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Abstract

Sampling in discrete spaces, with critical applications in simulation and opti-
mization, has recently been boosted by significant advances in gradient-based
approaches that exploit modern accelerators like GPUs. However, two key chal-
lenges hinder the further research progress in discrete sampling. First, since there
is no consensus on experimental settings, the empirical results in different research
papers are often not comparable. Secondly, implementing samplers and target
distributions often requires a nontrivial amount of effort in terms of calibration,
parallelism, and evaluation. To tackle these challenges, we propose DISCS (DIS-
Crete Sampling), a tailored package and benchmark that supports unified and
efficient implementation and evaluations for discrete sampling in three types of
tasks: sampling for classical graphical models, combinatorial optimization, and
energy based generative models. Throughout the comprehensive evaluations in
DISCS, we acquired new insights into scalability, design principles for proposal
distributions, and lessons for adaptive sampling design. DISCS implements rep-
resentative discrete samplers in existing research works as baselines, and offers a
simple interface that researchers can conveniently design new discrete samplers
and compare with baselines in a calibrated setup directly.

1 Introduction

Sampling in discrete spaces has been an important problem in physics (Edwards & Anderson)
1975; Baumgirtner et al., [2012), statistics (Robert & Casellal [2013} |Carpenter et al.| [2017)), and
computer science (LeCun et al., 2006; Wang & Cho, 2019) for decades. Since sampling from a target
distribution 7(z) o exp(—f(x)) in a discrete space X is typically intractable, one usually resorts
to MCMC methods(Metropolis et al.l [1953; Hastings, |1970). However, except for a few algorithms
such as Swedesen-Wang for the Ising model (Swendsen & Wang, [1987) and Hamze-Freitas for
hierachical models (Hamze & de Freitas, |2012)), which exploit special structure of the underlying
problem, sampling in a general discrete space has primarily relied on Gibbs sampling, which exhibits
notoriously poor efficiency in high dimensional spaces.

Recently, a family of locally balanced samplers (Zanella, [2020; |Grathwohl et al., 2021} [Sun et al.,
2021; [Zhang et al.| |2022), using ratio informed proposal distributions, %, have significantly
mmproved sampling efficiency by exploiting modern accelerators like GPUs and TPUs. From the
perspective of gradient flow on the Wasserstein manifold of distributions, Gibbs sampling is simply a
coordinate descent algorithm, whereas locally balanced samplers perform as full gradient descent
(Sun et al., [2022a)). Despite the advances in locally balanced samplers, a quantitative benchmark
is still missing. One important reason is that there is no consensus on the experimental setting.
Particularly, the initialization of energy based generative models, random seeds used in graphical
models, and the protocol of hyper-parameter tuning all have a significant impact on performance.
As a result, some empirical results in different research papers may not be comparable. Under this

circumstance, a unified benchmark is in crucial need for boosting the research in discrete sampling.
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There are two key challenges that seriously hinder the appearance of such a benchmark. First, a
sampler may perform well in one target distribution while poorly in another one. To thoroughly
examine the performance of a sampler, a qualified benchmark needs to collect a set of representative
distributions that covers the potential applications of a discrete sampler. Second, the evaluation of
discrete samplers is complicated. Although the commonly used metric ESS (Vehtari et al.l 2021) can
effectively reflect the efficiency of a sampler in Monte Carlo integration or Bayesian inference, it is
not very informative in scenarios when the sampler guides the search in combinatorial optimization
problems, or performs as a decoder in deep generative models.

To address the two challenges, we propose DISCS, a tailored benchmark for discrete sampling.
In particular, DISCS consists of three groups of tasks: sampling from classical graphical models,
sampling for solving combinatorial optimization problems, and sampling from deep EBMs. These
tasks cover the topics of simulation and optimization, and models ranging from hand-designed
graphical models to learned deep EBMs. For each task, we collect the representative problems from
both synthetic and real-world applications, for example graph partitioning for distributed computing
and language model for text generation. We carefully design the evaluation metrics in DISCS. In
sampling classical graphical models tasks, DISCS uses the ESS as standard. In sampling for solving
combinatorial optimization tasks, DISCS runs simulated annealing (Kirkpatrick et al.| |1983)) with
multiple chains and report the average of the best results in each chain. In sampling from energy
based generative models, DISCS employs domain specific ways to measure the sample quality.

DISCS offers a convenient interface for researchers to implement new discrete samplers, without
worrying about parallelism, experiment loop and evaluation. DISCS can efficiently sweep over
different tasks and configurations in parallel and thus the evaluation reported in this paper can be
easily reproduced. Also, DISCS implements existing discrete samplers random walk Metropolis
(Metropolis et al.,{1953)), block Gibbs, Hamming ball sampler (Titsias & Yaul[2017)), LB (Zanellal
2020), GWG (Grathwohl et al., 2021}, PAS (Sun et al.| 2021)), DMALA (Zhang et al., 2022)), DLMC
(Sun et al.|[2022a)), and is actively maintaining to add new samplers. Researchers can directly compare
the results with the state-of-the-art methods.

With DISCS, we observe an interesting phenomenon that the locally balanced weight function
g(t) = +/t performs better (worse) than g(t) = t% when Ising model has temperature higher (lower)
than the critical temperature. There have been a lot of studies about how to select the locally balanced
function for a locally balanced sampler (Zanellal 2020; |Sansone, |2022), but the answer remains open.

We hope the observations in this paper can provide some insight on this question.

We wrap the DISCS package as a JAX library to facilitate the research in discrete sampling. The
library will be open sourced at https://github.com/google-research/discs, The paper is
organized as follows:

* In section 2] we cover the related sampling tasks and discrete samplers.

* In section 3| we formulate the discrete sampling problem.

* In section|d] we introduce the discrete sampling tasks and evaluation metrics in DISCS. We also
report the results for existing discrete samplers.

* In section[5] we discuss the contribution and limitations of DISCS.

2 Related Work

Discrete sampling has been widely used to study the physical picture of spin glasses (Hukushima &
Nemoto} [1996; Katzgraber et al., |2001)), solve combinatorial optimization via simulated annealing
(Kirkpatrick et al.,{1983), and for traning or decoding deep energy based models (Wang & Cho, |2019;
Du et al., [2020; |Dai et al., 2020b). However, they primarily depend on Gibbs sampling, which could
be very slow in high dimensional space.

Since the seminal work [Zanellal (2020), the recent years have witnessed significant progresses for
discrete sampling in the both theory and practice. [Zanellal (2020) introduces the locally balanced

proposal g(z,y) x g( :EZ; ), where y € N (X) restricted within a small neighborhood of x and g(-) :

Ry — Ry satisfying g(a) = ag(2), and prove it is asymptotically optimal. In the following works,
PAS (Sun et al.;,[2021)) and DMALA (Zhang et al.||2022) generalize locally balanced proposal to large
neighborhoods by introducing an auxiliary path and mimicking the diffusion process, respectively.
Inspired by these locally balanced samplers, [Sun et al.|(2022a) generalize the Langevin dynamics
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in continuous space to discrete Langevin dynamics (DLD) in discrete space as a continuous time
Markov chain -2P(X'" = y|X! = 2) = g(%), and show that previous locally balanced
samplers are simulations of DLD with different discretization strategies. In the view of Wasserstein
gradient flow, the Gibbs sampling can be seen as coordinate descent and DLD gives a full gradient
descent. Hence, locally balanced samplers induced from DLD provides a principled framework to
utilize the modern accelerators like GPUs and TPUs to accelerate discrete sampling. Besides the

discretization of DLD, another crucial part to design a locally balanced sampler is estimating the

probability ratio :Egg Grathwohl et al.| (2021) proposes to used gradient approximation % ~
exp(—(V f(x),y — x)) and obtains good performance on various classical models and deep energy
based models. When the Hessian is available, [Rhodes & Gutmann| (2022); |Sun et al.| (2023a)) use
second order approximation via Gaussian integral trick (Hubbard, [1959) to further improve the
sampling efficiency on skewed target distributions. When the gradient is not avaiable, Xiang et al.
(2023) use zero order approximation via Newton’s series.

Besides designing the sampler, |Sun et al.| (2022b) proves that when tuning path length in PAS (Sun
et al.| [2021)), the optimal efficiency is obtained when average acceptance rate is 0.574, and design an
adaptive tuning algorithm for PAS. [Sansone| (2022) learn locally balanced weight function for locally
balanced proposal, but how to select the weight function in a principled manner is still unclear.

3 Formulation for Sampling in Discrete Space

The sampling in discrete space can be formulated as the following problem: in a finite discrete space
X, we have an energy function f(-) : X — R. We consider a target distribution

w(e) = SR g S (7)), m

zeX

where £ is the inverse temperature. When the normalizer Z is intractable, people usually resort to
Markov chain Monte Carlo (MCMC). Metropolis-Hastings (M-H) (Metropolis et al., 1953} Hastings|

1970) is a commonly used general purpose MCMC algorithm. Specifically, given a current state (%),
the M-H algorithm proposes a candidate state y from a proposal distribution q(x(t), y). Then, with
probability

(y)aly, ) )
m(@®)g(x®,y) I’
the proposed state is accepted and z(*T1) = y; otherwise, z(**1) = 2(*)_ In this way, the detailed

balance condition is satisfied and the M-H sampler generates a Markov chain z(®, (1) ... that has
as its stationary distribution.

min {1, 2

4 Benchmark for Sampling in Discrete Space

The recent development of locally balanced samplers that use the ratio % to guide g(z, -) have
significantly improved the sampling efficiency in discrete space. However, there is no consensus
for many experimental settings and the empirical results in different research papers may not be
comparable. Under this circumstance, we propose DISCS as a benchmark for general purpose
samplers in discrete space. In Section 4.1 we introduces the baselines in DISDS. In Section[4.2] {.3]
4.4] we introduce the tasks considered in DISCS and how the discrete samplers are evaluated on these

tasks. We also report the results of the baselines.

4.1 Baselines

We include both classical discrete samplers and locally balanced samplers in recent research papers
as baselines in our benchmark. Specifically, DISCS implements

1. Random Walk Metropolis (RWM) (Metropolis et al.,|1953)).

2. Block Gibbs (BG), where BG-<a> denotes using block Gibbs with block size a.

3. Hamming Ball Sampler (HB) (Titsias & Yaul 2017), where HB-<a>-<b> denotes using block size
a and Hamming ball size b.
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4. Gibbs with Gradient (GWG) (Grathwohl et al.| |2021)), a locally balanced sampler that use gradient
to approximation the probability ratio. For binary distribution, GWG has a scaling factor L to
determine how many sites to flip per step.

5. Path Auxiliary Sampler (PAS) (Sun et al., [2021)), a locally balanced sampler that has a scaling
factor L to determine the path length.

6. Discrete Metropolis Adjusted Langevin Algorithm (DMALA)(Zhang et al. [2022)), a locally
balanced sampler that has a scaling factor « to determine the step size.

7. Discrete Langevin Monte Carlo (DLMC) (Sun et al.,|2022al), a locally balanced sampler that has
a scaling factor 7 to determine the simulation time of DLD. DLMC has multiple choices for its
numerical solver to approximate the transition matrix. DISCS considers the two versions used in
the original paper, DLMC that uses an interpolation and DLMCT that uses Euler’s forward method.

Remark: weight function All the locally balanced samplers have the flexibility to select locally

balanced function. g(t) = v/t and g(t) = t% are the two most commonly used weight functions. In

this paper, we will use /¢ by default. When we use both of them, we use <sampler>-<func> to refer
the type of the weight function.

Remark: scaling Since the scalings of the proposal distribution in RWM, PAS, DMALA, and
DLMC are tunable, we considers two versions with adaptive tuning or binary search tuning for fair
comparison. Sun et al.|(2022b, [2023b) propose adaptive tuning algorithm for PAS and DLMC when
the target distribution is factorized. In practice, we find that they also apply well for other locally
balanced samplers and for more general target distributions. Hence, in this paper, we use the adaptive
tuning algorithm by default to tune the scaling for locally balanced samplers. In the several exceptions
where the adaptive algorithm does not apply, we will use <sampler-name>-noA to indicate the results
from binary search tuning.

4.2 Sampling from Classical Graphical Models

This section covers the classical graphical models that are widely used in physics and statistics,
including Bernoulli Models, Ising Models (Ising| [1924), and Factorial Hidden Markov Models
(Ghahramani & Jordan, [1995). The graphical models have large flexibility, for example, the number
of discrete variables, the number of categories for each discrete variable, and the temperature of the
model. The performances of different samplers can heavily depends on these configurations. DISCS
provides tools to automatically sweep over hundreds of configurations by one click. Same as the
routine in Monte Carlo integration or Bayesian inference, DISCS uses the Effective Sample Size
(ESS) to measure the efficiency for each sampler and reports the ESS normalized by the number of
calling energy function and the ESS normalized by the running time.

We use Ising Models as an example in the main text, and the more results are reported in Appendix.
For an Ising Model defined on a 2D grid, where the state space X = {—1, 1}?*? represents the spins
on all nodes. For each state x € &, the energy function is defined as:

f(l’) = - Z Jz‘jl’il"j - Z hiz; 3)
i,j i

where J;; is the internel interaction and the h; is the external field. The configurations J and h can
be set freely in DISCS. In the main text, we report the results using the configuration from |Zanella
(2020). Specifically, J;; = 0.5, h; = p; + o4, where o; ~ N(0,2.25) and p; = 0.5 if node i is
located in a circle has the same center as the 2D grid and radius 2%@, else —0.5. We consider the
target distribution 7(x) o exp(—Ff(x)), where 3 is the inverse temperature. Using DISCS, one can
easily investigate the influence of the model dimension. In Figure|l| one can see that the traditional
samplers, RWM, GB, HB, have significant decrease in ESS when the model dimension increases,

while the locally balanced samplers are less affected as the ratio information :Ez; effectively guides

the proposal distribution. The overall trends basically follows the prediction from Sun et al.| (2022b)
that the ESS is O(d~1) for RWM and O(d~3) for PAS.

Through DISCS, researchers can also easily evaluate the samplers with different temperature. In
Figure[2] we evaluate Ising models with inverse temperatures from 0.1607 to 0.7607. We consider
Ising model without external field: h; = 0 and J;; = 1 as we know the critical temperature for this
configuration is which means the critical point for inverse temperature 5 = 0.4407. From

2
log(1++v/2)
the results, we can see that



186
187
188
189
190

191
192

193
194
195

196
197

198

199

201
202
203
204
205
206

Effect of sample dimension on Ising Effect of sample dimension on Ising

= hb-10-1 = hb-10-1
bg-2

bg-2
- rmw J [r———
I - gwgyt 0t ' - gwg/t
1w o
-

I l 3
25x25 50x50 100x100 250x250

i ‘BNl ‘Eml ‘ENf BN

25x25 50x50 100x100 250x250

t

B

]

T
g

ESS w.r.t Energy Evaluation
L]
ESS w.r.t Clock

Figure 1: Results on Ising model with different dimensions

* The Ising model is harder to sample from when the inverse temperature /3 is closer to the critical
point, which is consistent with the theory in statistical physics

» When the inverse temperature 3 is lower than the critical point, using weight function g(t) = v/t
gives larger ESS; When the inverse temperature is larger than the critical point, using weight

function g(t) = {7 consistently obtains larger ESS.

The second observation implies that one should use ratio function tJ%l for target distributions with

sharp landscapes. We will revisit this conclusion in Figure [5|and Table [2]
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Figure 2: Performance of locally balanced samplers with different types of weight functions v.s
temperature on: (left) 50 x 50 Ising model, (right) 100 x 100 Ising model

The categorical version of Ising model is Potts model, where each site of a state z; has values in a
symmetry group, instead of {—1, 1}. For simplicity, we denote the symmetry group as a set of one
hot vectors C = {ey, ..., e.} with h; € RE, Jij € RE*C In this way, the energy function becomes:

fla)==>"a] Jija; = (hi ;) “
i, i

In Figure[3] one can see the sampling efficiency is very robust with respect to the number of category.

The result for BG-2 on Potts model with 256 categories are omitted as it takes over 100 hours.

4.3 Sampling for Solving Combinatorial Optimiazation

Combinatorial optimization is a core challenge in domains like logistics, supply chain management
and hardware design, and has been a fundamental problem of study in computer science for decades.
Combining with simulated annealing [Kirkpatrick et al.| (1983)), discrete sampling algorithm is a
powerful tool to solve combinatorial optimization problems 2023b). In expectation, a
sampler with a faster mixing rate can find better solutions. Hence, the second type of tasks is sampling
for solving combinatorial optimization problems. Currently, DISCS covers four problems: Maximum
Independent Set, Max Clique, Max Cut, and Balanced Graph Partition. Without loss of generality,
we consider combinatorial optimization that admit the following form:

a(z), st blz)=0 5)

min
z€C={0,1,...,C—1}4
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Figure 3: Results of Potts models with different number of categories

For ease of exposition, we also assume b(z) > 0,Vx € C, but otherwise do not limit the form of a
and b. To convert the optimization problem to a sampling problem, we first rewrite the constrained
optimization into a penalty form via a penalty coefficient )\, then treat this as an energy function for
an EBM. In particular, the energy function takes the form:

f(x) = a(z) + - b(z) (6)
Then, we define the probability of x at inverse temperature [ by:
pp(x) o< exp(=ff(x)) ©)

A naive approach to this problem would be directly sampling from pg_, . (), but such a distribution
is highly nonsmooth and unsuitable for MCMC methods. Instead, following classical simulated an-
nealing, we define a sequence of distributions parameterized by a sequence of decaying temperatures:

P = [pﬁo ($)7p51 (:13), <+ Ppr (33)] ®)

where the sequence Sy < 1 < ... < B — oo converges to a large enough value as 7" increases.

Example 1: Max Cut A cut on a graph G = (V, E) is to find a partition of the graph nodes into two
complementary sets V' = V; U V&, such that the number of edges in E between V; and V5 is as large
as possible. Max Cut is an unconstrained problem, which makes its formulation relatively simple.
We can set C = {0, 1} such that z; = O represents ¢ € V; and x; = 1 means z; € V. Then we
can write a(r) = —x " Az, b(z) = 0, where A is the adjacency matrix of G. By applying simulated
annealing with the same temperature schedule, we can compare the performance for each sampler.
We report the results in Figure[d] The ratio is computed by dividing the cut size for the solutions
obtained by running Gurobi for one hour 2020a). The legends are sorted according to the
optimal value they find. One can see that the PAS leads the results. Also, locally balanced samplers
significantly outperforms the traditional samplers, especially when the graph size increases.

Example 2: Maximum Independent Set On a graph G = (V, E), an independent set S C V
means that for any 4,5 € S, (4,j) ¢ E. We can set C = {0, 1} such that x; = 0 means ¢ ¢ S and
2; = 1 means i € S. Then we can write a(z) = — >,y ¢; and b(x) = 3_(; ;e ¥ix;. For the
penalty coefficient A, we follow [Sun et al | to select A = 1.0001 being a value slightly larger
than 1. We run all samplers on five groups of small ER graphs with 700 to 800 nodes, each group has
128 graphs with densities varying 0.05, 0.10, 0.15, 0.20, and 0.25. We also run all samplers on 16
large ER graphs with 9000 to 11000 nodes. For each configurations, we run 32 chains with the same
running time and report the average of the best results found by each chain in Table[T} One can easily
see that PAS obtains the best result.

4.4 Sampling from Energy Based Generative Models

The discrete samplers can also play as the decoder in generative models. In particular, given a
dataset D = {X;}¥ | sampled from the target distribution 7, one can train an energy function fp(-),
such that the energy based model 7y (-) o< exp(— fq(+)) fits the dataset D. DISCS provides multiple
checkpoints for the energy function trained on real-world image or language datasets. Researchers
can easily evaluate their samplers after loading the learned energy function.
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Table 1: Results for MIS on ER graphs. The set found by sampling algorithm is not necessary an
independent set, we report a lower bound: set size - # pair of adjacent nodes in the set.

Sampler ER[700-800] ER[9000-11000]
0.05 0.10 0.15 0.20 0.25 0.15

HB-10-1 | 100.374 58.750 41.812 32344 26.469 277.149
BG-2 102.468 60.000 42.820 32.250 27.312 316.170
RMW 97.186  56.249 40.429 31.219 25.594 -555.674
GWG-nA | 104.812 62.125 44.383 34.812 28.187 367.310
DMALA | 104750 62.031 44.195 34.375 28.031 357.058
PAS 105.062 62.250 44.570 34719 28.500 377.123
DLMCf | 104.450 62.219 44.078 34.469 28.125 354.121
DLMC 104.844 62.187 44.273 34500 28.281 355.058

For the models that are relatively simple, for example, Restricted Boltzmann Machine (RBM) trained
on MNIST (LeCunl [1998)) and fashion-MNIST (Xiao et al.l 2017)), one can continue using ESS as the
metric. In Figure 5] we evaluate the samplers on RBMs trained on MNIST with 25 and 200 hidden
variables. One can see that 1) DLMC has the best performance, 2) when the hidden dimension is

larger, the learned distribution becomes sharper, hence tﬁ obtains better efficiency compared to

\V/t, which is consistent with our observation in Figure[2| For more complicated deep energy based
models, a sampler may fail to mix within a reasonable steps. In this case, ESS is not a good metric.
To address this problem, DISCS provides multiple alternative measurements, including snapshots,
annealed importance sampling, and domain specific scores.

Snapshots  After loading the checkpoint of energy based generative models, DISCS can generate
snapshots of the sampling chains. For example, in Figure[6] we display the snapshots of sampling on
a deep residual network trained on MNIST data (Sun et al., 2021) and on pretrained language model
BERTE One can see that locally balanced samplers generates samples with higher qualities, and can
typically visit multiple modalities in the distribution.

Domain Specific Scores In many deep generative tasks, the goal is to efficiently sample high-quality
samples, instead of mixing in the learned energy based models. In this scenario, domain specific
scores that directly evaluate the sample qualities are a better choice. For example, DISCS provides
text filling tasks based on pre-trained language models like BERT (Wang & Cho, [2019; [Devlin
et al.,|2018]). Following the settings in prior work (Zhang et al.,[2022)), DISCS randomly sample 20
sentences from TBC (Zhu et al.,2015) and WiKiText-103 (Merity et al., 2016), mask four words in
each sentence (Donahue et al.| [2020), and sample 25 sentences from the probability distribution given

'loading the check point from https://huggingface.co/bert-base-uncased.
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Figure 5: Results on RBMs trained on MNIST dataset. (top) RBM with 25 binary hidden variables,
(bottom) RBM with 200 binary hidden variables
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o knowing even different details is good to understand the people involved and how they relate to one another.
2 DLMC knowing even the details was good to understand the people involved and how they relate to one another.
knowing even complex details allows you to understand the people involved and how they relate to one another.

hb-10-1

x1k Steps

MNIST BERT

Figure 6: Snapshots of energy based generative models: (left) snapshots for every 1k steps on MNIST
ResNet, (right) snapshots for text filling task on BERT in Table 2]

by BERT. As a common practice in non-auto-regressive text generation, we select the top-5 sentences
with the highest likelihood out of 25 sentences to avoid low-quality generation (Gu et al., [2017; Zhou
et al.l [2019). We evaluate the generated samples in terms of diversity and quality. For diversity,
we use self-BLEU (Zhu et al., [2018) and the number of unique n-grams (Wang & Chol [2019) to
measure the difference between the generated sentences. For quality, we measure the BLEU score
(Papineni et al.|[2002) between the generated texts and the original dataset, which is the combination
of TBC and WikiText-103. We report the quantitative results in Table[2] We do not have the results
for HB and BG as they are computationally infeasible for this task with 30k+ tokens. In this task,
the locally balanced sampler still outperforms RMW. Also, one can notice that the weight function
7 +1 significantly outperforms +/£. The reason is that the overparameterized neural network is a low
temperature system with sharp landscape. This phenomenon is consistent with the results in Figure 2]

5 Conclusion

DISCS is a tailored benchmark for discrete sampling. It implements various discrete sampling tasks
and state-of-the-art discrete samplers and enables a fair comparison. From the results, we know
that DLMC leads in sampling from classical graphical models, PAS leads in solving combinatorial
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Table 2: Quantative results on text infilling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Unique n-grams (%) (1)
Methods Self-BLEU ({) Self WTI103 TBC Corpus BLEU (1)
n=2 n=3 n=2 n=3 n=2 n=3

RMW 92.41 6.26 9.10 18.97 26.73 19.33  26.67 16.24
GWGVt 85.93 11.22  17.14 23.16 3556 23.58 35.56 16.75
DMALAVt 85.88 11.58 17.14 22.07 34.08 2322 34.15 17.06
PASVt 85.39 11.37 17.60 22.61 3553 23.65 3547 16.57
DLMCfvVt 88.39 9.53 14.06 21.00 31.85 2227 3198 16.70
DLMCVt 85.28 12.05 17.65 24.03 3634 2451 36.27 16.45
GWGHL1 81.15 1547 2270 25.62 3891 25.62 38.58 16.68
DMALAH%1 80.21 16.36 2371 2560 39.39 2675 39.72 16.53
PASHL1 81.02 15.62 22.65 2559 3928 26.08 39.48 16.69
DLMCftJ%1 80.12 16.25 23776 2541 3931 26.86 39.57 16.73
DLMCHL1 84.55 12.62 1847 2427 3728 2494 37.14 16.69

optimization problems, DLMCf and DMALA has the best performance on language models. We
believe more efficient discrete samplers can be obtained by designing better discretization of DLD
(Sun et al.l 2022a). DISCS is a convenient tools during this process. The researcher can freely set the
configurations for tasks and samplers and DISCS will automatically compile the program and run the
processes in parallel. Besides, we observe that the choice of the locally balanced weight function
should depends on the critical temperature of the target distribution. We believe this observation is
insightful and will lead to a deeper understanding of locally balanced samplers.

Of course, DISCS does not include all existing tasks or samplers in discrete sampling, for example,
the zero order (Xiang et al2023)) and second order (Sun et al.||2023a) approximation methods. We
will keep iterating DISCS and more features will be added in the future. We wrap DISCS to a JAX
library. Researchers can conveniently implement customer tasks or samplers to accelerate their study
and, in the meanwhile, contribute the code to DISCS for further improvement. We believe DISCS
will be a powerful tools for researchers and facilitate the future research in discrete sampling.

References

Baumgirtner, A., Burkitt, A., Ceperley, D., De Raedt, H., Ferrenberg, A., Heermann, D., Herrmann,
H., Landau, D., Levesque, D., von der Linden, W., et al. The Monte Carlo method in condensed
matter physics, volume 71. Springer Science & Business Media, 2012.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,
Guo, J., Li, P, and Riddell, A. Stan: A probabilistic programming language. Journal of statistical
software, 76(1), 2017.

Dai, H., Chen, X., Li, Y., Gao, X., and Song, L. A framework for differentiable discovery of graph
algorithms. 2020a.

Dai, H., Singh, R., Dai, B., Sutton, C., and Schuurmans, D. Learning discrete energy-based models
via auxiliary-variable local exploration. arXiv preprint arXiv:2011.05363, 2020b.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Donahue, C., Lee, M., and Liang, P. Enabling language models to fill in the blanks. arXiv preprint
arXiv:2005.05339, 2020.

Du, Y., Li, S., Tenenbaum, J., and Mordatch, I. Improved contrastive divergence training of energy
based models. arXiv preprint arXiv:2012.01316, 2020.

Edwards, S. F. and Anderson, P. W. Theory of spin glasses. Journal of Physics F: Metal Physics, 5
(5):965, 1975.



309
310

311
312

313
314

315

316

317

318
319

320

321
322

323
324

325

326
327

328
329

330
331
332

333
334
335

336
337

338
339

340
341

342
343

344
345

346
347

348
349

350
351

Ghahramani, Z. and Jordan, M. Factorial hidden markov models. Advances in Neural Information
Processing Systems, 8, 1995.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D., and Maddison, C. J. Oops I took a gradient:
Scalable sampling for discrete distributions. arXiv preprint arXiv:2102.04509, 2021.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R. Non-autoregressive neural machine
translation. arXiv preprint arXiv:1711.02281, 2017.

Hamze, F. and de Freitas, N. From fields to trees. arXiv preprint arXiv:1207.4149, 2012.
Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. 1970.
Hubbard, J. Calculation of partition functions. Physical Review Letters, 3(2):77, 1959.

Hukushima, K. and Nemoto, K. Exchange monte carlo method and application to spin glass
simulations. Journal of the Physical Society of Japan, 65(6):1604—1608, 1996.

Ising, E. Beitrag zur theorie des ferro-und paramagnetismus. PhD thesis, Grefe & Tiedemann, 1924.

Katzgraber, H. G., Palassini, M., and Young, A. Monte carlo simulations of spin glasses at low
temperatures. Physical Review B, 63(18):184422, 2001.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. Optimization by simulated annealing. science, 220
(4598):671-680, 1983.

LeCun, Y. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. A tutorial on energy-based learning.
Predicting structured data, 1(0), 2006.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. Equation of
state calculations by fast computing machines. The journal of chemical physics, 21(6):1087-1092,
1953.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311-318, 2002.

Rhodes, B. and Gutmann, M. Enhanced gradient-based mcmc in discrete spaces. arXiv preprint
arXiv:2208.00040, 2022.

Robert, C. and Casella, G. Monte Carlo statistical methods. Springer Science & Business Media,
2013.

Sansone, E. Lsb: Local self-balancing mcmc in discrete spaces. In International Conference on
Machine Learning, pp. 19205-19220. PMLR, 2022.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxiliary proposal for MCMC in discrete space.
In International Conference on Learning Representations, 2021.

Sun, H., Dai, H., Dai, B., Zhou, H., and Schuurmans, D. Discrete Langevin sampler via Wasserstein
gradient flow. arXiv preprint arXiv:2206.14897, 2022a.

Sun, H., Dai, H., and Schuurmans, D. Optimal scaling for locally balanced proposals in discrete
spaces. arXiv preprint arXiv:2209.08183, 2022b.

Sun, H., Guha, E. K., and Dai, H. Annealed training for combinatorial optimization on graphs. arXiv
preprint arXiv:2207.11542, 2022c.

Sun, H., Dai, B., Sutton, C., Schuurmans, D., and Dai, H. Any-scale balanced samplers for discrete
space. In The Eleventh International Conference on Learning Representations, 2023a.

10



352
353

354
355

356

358
359
360

361
362

363
364
365

366
367

368
369

370
371

372

374
375
376

377
378
379

Sun, H., Goshvadi, K., Nova, A., Schuurmans, D., and Dai, H. Revisiting sampling for combinatorial
optimization. In International Conference on Machine Learning, pp. 19205-19220. PMLR, 2023b.

Swendsen, R. H. and Wang, J.-S. Nonuniversal critical dynamics in Monte Carlo simulations.
Physical review letters, 58(2):86, 1987.

Titsias, M. K. and Yau, C. The Hamming ball sampler. Journal of the American Statistical Association,
112(520):1598-1611, 2017.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Biirkner, P.-C. Rank-normalization, folding,
and localization: An improved r for assessing convergence of mcmc (with discussion). Bayesian
analysis, 16(2):667-718, 2021.

Wang, A. and Cho, K. Bert has a mouth, and it must speak: Bert as a markov random field language
model. arXiv preprint arXiv:1902.04094, 2019.

Xiang, Y., Zhu, D., Lei, B., Xu, D., and Zhang, R. Efficient informed proposals for discrete distribu-
tions via newton’s series approximation. In International Conference on Artificial Intelligence and
Statistics, pp. 7288-7310. PMLR, 2023.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zanella, G. Informed proposals for local MCMC in discrete spaces. Journal of the American
Statistical Association, 115(530):852-865, 2020.

Zhang, R., Liu, X., and Liu, Q. A Langevin-like sampler for discrete distributions. In International
Conference on Machine Learning, pp. 26375-26396. PMLR, 2022.

Zhou, C., Neubig, G., and Gu, J. Understanding knowledge distillation in non-autoregressive machine
translation. arXiv preprint arXiv:1911.02727, 2019.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S. Aligning
books and movies: Towards story-like visual explanations by watching movies and reading books.
In Proceedings of the IEEE international conference on computer vision, pp. 19-27, 2015.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J., and Yu, Y. Texygen: A benchmarking
platform for text generation models. In The 415t international ACM SIGIR conference on research
& development in information retrieval, pp. 1097-1100, 2018.

11



Effect of sample dimension on Bernoulli

Effect of sample dimension on Bernoulli

ESS w.r.t Energy Evaluation

10000 100000

Effect of balancing function type on Bernoulli

ESS w.r.t Clock

500000

10000 100000 500000

Effect of balancing function type on Bernoulli

100

ESS w.r.t Energy Evaluation

1At

t
=1

High temperature Bernoulli

ESS w.r.t Clock

ESS w.r.t Energy Evaluation

hb-10-1
bg-2
mw
qwgVt
awgety
dmalavt
dmalagty
pasVt
pasgiy
dimefvt
dimcfity
dimeVt
dimety

1at

o
&1

High temperature Bernoulli

hb-10-1

Low temperature Bernoulli

bg-2
mw
gwgy't
awarty
dmalaVt
dmalagty
pasvt
pasiy

dimcfyt

dimefty
dimevt

ESS w.r.t Clock

¢
dimcgty

ESS w.r.t Energy Evaluation

hb-10-1
bg-2
mw
gwgVt
Wy
dmalaVt
dmala Ly
pasvt
paseiy
dimcfvt
dimcfty
dimey't
dimety

Low temperature Bernoulli

hb-10-1

bg-2
rmw

gwgy't
awgrly

0 A Appendix

sst  A.1 Putto Appendix

382

dmalaVt
.
dmalagty
pasvt
pasgiy

dimcfyt

dimcfty

ESS w.r.t Clock

dimevt

¢
ol dimecty

Figure 7: Bernoulli

12




Effect of sample dimension on Categorical

Effect of sample dimension on Categorical

- = hb-10-1 10° - hb-10-1
bg-2 bg-2
- rmw - rmw
o | | - gwglt o - gyt
< = dmalay't - dmala)t
% I == pasit = pasit
2. = dimcf/t v — dimcft
b mcy't 8 dimet
> o
3 10 = | ]
< Lty
frr
= A
e it}
B
[ Rte =
’ - I - . :
100 l
102
250 2000 32000 512000 2000 32000 512000
Effect of balancing function type on Categorical Effect of balancing function type on Categorical
.| == gwg 9 - gwg
) mm dmala = dmala
= pas - pas
= dimcf = dimcf
dimc dime
s 10
B
H x
& H
B g
4 <
c 210t
[ | &
= a
e it}
3
a
a
i}
100
100 . . . .
¢

¢ 't
lvt 1At = vt

Effect of number of categories on Categorical

100

ESS w.rt Energy Evaluation

256

ESS w.r.t Clock

gwgy't
dmalaVt
pasyt
dimcfVt
dlu?

Figure 8: Categorical

Table 3: MAXCUT.

Sampler  Results Ba ER OPTSICOM
16-20 32-10 64-75  128-150 256-300 512-600 1024-1100 | 256-300 512-600 1024-1100

HB-10-1 Ratio a | 1.000 1.000 1.000 1.000 1.000 1.008 1.014 1.020 1.000 0.998 1.000
Time(s) | 371.284 377.306 374.813 391.639 396.169 571.651  945.267 165510  208.001  744.191 37.673
BG-2 Rgtio a | 1.000 1.000 1.000 1.000 1.000 1.009 1.014 1.021 1.001 0.999 1.000
Time(s) | 258.592 269.129 275.041 276931 265.8600 289.496  578.785 134.558 168.507  647.610 8.525
RMW Ratioar | 0.998 1.000 1.000 1.000 0.999 1.005 1.007 1.019 0.997 0.996 1.000
Time(s) | 267.107 267.307 264.320 279.304 270.651 287.389  532.926 133.536 166.701  633.315 29.480
GWG-nA Rgtio a | 1.000 1.000 1.000 1.000 1.000 1.010 1.017 1.021 1.002 1.001 1.000
Time(s) | 261.047 265.713 289.458 275961 272.817 362.360  713.788 132.10  233.100  833.010 40.062
DMALA Ratio o | 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) | 265.716 269.469 284.112 274.513 272.284 375455 745436 | 138.927 230.589  821.567 26.754
PAS Ratio a | 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) | 259.921 269.407 275.017 275289 290.025 470.204 958977 | 146.716 465.481  3400.855 29.607
DLMCF Ratio o | 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.001 1.000
Time(s) | 260.800 263.145 272.938 278.782 266.559 382.859  755.190 | 136.420 226.126  819.769 26.276
DLMC Rgtio a | 1.000 1.000 1.000 1.000 1.000 1.010 1.018 1.021 1.002 1.002 1.000
Time(s) | 265.501 275.059 271.643 272305 271.338 382.552  782.099 | 135.631 225540  821.111 26.684
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Figure 14: MAXCUT
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Table 4: MIS.
Graphs ER[700-800] ER[9000-11000] | SATLIB
Sampler
Density 0.05 0.10 0.15 0.20 0.25 0.15
HB-10-1 Size 100.374 587750  41.812  32.344  26.469 277.149 434.804
Time(s) | 213.092 377306 342.295 207.034 214.940 7569.712 2063.689
BG-2 Size 102.468 60.000  42.820 32250  27.312 316.170 434.545
Time(s) | 145.713 195.405 281.493 147.512 144.054 6539.562 1477.161
RMW Size 97.186 56249 40429 31219  25.59% -555.674 432.746
Time(s) | 142.046 145.021 249.789 148.570 140.886 6200.869 1468.328
GWG-nA Size 104.812 62.125  44.383 34.812  28.187 367.310 435.419
Time(s) | 139.442 146.758 368.836 151.717 155.275 12349.148 1488.152
DMALA Size 104.750  62.031 44.195 34375  28.031 357.058 436.152
Time(s) | 145.635 154.437 357307 148.924 149.366 12384.69 1494.575
PAS Size 105.062 62.250  44.570 34719  28.500 377.123 436.644
Time(s) | 149.502 155.382 379.686 149.785 154.238 12621.083 1517.682
DLMCF Size 104.450 62.219  44.078 34469  28.125 354.121 435.894
Time(s) | 145.683 150.777 363.143 151.334 150.206 12446.108 1486.004
DLMC Size 104.844  62.187  44.273 34500  28.281 355.058 436.046
Time(s) | 146.617 147.487 362.663 147.344 149.942 12488.156 1428.965
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Figure 16: mis

Table 5: MAXCLIQUE.

Sampler

Results RB

TWITTER

HB-10-1

BG-2

RMW

GWG-nA

DMALA

PAS

DLMCF

DLMC

Ratio « 0.850
Time(s) | 862.447
Ratio « 0.859
Time(s) | 796.404
Ratio « 0.841
Time(s) | 841.698
Ratio « 0.878
Time(s) | 1262.900
Ratio a 0.876
Time(s) | 1280.807
Ratio « 0.878
Time(s) | 1271.269
Ratio « 0.871
Time(s) | 1266.417
Ratio « 0.875
Time(s) | 1319.794

0.966
3.408
0.995
3.163
0.584
2.832
0.999
3.016
0.999
3.095
0.999
3.090
0.999
2.994
0.999
3.062
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Table 6: Graph partition.

Metric Samplers VGG MNIST-conv ResNet AlexNet Inception-v3
HB-10-1 0.050 0.046 0.050 0.037 0.065
BG-2 0.048 0.045 0.050 0.038 0.069
RMW 0.054 0.046 0.092 0.052 0.117
GWG 0.102 0.046 0.159 0.063 0.164
DMALA 0.084 0.058 0.178 0.063 0.176
Edge cut ratio | DMALA-nA 0.059 0.045 0.048 0.039 0.054
PAS 0.053 0.045 0.047 0.037 0.052
PAS-nA 0.084 0.050 0.138 0.053 0.144
DLMCF 0.086 0.063 0.178 0.053 0.176
DLMCF-nA  0.092 0.069 0.048 0.085 0.052
DLMC 0.105 0.056 0.183 0.097 0.182
DLMC-nA  0.113 0.048 0.082 0.091 0.086
HB-10-1 0.999 0.999 0.999 0.999 0.999
BG-2 0.999 0.997 0.999 0.999 0.999
RMW 0.999 0.998 0.999 0.999 0.999
GWG 0.999 0.997 0.999 0.999 0.999
DMALA 0.999 0.998 0.999 0.999 0.999
Balanceness 1 DMALA-nA 0.999 0.997 0.999 0.999 0.999
PAS 0.999 0.997 0.999 1.000 0.999
PAS-nA 0.999 0.998 0.999 0.999 0.999
DLMCF 0.999 0.997 0.999 0.999 0.999
DLMCF-nA  0.999 0.995 0.999 0.999 0.999
DLMC 0.999 0.994 0.999 0.999 0.999
DLMC-nA  0.999 0.993 0.999 0.999 0.999

Table 7: Quantative results on text infilling. The reference text for computing the Corpus BLEU is
the combination of WT103 and TBC.

Unique n-grams (%) (1)
Methods Self-BLEU () Self WT103 TBC Corpus BLEU (1)
n=2 n=3 n=2 n=3 n=2 n=3

RMW 92.41 6.26 9.10 1897 26.73 19.33 26.67 16.24
GWGvVt 85.93 1122 17.14 23.16 3556 23.58 35.56 16.75
GWGtJ%1 81.15 1547 2270 25.62 3891 25.62 38.58 16.68
DMALA-nAV% 83.99 1326 19.52 2433 3640 2530 36.40 16.37
DMALA-nAti—’1 80.44 1586 23.58 2579 39.88 26.57 40.20 16.64
DMALA V% 85.88 11.58 17.14 22.07 34.08 2322 34.15 17.06
DMALAHL1 80.21 1636 23.71 25,60 39.39 26.75 39.72 16.53
PASVt 85.39 11.37  17.60 22.61 3553 23.65 3547 16.57
PASH%1 81.02 15.62 22.65 2559 39.28 26.08 39.48 16.69
DLMCf-nAV/t 91.57 7.25 1042 19.53 28.31 20.13 28.18 16.56
DLMCf—nAH_L1 81.66 1531 21.78 2639 39.56 27.60 39.69 16.31
DLMCfv/t 88.39 9.53 14.06 21.00 31.85 2227 3198 16.70
DLMCfH%1 80.12 1625 2376 2541 3931 26.86 39.57 16.73
DLMC-nAV/t 83.74 1274 19.64 2427 3727 2494 37.34 16.73
DLMC-nAH%1 82.26 14.18 2141 2551 39.10 26.18 39.29 16.55
DLMCV/t 85.28 12.05 17.65 24.03 3634 2451 36.27 16.45
DLMCH%1 84.55 12.62 1847 2427 3728 2494 37.14 16.69
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