4
3n− 1

3 log2 n+ σ
1
2 d

2
3n− 1

6 log n
)
,

with probability at least 1− 2δ. Here, n is the total number of samples queried.

Proof. Since f is twice differentiable on a compact set X , its gradient norm ∥∇f(x)∥ attains a
maximum. Thus, there exists a constant L′ such that L′ ≥ ∥∇f(x)∥ for all x ∈ X . By Lemma 18
and a similar argument in Theorem 2, with probability at least 1− 2δ, we have

min
1≤t≤T

∥G(xt)∥2 ≤ 1
T

(
2L(f(x1)− f∗)

)
+ 1

T

∑T
t=1 C

(2)
t Ed,k,σ(bt) +

1
T

∑T
t=1 C

(2)
t

√
Ed,k,σ(bt),

where C
(1)
t and C

(2)
t are constants growing in O(log t). By Lemmas 4 and 5, plug in the error

function Ed,k,σ(b) = O(σd
3
2 b−

1
2 ). The rest of the proof follows a similar argument in Corollary 2,

as shown in Appendix D.

Finally, we present a convergence result for GP sample path under noiseless assumption.

Theorem 4. For 0 < δ < 1, suppose f is a GP sample whose smoothness constant is L with
probability at least 1 − δ. Assuming σ = 0, Algorithm 1 with batch size bt = d + 1 and step size
ηt =

1
L produces a sequence satisfying

min
1≤t≤T

∥∇f(xt)∥2 ≤ 2L(f(x1)− f∗)

T

with probability at least 1− 2δ.

Proof. By Theorem 2, we have

min
1≤t≤T

∥∇f(xt)∥2 ≤ 2L(f(x1)− f∗)

T
+

1

T

T∑
t=1

CtEd,k,σ(d+ 1)

with probability at least 1− 2δ. By Lemma 2, Ed,k,σ(d+ 1) = 0, the second term is essentially zero,
which finishes the proof.

25



D Optimizing the Batch Size

In this section, we optimize the batch size in Theorem 2 and give explicit convergence rates. The
discussion in this section will give a proof for Corollary 2.

For the RBF kernel and ν = 2.5 Matérn kernel, by Theorem 2, Lemma 4 and Lemma 5, we have
shown the following bound

min
1≤t≤T

∥∇f(xt)∥2 ≲
1

T
+

1

T

T∑
t=1

Ed,k,σ(bt) log t

≲
1

T
+

σd
3
2

T

T∑
t=1

b
− 1

2
t log t.

We discuss polynomially growing batch size bt = dta, where a > 0. Then we have

min
1≤t≤T

∥∇f(xt)∥2 ≲
1

T
+ σd · 1

T

T∑
t=1

t−
1
2a log t.

We discuss three cases: 0 < a < 2, a = 2 and a > 2.

Case 1. When 0 ≤ a < 2, the infinite sum
∑T

t=1 t
− 1

2a log t diverges. Its growth speed is on
the order of O(T 1− 1

2a log T ). The total number of samples n =
∑T

t=1 bt = O(dT a+1), and thus
T = O(d−

1
a+1n

1
a+1 ). Thus, the rate is

min
1≤t≤T

∥∇f(xt)∥2 ≲ T−1 + σd · T− 1
2a log T

≲ d
1

a+1n− 1
a+1 + σd

3a+2
2(a+1)n− a

2(a+1) log n

≲ σd
3a+2

2(a+1)n− a
2(a+1) log n,

where the last inequality uses the fact that the second term dominates the rate when 0 < a < 2.

Case 2. When a = 2, the infinite sum
∑T

t=1 t
−1 log t diverges. Its growth speed is on the order of

O(log2 T ). The total number of samples is n = d
∑T

t=1 t
2 = O(dT 3), and thus T = O(d−

1
3n

1
3 ).

Then the rate is

min
1≤t≤T

∥∇f(xt)∥2 ≲
1

T
+

σd log2 T

T

≲ σdT−1 log2 T

≲ σd
4
3n− 1

3 log2 n.

Case 3. When a > 2, the infinite sum
∑T

t=1 t
− 1

2a log t converges to a constant when T → ∞. The
total number of samples n = O(dT a+1). Thus, the rate is

min
1≤t≤T

∥∇f(xt)∥2 ≲ T−1 + σdT−1

≲ σd
a+2
a+1n− 1

a+1 .

Note that a = 2 achieves the fastest rate O(n− 1
3 ) in terms of samples n.

Now we discuss a batch size with logarithmic growth bt = d log2 t. We have

min
1≤t≤T

∥∇f(xt)∥2 ≲
1

T
+

σd

T

T∑
t=1

O(1)

≲
1

T
+ σd.
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E Additional Experiments

This section presents additional experimental details and additional numerical simulations.

Details of Figure 2. In Figure 2a, we plot the error function starting from b = 20 to make sure
b ≥ 2d so that Lemma 5 indeed applies. The decay rate O(σd

3
2 b−

1
2 ) has a (leading) hidden constant

of 15
√
2

2 inside the big O notation (see the proof of Lemma 5), and thus the bounds plotted in Figure 2
are multiplied by this constant. Otherwise, the expression σd

3
2 b−

1
2 alone is not a valid upper bound.

ReLU. The ReLU function max{0, x} is non-differentiable at x = 0. Nevertheless, thanks to
convexity the subdifferential at x = 0 is defined as [0, 1]. We estimate the “derivative” at x = 0 by
minimizing the acquisition function. The estimate µ′

D(0) and queries are plotted in Figure 5. The
estimated derivative µ′

D(0) is always in [0, 1]. Thus, the posterior mean gradient µ′
D(0) produces a

subgradient in this case.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0 ReLU
data
x

(a) n = 2, µ′
D(0) = 2.06× 10−5

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0 ReLU
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x

(b) n = 4, µ′
D(0) = 0.49

Figure 5: Estimating the “derivative” of ReLU at x = 0 with noisy observations (σ = 0.01).
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