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Abstract

Plasticity loss, a diminishing capacity to adapt as training progresses, is a critical challenge
in deep reinforcement learning. We examine this issue in multi-task reinforcement learning
(MTRL), where higher representational flexibility is crucial for managing diverse and po-
tentially conflicting task demands. We systematically explore how sparsification methods,
particularly Gradual Magnitude Pruning (GMP) and Sparse Evolutionary Training (SET),
enhance plasticity and consequently improve performance in MTRL agents. We evaluate
these approaches across distinct MTRL architectures (shared backbone, Mixture of Experts,
Mixture of Orthogonal Experts) on standardized MTRL benchmarks, comparing against
dense baselines, and a comprehensive range of alternative plasticity-inducing or regulariza-
tion methods. Our results demonstrate that both GMP and SET effectively mitigate key
indicators of plasticity degradation, such as neuron dormancy and representational collapse.
These plasticity improvements often correlate with enhanced multi-task performance, with
sparse agents frequently outperforming dense counterparts and achieving competitive results
against explicit plasticity interventions. Our findings offer insights into the interplay between
plasticity, network sparsity, and MTRL designs, highlighting dynamic sparsification as a
robust but context-sensitive tool for developing more adaptable MTRL systems.

1 Introduction

Although deep reinforcement learning (DRL) agents have demonstrated impressive results in various applica-
tions (Levine et al., 2016; Silver et al., 2017; Bellemare et al., 2020; Mathieu et al., 2023), these achievements
come with notable trade-offs. Attaining state-of-the-art performance often relies on large-scale computational
resources and heavily overparameterized models (Botvinick et al., 2019; Glanois et al., 2022; Thompson et al.,
2022), which may lead to agents that either generalize poorly (Kirk et al., 2023) or struggle to adapt to
new tasks or data over time. The former issue is a topic of interest within the transfer learning literature
(Farebrother et al., 2020; Sabatelli & Geurts, 2021; Sasso et al., 2023; Zhu et al., 2023), while the latter is
commonly referred to as plasticity loss (Nikishin et al., 2022; Lyle et al., 2023; Dohare et al., 2024). Plasticity
loss manifests through several interconnected optimization pathologies: gradient interference leading to
premature convergence (Lyle et al., 2024a), representational collapse, limiting the diversity of learned features
(Moalla et al., 2024), and neuronal saturation or dormancy that reduces effective network capacity (Bjorck
et al., 2021; Sokar et al., 2023). While these challenges have been primarily investigated within single-task
RL, (Nikishin et al., 2023; Abbas et al., 2023; Klein et al., 2024; Nauman et al., 2024a; Dohare et al., 2024),
in this paper, we study them under the lens of multi-task reinforcement learning (MTRL), where maintaining
representational flexibility across diverse tasks with potentially conflicting demands is even more crucial
(Teh et al., 2017; Sodhani et al., 2021; D’Eramo et al., 2024). It naturally follows that this increased need
for dynamic adaptation can make MTRL agents especially vulnerable to plasticity loss, as networks must
simultaneously accommodate varied objectives without experiencing negative task interference (Liu et al.,
2023).

The necessity of determining which knowledge to share across tasks, and how to share it without harmful
interference, further complicates the learning process (Devin et al., 2016; Sasso et al., 2023). Moreover,
this challenge can be even further exacerbated by inefficient use of network capacity (Kumar et al., 2021),
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with significant portions of large networks becoming underutilized during training, ultimately hindering the
acquisition of a universal policy capable of addressing multiple tasks concurrently. Recent work in neural
network pruning offers a promising direction beyond mere compression, showing that sparse agents can
match or even exceed dense counterparts in single-task RL (Livne & Cohen, 2020; Graesser et al., 2022;
Obando-Ceron et al., 2024). Notably, methods like Gradual Magnitude Pruning (GMP) have shown positive
effects on both single-task performance and plasticity (Obando-Ceron et al., 2024). Similarly, dynamic sparse
training methods such as Sparse Evolutionary Training (SET) (Mocanu et al., 2018) have also proven effective
in single-task RL, offering an alternative way to maintain and adapt sparsity throughout training (Graesser
et al., 2022). These successes suggest that such sparsification approaches could address the optimization
pathologies that undermine effective multi-task learning. Nonetheless, a systematic investigation of their
impact on MTRL, where representational flexibility demands are significantly higher (Devin et al., 2016),
remains largely unexplored.

This paper investigates whether sparsification methods, specifically GMP and SET (Mocanu et al., 2018),
can enhance plasticity in MTRL agents, thereby improving performance across multiple tasks simultaneously.
Our choice to explore these methods is motivated by their demonstrated success in single-task settings and
the need to understand their efficacy in the MTRL domain. We evaluate this across various multi-task
architectures, including shared backbones with task-specific heads (MTPPO), Mixture of Experts (MoE)
(Ceron et al., 2024), and Mixture of Orthogonal Experts (MOORE) (Hendawy et al., 2024), using common
MTRL benchmarks that range from partially observable environments with sparse reward to high-dimensional
and continuous state and action spaces.

Our central aim is to understand if the benefits of pruning can be primarily attributed to the mitigation of
key plasticity loss indicators. Our experiments compare sparse agents against dense baselines, less adaptive
sparsification techniques, and a suite of alternative plasticity-inducing or regularization methods, including
Layer Normalization (Ba et al., 2016; Lyle et al., 2024a), ReDo (Sokar et al., 2023), Reset (Ash & Adams,
2020; Nikishin et al., 2022), and Weight Decay.

Our main contributions are, therefore, threefold:

• We establish that sparsification methods, particularly Gradual Magnitude Pruning (GMP) and Sparse
Evolutionary Training (SET), serve as effective mechanisms for mitigating key indicators of plasticity
degradation in MTRL, such as neuron dormancy and representational collapse. While the extent
of these benefits varies with network architecture, sparse agents, especially in MTPPO and MoE
configurations, consistently exhibit improved plasticity profiles compared to their dense counterparts.

• We empirically demonstrate that these plasticity improvements induced by sparsification often
correlate with enhanced multi-task performance. Sparse agents frequently outperform dense baselines
and demonstrate competitive performance against alternative, specialized methods explicitly designed
to induce plasticity, as well as common regularization techniques.

• We show that the impact of sparsification on both plasticity and performance is architecture-dependent,
offering insights into the interplay between network design, sparsity, and learning dynamics. This
highlights sparsification as a valuable but context-sensitive tool in the MTRL toolkit. Furthermore,
we highlight that beyond performance, sparsification offers inherent advantages such as potential for
computational efficiency and a distinct form of implicit regularization not fully replicated by common
regularization methods.

These findings highlight the potential role of network sparsity for developing adaptable and efficient RL
agents for complex, real-world scenarios demanding generalization, continuous learning, and resource efficiency
(Thompson et al., 2022).
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2 Background

This section provides the necessary context for our approach. We begin by outlining the mathematical
preliminaries underlying our framework, including key concepts and notations from reinforcement learning.
Subsequently, we review related work, focusing on recent advances in sparsity in deep reinforcement learning,
plasticity loss, and multi-task learning.

2.1 Preliminaries

We consider the Partially Observable Markov Decision Process (POMDP), defined by a tuple
(S, A, P, R, Ω, O, γ), consisting of a state space S, an action space A, transition dynamics P : S × A → ∆(S),
a reward function R : S × A → R, observation space Ω, observation probability function O : S × A → ∆(Ω),
and discount factor γ ∈ [0, 1). At each timestep t, the agent is situated in the true state st ∈ S and performs
an action at ∈ A. This causes the agent to transition to a new state st+1 ∈ S, receiving an observation
ot+1 ∈ Ω, and a reward rt+1 = R(st, at). The objective is to learn a policy πθ(at|ot) with parameters θ
that maximizes the expected sum of discounted future rewards J(θ). In MTRL, the agent must learn a
policy for a distribution of tasks T . We adopt the Block Contextual POMDP framework (Sodhani et al.,
2021; Hendawy et al., 2024), defined as (C, S, A, M′), where C represents the contextual space such that
c ∈ C identifies a specific task τ ∼ T . The mapping M′(c) provides the task-specific POMDP components
{Rc, Pc, Sc, Ωc, Oc, γc}. The policy is now conditioned on the current observation o ∈ Ωc and task context
c ∈ C. The objective is to maximize the expected return across all tasks Eτ∼T [Jτ (θ)].

2.2 Related Work

Sparsity in Reinforcement Learning While deep reinforcement learning has traditionally relied on
overparameterized networks, recent research challenges the necessity of such scale, suggesting that sparse
networks can match or even exceed the performance of dense models (Livne & Cohen, 2020; Graesser et al.,
2022). This trend highlights that DRL agents often underutilize their capacity (Kumar et al., 2021) or overfit
to early experiences (Nikishin et al., 2022), making them particularly amenable to the regularizing effects
of sparsity. Pruning neural connections reduces model complexity and noise, offering a form of structural
regularization that can improve robustness and generalization (Jin et al., 2022). Our work investigates how
sparsity-based methods can influence learning dynamics and plasticity in multi-task RL.

Plasticity Loss in Reinforcement Learning It is well known that Reinforcement learning systems face
a unique form of non-stationarity stemming from evolving policies, shifting data distributions, and the
bootstrapping nature of value updates. This can culminate in the form of plasticity loss, a reduced ability of
the network to learn from new experiences, even within familiar data distributions (Lyle et al., 2022; Dohare
et al., 2024). Plasticity loss often manifests as premature performance plateaus, training instability, and
heightened sensitivity to hyperparameter settings (Igl et al., 2021; Berariu et al., 2023; Klein et al., 2024).

Current understanding attributes plasticity loss primarily to unstable learning targets that create challenging
optimization landscapes, with associated symptoms like collinear gradients (Lyle et al., 2024a), representational
collapse (Moalla et al., 2024), and volatile gradient norms under adaptive optimizers (Lyle et al., 2024b).
Internally, networks may suffer from shifting activation distributions, neuron saturation, or increasing
dormancy over time (Sokar et al., 2023; Bjorck et al., 2021).

Several interventions have been proposed to mitigate these effects. These include resetting techniques,
such as periodic last-layer reinitialization (Ash & Adams, 2020; Nikishin et al., 2022; 2023), parameter
update modulation strategies like Hare and Tortoise networks (Lee et al., 2024), and various architectural or
optimization-based approaches, including weight decay (Sokar et al., 2023), deep Fourier features (Lewandowski
et al., 2024a), and classification-based value learning (Farebrother et al., 2024). Normalization layers have also
demonstrated benefits in this regard (Bhatt et al., 2023). Notably, Obando-Ceron et al. (2024) showed that
gradual pruning can outperform many methods specifically designed to promote plasticity. This supports the
broader notion that general-purpose regularization might offer a more robust and simpler solution to plasticity
loss than domain-specific mechanisms, reinforcing the broader lesson that simplicity often outperforms
specialized interventions (Klein et al., 2024; Nauman et al., 2024a).

3



Under review as submission to TMLR

Multi-Task Reinforcement Learning MTRL seeks to train a single agent across multiple tasks, balancing
knowledge sharing for transfer against the risk of negative interference. Common MTRL techniques include
shared encoders with task-specific heads (Teh et al., 2017), modular network designs (Yang et al., 2020),
reward normalization (Hessel et al., 2018), compositional policy learning (Sun et al., 2022), and gradient
projection or masking strategies (Yu et al., 2020; Hendawy et al., 2024). Mixture-of-Experts models have also
gained traction, often enhanced with attention or orthogonality constraints for better task separation (Ceron
et al., 2024; Cheng et al., 2023). Similarly, maintaining weight matrix orthogonality through regularization
has been explored to enhance plasticity in continual learning settings, which face similar challenges to MTRL
(Chung et al., 2024)

A key observation in MTRL is that, unlike trends in supervised learning, simply scaling model capacity
does not inherently guarantee performance improvements (Hansen et al., 2023; Ceron et al., 2024; Nauman
et al., 2024b). Supervised approaches like SimBa, for instance, suggest that gains from scaling require careful
inductive biases (Lee et al., 2025a). In contrast, network sparsity has demonstrated improvements in both
generalization and plasticity in RL without necessarily relying on increased model scale (Graesser et al., 2022;
Obando-Ceron et al., 2024). Despite the promise of sparsity, its implications in MTRL have remained largely
unexplored. To the best of our knowledge, this work is the first to systematically examine how different
sparsity-inducing techniques affect performance and plasticity in the multi-task regime. We aim to fill this
gap by investigating how pruning and sparse connectivity can mitigate plasticity loss and promote stable,
generalizable learning in complex task environments.

3 Experimental Setup

Our experiments systematically compare the effects of different sparsification approaches against dense
baselines and two families of plasticity-enhancing interventions. The first family comprises explicit plasticity-
restoring techniques that directly intervene on the agent’s parameters to counteract plasticity loss. These
include ReDo (Sokar et al., 2023), which periodically resets dormant neurons based on activity thresholds,
and Reset (Ash & Adams, 2020; Nikishin et al., 2022), which reinitializes specific network layers at fixed
intervals to combat primacy bias. The second family involves more implicit regularization-based mechanisms,
which do not directly manipulate network dynamics but are known to stabilize training and encourage
generalization. Specifically, we evaluate standard Weight Decay (WD) applied to dense agents, and Layer
Normalization (LayerNorm) (Ba et al., 2016), which has recently been linked to mitigating plasticity loss by
reducing covariate shift and promoting balanced neuron activations (Lyle et al., 2024a).

Unless otherwise specified, we benchmark these methods across three representative multi-task reinforcement
learning algorithms: MTPPO, a shared-policy baseline with task-specific heads; a Mixture-of-Experts (MoE)
model (Ceron et al., 2024); and MOORE (Hendawy et al., 2024), which incorporates orthogonal submodules
for each task. This comprehensive evaluation allows us to disentangle the relative contributions of sparsity,
explicit resets, and architectural regularization to plasticity preservation and multi-task performance. We
report the normalized interquantile mean (IQM) with shaded regions indicating 95% stratified bootstrap
confidence intervals, calculated using the rliable library (Agarwal et al., 2021).

Environment and Benchmarks We mostly consider the three multi-task MiniGrid (Chevalier-Boisvert
et al., 2023) benchmarks proposed by Hendawy et al. (2024) – MT3, MT5, and MT7, with the exception
being made for the results presented in Section 4.3, which use the MetaWorld MT10 benchmark (Yu et al.,
2021). All environment details are outlined in Appendix B. We note that to ensure fair comparison across
tasks with inherently different reward scales, for MiniGrid, raw episodic returns are normalized with respect
to the maximum achievable reward in each environment (see Appendix B.3).

Implementation and Training For MiniGrid, we use the Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017) via the mushroom_rl library (D’Eramo et al., 2021) and the code provided by Hendawy
et al. (2024) for multi-task architectures. Performance is measured by the episodic return across all tasks
within the respective benchmark. Tasks are sampled randomly with replacement at the beginning of each
episode during training. For MetaWorld, we use the Multi-Task Multi-Headed Soft Actor-Critic (MTMH
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SAC) (Haarnoja et al., 2018; Yu et al., 2021) and track the mean success rate across all tasks. We outline full
training details and hyperparameters in Appendix A. All code is publicly available.1

Sparse Methods To better characterize the role of sparsification in the MTRL setting, we began with
a series of preliminary experiments comparing various sparsification strategies. Our goal was to identify
methods that balance learning stability, generalization, and simplicity, while remaining compatible with
the dynamic nature of multi-task settings. We evaluated several sparsification techniques, including: the
Gradual Magnitude Pruning (GMP) schedule proposed by Zhu & Gupta (2017), Sparse Evolutionary Training
(SET) (Mocanu et al., 2018), and Lottery Ticket Hypothesis (LTH) style rewinding (Frankle & Carbin, 2019).
These initial experiments were conducted on the MT5 benchmark, selected as a practical compromise: it is
more challenging than MT3, allowing us to meaningfully stress-test pruning strategies, yet significantly more
computationally efficient than MT7, enabling extensive ablations at a reasonable cost. The results of this
comparison are presented in Figure 1.
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Figure 1: Comparative performance of vari-
ous sparsification strategies (GMP, SET, LTH)
against a dense multi-task baseline and an aggre-
gation of single-task agents trained individually
on each task on the MT5 benchmark. Both GMP
and SET outperform the dense multi-task base-
line and the LTH-based models, while LTH-based
models show limited improvement over single-task
performance and struggle to adapt effectively in
the multi-task setting.

Among the three tested approaches, both GMP and SET
resulted in more stable learning dynamics and improved
generalization performance. As shown in Figure 1, sparse
models trained with GMP and SET not only surpass their
dense counterparts but also outperform single-task base-
lines. Conversely, LTH-based models fail to yield signif-
icant improvements over single-task training, highlighting
their limited capacity to adapt in multi-task settings. We
note that these results are consistent with findings in
single-task reinforcement learning (Graesser et al., 2022;
Obando-Ceron et al., 2024), and further underscore the ad-
vantages of sparsity mechanisms that adapt progressively
throughout training. Given these insights, the remainder
of our experimental study focuses on the two approaches
that consistently demonstrated better performance: GMP
and SET. The first, GMP, incrementally increases the net-
work’s sparsity level during training by gradually remov-
ing low-magnitude weights over a predefined time window.
This allows the network to adapt to the increasing sparsity
and mitigates the risk of destabilizing learning dynamics.
For further information about the pruning schedule, we
refer the reader to Appendix C.4. The second, SET, takes
inspiration from evolutionary algorithms and maintains a
fixed overall sparsity throughout training by continuously
rewiring the network’s connectivity. Unlike gradual prun-
ing, which increases sparsity over time, SET preserves a
constant sparsity level but introduces dynamic plasticity through periodic topological updates. More details
about the SET algorithm are presented in Appendix C.5. We note that both strategies are well aligned
with the core objective of this work, which is to investigate the learning dynamics of sparse agents rather
than to optimize inference-time performance. As both SET and GMP rely on unstructured pruning, they
provide greater representational flexibility than structured approaches, making them particularly suitable for
analyzing adaptation and interference in multi-task reinforcement learning (Hoefler et al., 2021).

Plasticity Measures We monitor three metrics during training, interpreted as correlative indicators of
plasticity based on recent surveys and analyses (Berariu et al., 2023; Lyle et al., 2023; Klein et al., 2024; Falzari
& Sabatelli, 2025), namely dormant neuron percentage, effective rank, and the trace of the Fisher Information
Matrix. The computation of these metrics is detailed in Appendix C. Our analysis focuses on observing
consistent patterns between pruning interventions, changes in these metrics, and MTRL performance, rather
than claiming direct causality.

1The source code used in this study will be made publicly available upon publication.
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4 Core Effects of Sparse Methods

This section details our first set of empirical findings, beginning with the effect of sparsity on multi-task
performance, followed by an analysis of its effects on plasticity indicators. All performance comparisons refer
to the aggregated final outcomes presented in Table 1. Plasticity metric analyses are primarily illustrated
using the MT5 benchmark data shown in Figure 2, Figure 4, and Figure 5, as trends were generally consistent
across other benchmarks unless otherwise stated. Detailed learning curves and plasticity metrics for all
benchmarks are available in Appendix F and Appendix G, respectively.

Table 1: Final aggregate performance at epoch 200 across architectures and agent treatments on MT3, MT5,
and MT7 benchmarks. Gold marks the best performance within the respective multi-task architecture and
benchmark, while blue marks the second-best performance within each architecture and benchmark. Full
learning curves illustrating training progression are available in Appendix F.

MT3 MT5 MT7

Agent Treatment IQM (↑) 95% CI IQM (↑) 95% CI IQM (↑) 95% CI

Multi-Task PPO (MTPPO)
Dense 0.70 (0.60, 0.76) 0.65 (0.61, 0.71) 0.72 (0.69, 0.75)
Gradual Pruning 0.77 (0.73, 0.80) 0.81 (0.75, 0.86) 0.76 (0.70, 0.80)
SET 0.76 (0.74, 0.77) 0.80 (0.75, 0.84) 0.80 (0.77, 0.84)
ReDo 0.74 (0.68, 0.77) 0.83 (0.78, 0.84) 0.80 (0.76, 0.83)
Reset 0.70 (0.64, 0.72) 0.80 (0.74, 0.84) 0.80 (0.76, 0.83)
Weight Decay 0.74 (0.70, 0.78) 0.75 (0.66, 0.82) 0.74 (0.70, 0.77)
LayerNorm 0.28 (0.20, 0.37) 0.33 (0.25, 0.40) 0.38 (0.33, 0.45)

Mixture of Experts (MoE)
Dense 0.74 (0.71, 0.76) 0.77 (0.70, 0.82) 0.80 (0.75, 0.84)
Gradual Pruning 0.77 (0.74, 0.79) 0.84 (0.78, 0.86) 0.87 (0.83, 0.88)
SET 0.76 (0.74, 0.78) 0.79 (0.72, 0.85) 0.82 (0.78, 0.85)
ReDo 0.77 (0.76, 0.80) 0.82 (0.81, 0.85) 0.85 (0.82, 0.88)
Reset 0.64 (0.54, 0.73) 0.78 (0.73, 0.83) 0.84 (0.80, 0.87)
Weight Decay 0.75 (0.71, 0.76) 0.78 (0.70, 0.85) 0.77 (0.71, 0.82)
LayerNorm 0.44 (0.38, 0.46) 0.34 (0.29, 0.40) 0.39 (0.32, 0.43)

Mixture of Orthogonal Experts (MOORE)
Dense 0.78 (0.71, 0.80) 0.84 (0.81, 0.85) 0.87 (0.84, 0.88)
Gradual Pruning 0.80 (0.77, 0.81) 0.85 (0.80, 0.87) 0.88 (0.86, 0.89)
SET 0.69 (0.60, 0.74) 0.78 (0.72, 0.83) 0.82 (0.79, 0.85)
ReDo 0.72 (0.68, 0.75) 0.82 (0.78, 0.84) 0.85 (0.84, 0.87)
Reset 0.67 (0.62, 0.72) 0.75 (0.71, 0.79) 0.84 (0.80, 0.87)
WD 0.75 (0.73, 0.76) 0.82 (0.76, 0.87) 0.87 (0.84, 0.88)
LayerNorm 0.54 (0.49, 0.62) 0.60 (0.53, 0.65) 0.66 (0.61, 0.70)

4.1 Sparse Methods Improve Task Performance

Our findings indicate that both GMP and SET generally lead to improvements in multi-task performance, an
observation consistent with a significant body of research in supervised learning, where appropriately pruned
sparse networks have been shown to match, outperform, and generalize better than their dense counterparts
(Guo et al., 2019; Morcos et al., 2019; Sabatelli et al., 2020; Hoefler et al., 2021). However, in our multi-task
settings, the extent of these benefits from pruning varies with the underlying agent architecture and desired
sparsity level. For MTPPO and MoE architectures, both Gradual Pruning and SET consistently resulted in
improved final aggregate returns compared to their respective dense baselines across all tested benchmarks
(MT3, MT5, MT7), as shown in Table 1. This suggests that these common MTRL architectures frequently
contain considerable overparameterization that sparse methods can effectively address, hinting at a direct

6



Under review as submission to TMLR

link between sparse intervention and improved MTRL outcomes. In contrast, the impact of sparse methods
on MOORE was more nuanced. While in general, the effect of GMP on MOORE on performance was close
to that of the dense baseline, SET led to a slight decline across all benchmarks. While substantial gains
were not observed for MOORE with sparsification, the ability to prune to high levels of sparsity (up to
95%) without significant performance degradation still indicates that even sophisticated architectures can
be overparameterized. Nonetheless, we note that very aggressive pruning (e.g., 99% sparsity with GMP)
could lead to issues such as rank collapse or performance drops in MOORE (see Appendix H, Figure 23 and
Figure 24).

4.2 Sparse Methods Mitigate Plasticity Loss
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Figure 2: Evolution of plasticity indicators for Dense, Gradual Magnitude Pruning (GMP), and Sparse
Evolutionary Training (SET) across different MTRL architectures (MTPPO, MoE, MOORE) on the MT5
benchmark. Subplots display Fisher Trace, Effective Rank, and percentages of Actor and Critic Dormant
neurons, illustrating the distinct effects of each sparsification strategy compared to the dense baseline.

The observed performance improvements, particularly within the MTPPO and MoE architectures, strongly
correlate with the ability of sparsification methods to mitigate common indicators of plasticity loss, while
displaying distinct learning dynamics for GMP and SET. Notably, the plasticity profiles (Figure 2) show that
agents employing either GMP or SET generally exhibit more favorable plasticity metrics compared to their
dense counterparts. Specifically, sparse agents typically maintain lower percentages of dormant neurons and
a higher or more stable mean effective rank in their representations. Furthermore, the trace of the Fisher
Information Matrix (FIM) in sparse agents typically stabilizes at lower values post-initial learning, suggesting
convergence to less sensitive parameter configurations, in contrast to the often persistently high values in
dense networks. While both GMP and SET contribute to these general improvements over dense networks,
they induce individually different plasticity dynamics. SET, with its continuous rewiring, proved particularly
effective at minimizing neuron dormancy to very low levels in both actor and critic components throughout
training, while also maintaining a higher effective rank. In contrast, GMP’s impact on dormancy was more
pronounced in the actor network, with both actor and critic dormant percentages remaining higher than
those under SET, though still an improvement over dense networks. The FIM trace also differed: GMP often
displayed a characteristic peak-and-decline pattern, whereas SET maintained a low and stable FIM trace
throughout training, suggesting continuous adaptation within a less volatile optimization regime. Collectively,
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these observations support the hypothesis that sparsification methods enhance the learning capability of
MTRL agents, plausibly through the mitigation of processes associated with plasticity degradation in dense
networks. Nevertheless, the influence of sparsification on MOORE’s plasticity did not mirror the benefits
seen in MTPPO and MoE agents, aligning with the more varied overall performance outcomes discussed
above. For MOORE, SET did reduce neuron dormancy, and its Fisher Trace showed a slow growth and
stabilization pattern. However, the effective rank for both SET and GMP remained similar to the dense
baseline. GMP, in contrast to its effect in other architectures, sometimes even slightly increased dormancy
compared to dense MOORE on certain metrics. Importantly, these specific plasticity modulations, such as
SET’s reduced dormancy in MOORE, generally did not translate into performance improvements for this
architecture, with SET often resulting in a slight performance decline. This suggests that MOORE’s inherent
design, particularly its emphasis on representation orthogonalization (Hendawy et al., 2024), may interact
with sparsification in various ways. Its sophisticated structure might be less responsive to the typical benefits
derived from these plasticity changes, as it already exhibits relatively stable plasticity characteristics.

4.3 Generalization to Continuous Control

To evaluate whether our plasticity-related findings in MiniGrid generalize to continuous con-
trol, we extended our analysis to the MetaWorld MT10 benchmark (Yu et al., 2021).
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Figure 3: Reduction in actor neuron dor-
mancy on MetaWorld MT10. Selective prun-
ing of the actor network (GMP-Actor) leads
to a sustained decrease in dormant neu-
rons compared to both the dense MTMH-
SAC baseline and the globally pruned model
(GMP-Both).

Our experimental setup was guided by two insights from McLean
et al. (2025): increasing the critic’s capacity tends to yield
greater benefits than increasing the actor’s, making the critic
the more capacity-sensitive component; and while overall plas-
ticity loss (e.g., neuron dormancy) is relatively low in dense
agents, it tends to be more pronounced in the actor than in
the critic. These findings led us to hypothesize that pruning
only the actor, while preserving the full capacity of the critic,
could enhance performance by improving network efficiency
without compromising representational power. We evaluated
this hypothesis by comparing three conditions: a dense MTMH-
SAC baseline, GMP applied to both actor and critic, and GMP
applied to the actor only. The actor-only pruning approach
achieved the highest final success rate at 81% (95% CI: 0.77,
0.83), outperforming both the dense baseline (73%; 95% CI:
0.67, 0.75) and the global pruning condition (75%; 95% CI:
0.73, 0.78); see Appendix F, Figure 13 for exact learning curves.
This performance improvement was accompanied by a sustained
reduction in actor neuron dormancy, as depicted in Figure 3,
suggesting a more adaptive and efficient use of network capac-
ity. Overall, these results extend our MiniGrid-based plasticity
findings to the more complex MetaWorld benchmark and offer
a complementary perspective to McLean et al. (2025): while they emphasize scaling the critic, we show that
selectively pruning the actor can be equally beneficial. Together, these insights highlight the asymmetry in
actor-critic dynamics and suggest that the benefits of sparsity are both role and context-dependent.

5 Interactions with Alternative Mechanisms

This section shifts focus to a comparative analysis between sparsification and other alternative strategies
for plasticity and multi-task learning. We first examine pruning in relation to explicit interventions such
as ReDo and Reset, which directly manipulate network parameters to counteract plasticity loss. We then
consider implicit mechanisms such as standard regularization techniques (Weight Decay) and architectural
choices (LayerNorm) that influence plasticity without explicit intervention. All comparisons are conducted
under the same multi-task training setup and are summarized in Table 1. Additionally, we present a final
ablation study exploring potential synergies of combining GMP with other optimization techniques (Weight
Decay and PCGrad (Yu et al., 2020)).
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5.1 Sparsification versus Explicit Plasticity-Inducing Mechanisms

We compared GMP and SET against interventions that explicitly target symptoms of plasticity loss: ReDo
(reinitializing dormant neurons) and Reset (layer reinitialization), using their best-performing configurations
derived after hyperparameter tuning (see Figure 11 of Appendix E). In terms of final task performance
(Table 1), sparsification methods generally achieved returns competitive with, and occasionally better than,
ReDo or Reset, especially for MTPPO and MoE architectures. While statistical significance for outperformance
was not always established due to overlapping confidence intervals, sparse methods consistently presented a
strong alternative without directly targeting specific plasticity symptoms. For MOORE agents, performance
differences between ReDo and the sparse approaches were minimal, while Reset introduced substantial
variability. Examining the plasticity profiles (Figure 4), SET was particularly effective for MTPPO and
MoE, often maintaining a lower percentage of actor dormant neurons than even ReDo and consistently
achieving the highest effective rank. In contrast, within MOORE, ReDo was more effective in reducing
dormancy, while SET’s effective rank advantage was less apparent. ReDo’s impact on the Fisher Trace and
mean effective rank often mirrored that of the dense baseline, indicating it primarily addressed dormancy
without broadly altering other representational characteristics. The Reset intervention, due to its periodic
reinitializations, frequently induced abrupt shifts and instability in markers like the FIM and effective rank,
especially post-reset, consistent with prior work (Falzari & Sabatelli, 2025). Performance-wise, Reset rarely
outperformed sparse agents, whereas ReDo was more competitive; however, achieving a lower percentage of
dormant neurons via ReDo did not always guarantee superior task performance (e.g., in MOORE), and SET
sometimes achieved lower actor dormancy without this direct targeting.
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Figure 4: Comparative plasticity dynamics of sparse methods (GMP, SET) versus explicit plasticity-inducing
interventions (ReDo, Reset) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT5 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.

5.2 Sparsification versus Implicit Plasticity-Inducing Mechanisms

To further characterize the role of sparsification in fostering plasticity, we contrast its effects with more implicit
plasticity-inducing mechanisms: weight regularization (Weight Decay, WD) and architectural normalization
(LayerNorm). These techniques have been explored for mitigating plasticity loss by promoting parameter
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Figure 5: Comparative plasticity dynamics of sparse methods (GMP, SET) versus regularization techniques
(Weight Decay, LayerNorm) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT5 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.

stability or scale-invariant updates (Lyle et al., 2023). These experiments evaluate whether sparsification
methods like GMP and SET offer distinct advantages over, or complementary benefits to, these common
regularization approaches. In terms of task performance, both GMP and SET generally outperform agents
trained with only Weight Decay or LayerNorm across all architectures and benchmarks. In Figure 5, Weight
Decay exhibits plasticity dynamics remarkably similar to the dense baseline across all metrics and architectures.
This suggests that while WD is a common regularizer, in these MTRL contexts, it does not substantially
alter plasticity characteristics beyond a standard dense network, nor does it typically lead to performance
surpassing well-configured sparse agents. LayerNorm, conversely, induces more pronounced changes to
plasticity. Even though it can lead to very low levels of dormant neurons, this is accompanied by a severe
and persistent reduction in the effective rank. This drop, visible across all architectures, signifies limited
representational diversity, which also correlates with its lowered performance. We hypothesize that in the
multi-task learning setting, LayerNorm, by normalizing activations across features within each layer and
sample, might inadvertently introduce strong correlations in the gradients from different tasks or smooth
out task-specific feature distinctions excessively. This could lead to a less expressive representation space,
hindering the network’s ability to learn diverse task solutions despite the apparent reduction in neuron
dormancy. The low effective rank, coupled with often the atypically low Fisher Traces for a dense agent,
likely contributes to LayerNorm’s consistently poor task performance. In contrast, sparsification methods
like GMP and SET generally achieve a better balance: they effectively mitigate dormancy (SET often being
most effective) and maintain or improve effective rank compared to the dense baseline (especially GMP
initially), without the severe representational collapse seen with LayerNorm. This suggests that sparsification
offers a more nuanced approach to capacity control and plasticity preservation than these standard implicit
regularization techniques in the studied MTRL scenarios, leading to superior overall learning outcomes.

5.3 Interaction with Optimizers

We finally explored the potential synergies of combining GMP with other optimization techniques,
specifically weight decay and PCGrad (Yu et al., 2020), a popular method designed to mitigate
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gradient interference in multi-task settings, on the MTPPO architecture using the MT5 bench-
mark. The performance results are shown in Figure 6 and plasticity dynamics in Figure 7.
In terms of final task performance, GMP in isolation achieved the highest returns (Figure 6).
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Figure 6: Performance comparison for Grad-
ual Magnitude Pruning (GMP) interactions
with Weight Decay (WD) and PCGrad on
the MTPPO architecture with the MT5
benchmark.

While PCGrad alone improved performance over the dense base-
line, its combination with GMP did not yield further gains be-
yond GMP alone. Interestingly, the plasticity profiles also reveal
that GMP alone maintained the most favorable characteristics
(Figure 7). The GMP+WD combination showed similar plastic-
ity dynamics to GMP alone, although with slightly worse values
in some metrics, correlating with its slightly lower performance.
This lack of synergy with Weight Decay might be anticipated, as
WD encourages smaller weight magnitudes overall, potentially
increasing the pool of weights that magnitude-based pruning
would target, which could lead to a less discerning pruning
process or even premature removal of weights that might have
otherwise become important. PCGrad, when applied to a dense
network, did not demonstrably improve plasticity indicators
such as Fisher Trace or actor dormancy compared to the dense
baseline, despite its performance uplift. This suggests that
the primary benefits of GMP in this context may stem from
its inherent regularization effects and capacity optimization,
which are not necessarily enhanced by, or may even be slightly
counteracted by, the addition of these particular optimizers.
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Figure 7: Comparative plasticity dynamics for Gradual Magnitude Pruning (GMP) and its interactions with
Weight Decay (GMP+WD) and PCGrad (GMP+PCGrad), contrasted with PCGrad on a dense network
and a dense baseline. All experiments are on the MTPPO architecture with the MT5 benchmark. Subplots
display (from left to right): Fisher Trace, Effective Rank, Actor Dormant %, and Critic Dormant %.

6 Considerations of Sparse Methods

While this study is primarily empirical, the observed benefits of sparsification methods in MTRL can be
interpreted through several established concepts from the sparsity, optimization, and multi-task learning
literature. However, we also want to acknowledge their limitations and considerations for practical application.

Optimization, Sparsity, and Generalization The iterative removal (GMP) or rewiring of connections
(SET) effectively guides the network towards sparse solutions. This mechanism can generally be viewed as L0
regularization, encouraging sparsity by penalizing the number of non-zero parameters (Louizos et al., 2018)
and reducing the model’s degrees of freedom. While this might confine optimization to lower-dimensional
subspaces (Gao & Jojic, 2016; Hoefler et al., 2021), such sparse solutions are often associated with "flatter"
minima in the loss landscape (Peste, 2023; Shah et al., 2024). Flatter minima are highly desirable due to
lower sensitivity to parameter perturbations (Foret et al., 2021; Lee et al., 2025b), widely believed to result
in better generalization and robustness under distribution shifts (Hochreiter & Schmidhuber, 1997; Jiang
et al., 2019; Kaddour et al., 2023; Li et al., 2024), the primary drivers of plasticity loss. The convergence to
such local flat minima is often indicated by specific dynamics in the curvature of the loss for instance, the
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maximal Hessian eigenvalue typically grows, peaks, and then declines during training (Fort & Ganguli, 2019).
Our empirical results for MTPPO and MoE, where the Fisher Trace (a proxy for curvature (Lewandowski
et al., 2024b)) exhibited a peak-and-decline pattern with GMP (Figure 2), align with convergence to such
flatter minima. SET, with its continuous rewiring, maintained a low, stable Fisher trace, suggesting a robust
optimization process.

This aligns with findings in supervised learning where sparse networks are recognized for reduced overfitting
and better generalization than dense counterparts (Gopalakrishnan et al., 2018; Cosentino et al., 2019; Guo
et al., 2019; Liu et al., 2019; Liu, 2020). The iterative nature of GMP and the dynamic regrowing of SET are
generally thought to help models evade suboptimal local minima (Jin et al., 2016; Gale et al., 2019; Hoefler
et al., 2021; Jin et al., 2022; Graesser et al., 2022), a principle consistent with our findings. Furthermore,
the success of pruning in MTRL models with shared backbones and task-specific heads mirrors similar
effectiveness in multi-task supervised learning Xiang et al. (2024). Nonetheless, an excessive reduction in
degrees of freedom via aggressive pruning can hinder the satisfaction of specific architectural demands, such
as maintaining expert orthogonality in MOORE (see Appendix H, Figure 23 and Figure 24), especially if
capacity becomes overly constrained.

Limitations and Practical Considerations Despite their benefits, these sparsification techniques have
considerations. GMP, while conceptually simple, typically operates on dense weight matrices internally
during training, applying masks to simulate sparsity. This means it does not inherently reduce the memory
footprint or computational cost during training compared to dense models; true benefits often require
specialized hardware or software for sparse operations at inference. While inference can be efficient, the
training phase still bears the overhead of the original dense model, with the additional overhead of pruning
at specified timesteps. SET, on the other hand, can maintain true sparsity throughout training and inference
if implemented with sparse data structures. However, current widely available implementations are often
optimized for fully connected layers, and extending their dynamic rewiring efficiently to convolutional or
recurrent architectures can be more complex. Additionally, the random nature of SET’s regrowth phase,
while promoting exploration, might not always lead to the most optimal connectivity patterns without more
guided heuristics. Both methods also require careful tuning of their own hyperparameters to achieve optimal
results. While potentially less sensitive than some explicit plasticity interventions, this still constitutes a
tuning effort. The architecture-dependent nature of the benefits, as shown by our experiments with MOORE,
also indicates that these are not one-size-fits-all solutions.

7 Conclusion

In this work, we examined dynamic sparsification, specifically Gradual Magnitude Pruning (GMP) and
Sparse Evolutionary Training (SET), as a means to mitigate plasticity loss and improve performance in
multi-task reinforcement learning (MTRL). Our results show that both methods can enhance adaptability
and generalization across several architectures, with consistent gains observed in MTPPO and MoE agents.
Similar benefits were also found in Multi-Headed SAC agents evaluated on the MetaWorld MT10 benchmark,
suggesting that the effectiveness of sparsification extends to continuous control tasks. While performance on
MOORE was more variable, likely due to its built-in mechanisms for managing interference, our findings
highlight the importance of aligning sparsification strategies with architectural design. In addition to perfor-
mance improvements, sparsity can offer benefits such as reduced hyperparameter sensitivity, computational
efficiency, and implicit regularization through structured parameter removal. These results support the view
that general-purpose mechanisms that shape learning dynamics rather than task-specific interventions can
yield robust benefits in MTRL. As future work, we plan on investigating the theoretical underpinnings and
potential interpretability advantages of sparse MTRL models.
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A Training Details and Hyperparameters

This appendix details the hyperparameters used for the experimental evaluations presented in this study. For
MiniGrid, we report the IQM and CIs of the episodic return over 30 random seeds, whereas for MetaWorld, we
report the IQM and CIs of the mean success rate across 10 seeds. Table 2 provides a list covering the general
experimental settings, architecture of the used networks, and specific hyperparameters used for MoE and
MOORE. All architectures are multi-headed, with task-specific heads. Hyperparameters were largely adopted
from Hendawy et al. (2024), with modifications in the number of training epochs, number of evaluation
episodes, and evaluation frequency. Table 3 outlines the training details and parameters for MetaWorld
MT10.

B Environment Details

This appendix provides details on the MiniGrid (Chevalier-Boisvert et al., 2023) environments used in our
multi-task benchmarks. We use standard environments from the MiniGrid suite, which are designed to
test various capabilities such as navigation, memory, and problem-solving in partially observable grid-world
settings with sparse reward. For environmental details on MetaWorld, we refer the reader to Yu et al. (2021).

B.1 Composition

Our experiments use three multi-task benchmarks – MT3, MT5, and MT7, as proposed by Hendawy et al.
(2024), composed as follows:

• MT3: LavaGapS7-v0 + RedBlueDoors-6x6-v0 + MemoryS11-v0

• MT5: MT3 + DoorKey-6x6-v0 + DistShift1-v0

• MT7: MT5 + SimpleCrossingS9N2 + MultiRoom-N2-S4

B.2 Descriptions

Below are descriptions for each unique environment used in the benchmarks, adapted from Chevalier-Boisvert
et al. (2023). In all environments S specifies the size of the map SxS.

• DoorKey-6x6-v0: The agent must pick up a key, navigate to a locked door, and open it to reach a
goal square.

• DistShift1-v0: The agent starts in the top-left corner and must reach the goal, which is in the
top-right corner, but has to avoid stepping into lava on its way. Stepping into lava terminates the
episode.

• RedBlueDoors-6x6-v0: The agent is in a room with two doors, one red and one blue. The agent
has to open the red door and then open the blue door, in that order.

• MemoryS11-v0: The agent starts in a small room where it sees an object. It then has to go through
a narrow hallway, which ends in a split. At each end of the split, there is an object, one of which is
the same as the object in the starting room. The agent has to remember the initial object and go to
the matching object at the split.

• SimpleCrossingS9N2-v0: The agent has to reach the green goal square on the other corner of the
room while avoiding walls. Walls run across the room either horizontally or vertically, and have N
crossing points which can be safely used; the path to the goal is guaranteed to exist.

• MultiRoom-N2-S4-v0: This environment has a series of connected rooms with doors that must be
opened to get to the next room. The final room has the green goal square that the agent must get to.
N specifies the number of rooms.

19



Under review as submission to TMLR

Table 2: Core experimental setup, agent architecture, and algorithm hyperparameters on MiniGrid. The
choice for hyperparameters is largely borrowed from Hendawy et al. (2024), while following their exact
training configuration (except number of evaluation episodes).

Hyperparameter Value

General:
Number of environments [3, 5, 7]
Steps per environment 1 step per environment
Number of epochs 200
Steps per epoch 2000
Total number of timesteps 400000
Train frequency 2000 timesteps
Evaluation episodes 25 per task
Evaluation frequency 10000 timesteps
Shared Feature Extractor:
Type Conv2D
Channels per Layer [16, 32, 64]
Kernel Size [(2,2), (2,2), (2,2)]
Activations [ReLU, ReLU, Tanh]
PPO:
Optimizer Adam (Kingma & Ba, 2017)
Critic Loss MSE
Actor Learning Rate 1 × 10−3

Critic Learning Rate 1 × 10−3

Critic Network Hidden Size 128
Actor Network Hidden Size 128
Number of Linear Layers 2 × |T | (number of tasks)
Number of Output Units |A| for actor, 1 for critic
Output Activations [Tanh, Linear]
GAE λ 0.95
Entropy Term Coefficient 0.01
Clipping ε 0.2
Epochs for Policy 8
Epochs for Critic 1
Batch Size for Policy 256
Batch Size for Critic 2000
Discount Factor (γ) 0.99
Task Encoder (for MoE/MOORE):
k Experts [2, 3, 4]
Encoder Linear Layers 1
Encoder Output Units k (number of experts)
Encoder Use Bias False
Encoder Activation Linear
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Table 3: The hyperparameters and training setup used for MTMH SAC on MetaWorld MT10.

Hyperparameter Value

General Training:
Total Timesteps 20000000
Batch Size 1280
Replay Buffer Size 1000000
Warmstart Steps 40000
Evaluation Frequency 200000 steps
Number of Epochs 200
Number of Updates 2000000
Number of Tasks 10
Evaluation Episodes 50 per task
Max Episode Steps 500
SAC:
Discount Factor (γ) 0.99
Target Smoothing Coeff. (τ) 0.005
Number of Critics 2
Initial Temperature (α) 1.0
Target Q-Value Clip 5000
Actor and Critic
Optimizer Adam
Layer Type Linear
Learning Rate 3 × 10−4

Max Gradient Norm 1.0
Network Depth 3
Hidden Size 400
Activation ReLU
Log-Std Bounds [−20, 2]
Temperature Optimizer:
Optimizer Adam
Learning Rate 3 × 10−4

Max Gradient Norm None
Gradual Magnitude Pruning:
Desired Sparsity ρF 95%
Pruning Frequency fp 5000 timesteps
Pruning start interval tstart 0.05× number of timesteps
Pruning end interval tend 0.80× number of timesteps

Sparsity ρt at timestep t ρF

[
1 −

(
1 − t−tstart

tend−tstart

)3
]
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• LavaGapS7-v0: The agent has to reach the green goal square at the opposite corner of the room,
and must pass through a narrow gap in a vertical strip of deadly lava. Touching the lava terminates
the episode with a zero reward.

B.3 Reward Normalization

To ensure fair comparison across tasks with inherently different reward scales, raw episodic returns are
normalized with respect to the maximum achievable reward in each environment. The standard MiniGrid
reward for successful task completion is calculated as

1 − 0.9 × (steps_taken/max_episode_steps),

while failure results in a score of 0. We further normalize this score by performing a Min-Max scaling
with respect to the maximum performance obtainable in each environment. We use the default maximum
timesteps of each environment and estimate how many steps an optimal agent can solve the environment.
This normalization procedure scales the performance such that a score of 1.0 represents achieving the
optimal (shortest path) solution, facilitating comparisons of learning efficacy across environments with varying
complexities and step horizons and addressing reward scales. Table 4 presents the optimal steps, maximum
allowed steps, and the maximum achievable reward used for the score normalization of each environment.

Table 4: Environment-specific parameters for reward normalization. This table lists the optimal number of
steps to solve each task, the maximum default permissible steps per episode, and the resulting maximum
achievable raw reward score (used as the max score for normalization).

Environment Name Optimal Steps Max Steps Achievable Reward
DoorKey-6x6-v0 11 360 0.9725
DistShift1-v0 11 252 0.9607
RedBlueDoors-6x6-v0 8 720 0.9900
LavaGapS7-v0 8 196 0.9633
MemoryS11-v0 15 605 0.9777
SimpleCrossingS9N2-v0 15 324 0.9583
MultiRoom-N2-S4-v0 5 40 0.8875

C Implementation Details

This appendix details the methodology and interpretation of the plasticity metrics, pruning schedule, and the
sparse evolutionary training used in this work. The plasticity measures serve as correlative indicators of an
agent’s learning capacity and adaptability. The computation of activations and gradients for these metrics
relies on sampling from a plasticity replay buffer of training observations to approximate expected values via
sample means. Hyperparameters specific to these calculations are detailed in Table 5.

C.1 Neuron Dormancy

We adapt the dormant neuron formalization from Sokar et al. (2023). A neuron’s activity is assessed relative
to other (non-masked) neurons in the same layer. Given an input distribution D (approximated by the
plasticity replay buffer) and an activation hl

i(x) of a neuron i in layer l with H l neurons under input x ∈ D,
the normalized activation is

sl
i = Ex∈D|hl

i(x)|
1

Hl

∑Hl

k=1 Ex∈D|hl
k(x)|

.

Neuron i is called τ -dormant for some threshold τ > 0 if sl
i ≤ τ . If H l

τ denotes the number of dormant
neurons per layer, then the dormancy ratio βτ is the ratio of dormant neurons and all neurons across all
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layers in the network Lall except the final Lout

βτ =
∑

l∈Lall\{Lout} H l
τ∑

l∈Lall\{Lout} H l
.

A high percentage of dormant neurons suggests significant underutilization of the network’s capacity, potentially
hindering its ability to learn complex functions or adapt to new data, a key aspect of plasticity. For the
ReDo method, dormant neurons were reinitialized at specific time intervals fd and a threshold τ , determined
through the hyperparameter sweeps in Appendix E

C.2 Trace of the Fisher Information Matrix

The Fisher Information Matrix (FIM) F quantifies the sensitivity of a model’s output (e.g., the policy) to
changes in the parameters θ. For a policy π, its Fisher trace is given by

Tr(F ) = Es,a∼π

[
∥∇θ log π(a|s)∥2

2
]

.

The trace of the FIM can be viewed as a measure of the policy’s sensitivity to parameter perturbations.
A very high or persistently increasing trace might indicate that the policy is in a "sharp" region of the
loss landscape, making it brittle to small changes and potentially indicative of overfitting or optimization
instability. Conversely, a lower, stabilized trace, as observed in our pruned agents (see Section 4.2), can
suggest convergence to "flatter" minima, implying a more robust policy that is less sensitive to parameter
variations and more capable of sustained learning or adaptation.

C.3 Effective Rank

For a feature matrix Φ (e.g., a shared feature extractor) with d singular values σi sorted descendingly, the
effective rank at tolerance δ is

srankδ(Φ) = min
k

{∑k
i=1 σi∑d
i=1 σi

≥ 1 − δ

}
.

The effective rank measures the dimensionality of the space spanned by the features. A low effective rank
suggests a representation collapse, where learned features are highly correlated and less diverse, limiting a
network’s ability to represent various information. Conversely, a high effective rank implies a richer, more
diverse set of feature representations, implying a greater capacity to learn and distinguish between inputs.

C.4 Gradual Magnitude Pruning (GMP)

We implement the pruning schedule proposed by Zhu & Gupta (2017), which progressively increases network
sparsity during training. At regular pruning intervals (defined by a pruning frequency fp), connections
(weights) with the smallest absolute magnitudes are masked (set to zero). This process continues until a
target sparsity level ρt is achieved for the current training step t. The sparsity level ρt follows a cubic growth
schedule, gradually increasing from an initial sparsity at tstart to a final target sparsity ρF at tend:

ρt =


0 if t < tstart,

ρF

[
1 −

(
1 − t−tstart

tend−tstart

)3
]

if tstart ≤ t ≤ tend,

ρF if t > tend.

This schedule allows the network to adapt to increasing levels of sparsity rather than undergoing abrupt
structural changes. The specific values for ρF , pruning frequency, tstart, and tend used in our experiments
were determined through ablation studies (see Appendix D).
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C.5 Sparse Evolutionary Training (SET)

The Sparse Evolutionary Training (SET) mechanism, inspired by Mocanu et al. (2018), maintains a constant
overall network sparsity ρ = 1 − (∥W∥0/Ntotal) throughout training, where ∥W∥0 is the total number
of non-zero weights and Ntotal is the total number of parameters in the sparsified layers. At predefined
evolution intervals, a fraction ε of the existing connections with the smallest absolute magnitudes |wij | are
pruned. To preserve the sparsity level s, an equivalent number of new connections, Nnew = ε · ∥W∥current

0 , are
simultaneously regrown. These new connections are typically introduced randomly at locations within the
network that currently have zero weight, allowing exploration of novel sparse topologies. The initial sparse
connectivity for SET is established using an Erdős-Rényi-Kernel (ERK) scheme, controlled by a parameter
ζ. SET was applied to all linear layers in our models, with ε, ζ, and evolution frequency determined via
ablations (Appendix D), while the fixed sparsity was kept at 95% for consistency with the GMP sparsity.

Table 5: Configuration details for gradual magnitude pruning, sparse evolutionary training, and the alternative
plasticity-enhancing methods (ReDo, Reset, and Weight Decay) evaluated.

Hyperparameter Value

Gradual Magnitude Pruning:
Desired Sparsity ρF 95%
Pruning Frequency fp 500 timesteps
Pruning start interval tstart 0.05× number of timesteps
Pruning end interval tend 0.80× number of timesteps

Sparsity ρt at timestep t ρF

[
1 −

(
1 − t−tstart

tend−tstart

)3
]

Prune Bias False
Pruned Layers [Conv2D, Linear]
Sparse Evolutionary Training:
Sparsity 95%
ε density 11
Sparsity Distribution ζ 0.3
Evolution Frequency 2000 timesteps
Plasticity:
Plasticity Buffer Max Size 100000
ReDo (Sokar et al., 2023) Frequency fd 5000 timesteps
Dormant Neuron Threshold τ 0.001
Dormant Activation Batch Size 1024
Fisher Trace Batch Size 1024
Effective Rank Batch Size 1024
Effective Rank Target Shared Feature Extractor
Reset Frequency fr 100000
Number of Resets m 2
Reset Target Layers Output
Weight Decay Coefficient λ 1 × 10−6
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D Sparse Methods Hyperparameters

This appendix details the hyperparameter selection for GMP, with tuning experiments conducted on MTPPO
with the MT5 benchmark. Figure 8 illustrates GMP ablations: the left subplot shows that initiating pruning
early (e.g., at 5% of training) and concluding by 80% is favorable for the schedule window [tstart, tend]; the
center subplot indicates stable performance across moderate pruning frequencies fp; and the right subplot
explores various final target sparsities ρ. Figure 9 presents SET tuning: the left subplot suggests moderate
evolution connection ε (e.g., 11-15) perform well; the center explores sparsity distribution parameters ζ and
the right shows less frequent evolution can be beneficial. These ablations informed the hyperparameter
choices used in our main experimental evaluations. All tuning experiments were run with the original training
configuration, outlined in Table 2 for 30 seeds and 200 epochs. For visual purposes, we omit the confidence
intervals of the less successful runs to avoid cluttering and only include them for the best hyperparameter run.
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Figure 8: Hyperparameter ablation for Gradual Magnitude Pruning (GMP) on MTPPO with the MT5
benchmark. (Left) Varying pruning schedule window [tstart, tend]. (Center) Different pruning frequencies fp.
(Right) Various final target sparsity levels ρ.
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Figure 9: Hyperparameter ablation for Sparse Evolutionary Training (SET) on MTPPO with the MT5
benchmark. (Left) Varying evolution connection percentage ε. (Center) Different sparsity distribution
parameters ζ. (Right) Different evolution frequencies (episodes).
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E Comparison Methods Hyperparameters

This appendix outlines hyperparameter considerations for the comparison methods evaluated in this work.
All tuning experiments were primarily conducted on the MTPPO architecture using the MT5 benchmark to
establish robust configurations. All tuning experiments were run with the original training configuration,
outlined in Table 2 for 30 seeds and 200 epochs. For visual purposes, we omit the confidence intervals of the
less successful runs to avoid cluttering and only include them for the best hyperparameter run.

For ReDo, tuning (Figure 10) highlighted the dormancy threshold τ as the most critical hyperparameter.
Lower values, specifically τ = 0.001 and τ = 0.0001, demonstrated significantly better performance compared
to higher thresholds or omitting the threshold entirely. The ReDo application frequency fd exhibited less
sensitivity, with a moderate frequency (e.g., fd = 5000 steps) performing well.

For the Reset mechanism, we investigated the impact of the reset frequency fr (how often resets occur) and
the maximum number of times m specific layers are reset throughout training, as illustrated in Figure 11.
Our ablations indicated that a reset frequency of fr = 100k timesteps with a maximum of m = 2 resets per
targeted layer (black line in both subplots) often provided a good balance between promoting plasticity and
avoiding excessive training instability.

The Weight Decay (WD) coefficient λ was selected from a standard range. As shown in Figure 12, very small
coefficients (e.g., λ = 10−6, black line) resulted overall in the best performance.
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Figure 10: Hyperparameter ablation for ReDo on MTPPO with the MT5 benchmark. (Left) Varying dormancy
threshold τ . (Right) Different ReDo application frequencies fd. The black line (τ = 0.001, fd = 5000) shows
the best performance.

26



Under review as submission to TMLR

0 50 100 150 200

0

0.2

0.4

0.6

0.8

Epoch

N
or
m
a
li
ze
d
IQ

M

0 50 100 150 200

0

0.2

0.4

0.6

0.8

Epoch

fr = 100k fr = 80k

fr = 120k fr = 60k

m = 2, fr = 100k m = 3, fr = 80k

m = 3, fr = 60k m = 4, fr = 40k

Figure 11: Hyperparameter ablations for the Reset mechanism on MTPPO with the MT5 benchmark. (Left)
Varying reset frequency fr (with m = 2). (Right) Varying maximum number of resets m. The black line
(fr = 100k, m = 2) indicates the best performance.
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Figure 12: Hyperparameter ablation for Weight Decay (WD) on MTPPO with the MT5 benchmark, showing
performance for different decay coefficients λ. The black line (λ = 10−6) shows the best performance.
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F Detailed Learning Curves

This appendix provides the complete learning curves for various agent configurations, complementing the
aggregated final performance data presented in Table 1. These plots illustrate the training progression across
all evaluated MTRL architectures (MTPPO, MoE, MOORE) on the MT3, MT5, and MT7 benchmarks.
Additionally, Figure 13 presents the results obtained on the continuous control MetaWorld MT10 benchmark
that complement the findings described in Section 4.1.

Figure 14 displays learning curves comparing our primary sparsification methods (Gradual Magnitude Pruning,
GMP, at 95% sparsity, and Sparse Evolutionary Training, SET, at 95% sparsity) against a dense baseline
and explicit plasticity-inducing interventions (ReDo and Reset).

Figure 15 similarly presents learning curves, in this case contrasting the same sparsification methods (GMP
95% and SET 95%) against a dense baseline and common implicit regularization techniques (Weight Decay –
WD, and LayerNorm).

In all subplots within Figure 14 and Figure 15, the horizontal dashed line indicates the aggregated performance
of single-task PPO (ST PPO) agents. Each ST PPO agent was trained separately on a single environment
from the respective benchmark for the full 400,000 timesteps (the same total duration as the multi-task agents)
across 30 runs. Consequently, this ST PPO performance should be viewed as a potentially near-maximal
reference point from a single-task perspective, as multi-task agents faced the more challenging scenario of
learning all tasks within a benchmark concurrently using the same total number of timesteps.
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Figure 13: Final success rates on MetaWorld MT10 for different pruning configurations. Selective pruning of
the actor network (GMP-actor) outperforms both the dense MTMH-SAC baseline and the globally pruned
model (GMP-all), achieving a final success rate of 81%. This supports the hypothesis that actor-only pruning
enhances performance by improving efficiency while preserving critical representational capacity in the critic.
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Figure 14: Learning curves (Normalized IQM) comparing sparsification methods (GMP 95%, SET 95%) with
explicit plasticity-inducing interventions (ReDo, Reset) and a dense baseline. Results are shown for MTPPO,
MoE, and MOORE architectures across MT3, MT5, and MT7 benchmarks. The dashed line represents
single-task PPO performance.
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Figure 15: Learning curves (Normalized IQM) comparing sparsification methods (GMP 95%, SET 95%)
with implicit regularization techniques (Weight Decay, LayerNorm) and a dense baseline. Results are shown
for MTPPO, MoE, and MOORE architectures across MT3, MT5, and MT7 benchmarks. The dashed line
represents single-task PPO performance.
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G Detailed Plasticity Metrics

This appendix provides a comprehensive view of the plasticity metric evolutions across different benchmarks,
complementing the primary analysis presented in Section 4.2 (which predominantly features results from
the MT5 benchmark, also shown here for completeness as Figure 17 and Figure 20). The following figures
illustrate the dynamics of Fisher Trace, Effective Rank, Actor Dormant percentage, and Critic Dormant
percentage for all evaluated MTRL architectures (MTPPO, MoE, MOORE).

Figures 16, 17, and 18 compare the effects of sparsification methods (GMP and SET) against explicit
plasticity-inducing interventions (ReDo and Reset) and a dense baseline, on the MT3, MT5, and MT7
benchmarks, respectively. While specific magnitudes vary, general trends such as SET’s strong effect on
reducing dormancy and GMP’s characteristic Fisher Trace dynamics are often observable across benchmarks,
though interactions with architecture (especially MOORE) can modulate these effects.

Similarly, Figures 19, 20, and 21 present a comparison of the same sparsification methods (GMP and SET)
against implicit regularization techniques (Weight Decay – WD, and LayerNorm) and a dense baseline, for
the MT3, MT5, and MT7 benchmarks, respectively.

Figure 22 presents the plasticity profiles on MetaWorld MT10, using the MTMH SAC architecture. The
Critic MER and Critic Dormant neuron percentages are nearly identical across all three configurations, with
dormancy already close to zero even for the dense baseline, leaving little room for improvement. The actor
metrics, however, show clear distinctions. Selectively pruning the actor resulted in maintaining the lowest
percentage of actor dormant neurons and an increased mean effective rank compared to both the dense
baseline and the globally pruned agent. The Fisher Trace remained highly volatile for all methods and showed
no discernible pattern.
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Figure 16: Comparative plasticity dynamics of sparse methods (GMP, SET) versus explicit plasticity-inducing
interventions (ReDo, Reset) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT3 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.
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Figure 17: Comparative plasticity dynamics of sparse methods (GMP, SET) versus explicit plasticity-inducing
interventions (ReDo, Reset) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT5 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.
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Figure 18: Comparative plasticity dynamics of sparse methods (GMP, SET) versus explicit plasticity-inducing
interventions (ReDo, Reset) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT7 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.
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Figure 19: Comparative plasticity dynamics of sparse methods (GMP, SET) versus regularization techniques
(Weight Decay, LayerNorm) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT3 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.
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Figure 20: Comparative plasticity dynamics of sparse methods (GMP, SET) versus regularization techniques
(Weight Decay, LayerNorm) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT5 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.
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Figure 21: Comparative plasticity dynamics of sparse methods (GMP, SET) versus regularization techniques
(Weight Decay, LayerNorm) and a dense baseline, across MTPPO, MoE, and MOORE architectures on the
MT7 benchmark. Metrics include Fisher Trace, Effective Rank, and percentage of Actor and Critic Dormant
Neurons.
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Figure 22: Plasticity dynamics on MetaWorld MT10. Selective pruning of the actor (GMP-Actor) leads
to a decrease in dormant neurons and an increase in the mean effective rank compared to both the dense
MTMH-SAC baseline and the globally pruned model (GMP-Both). In contrast, the critic metrics and Fisher
Trace show minimal or no clear patterns.
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H Gradual Magnitude Pruning Performance Across Sparsity Levels

This appendix presents learning curves for Gradual Magnitude Pruning (GMP) across various target sparsity
levels (Dense, 80%, 95%, 99%) for all architectures and benchmarks (Figure 23). These results show that
while 80% and 95% sparsity generally yield strong performance, often matching or exceeding dense baselines
especially for MTPPO and MoE, the optimal sparsity level is architecture and benchmark-specific. Notably,
for the MOORE architecture, 99% sparsity leads to performance degradation later in training (visible in
Figure 23, bottom row). This performance drop correlates with a significant representational rank collapse, as
illustrated by the sharp decline in effective rank for MOORE (Figure 24), indicating a loss of representational
diversity under extreme pruning in this specific architecture.
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Figure 23: Normalized aggregate returns for agents under different GMP sparsity levels (Dense, 80%, 95%,
99%) across the MT3, MT5, and MT7 benchmarks for MTPPO (top row), MoE (middle row), and MOORE
(bottom row) architectures. The dashed line represents single-task PPO performance.
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Figure 24: Plasticity metrics for MOORE on the MT5 benchmark under different GMP sparsity levels,
illustrating the rank collapse at 99% sparsity, characterized by a sudden increase in the Fisher Trace and
neuron dormancy, and a sharp drop in the effective rank.
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