# **DISCS: A Benchmark for Discrete Sampling**

Anonymous Author(s) Affiliation Address email

# Abstract

Sampling in discrete spaces, with critical applications in simulation and opti-1 2 mization, has recently been boosted by significant advances in gradient-based approaches that exploit modern accelerators like GPUs. However, two key chal-3 4 lenges hinder the further research progress in discrete sampling. First, since there is no consensus on experimental settings, the empirical results in different research 5 6 papers are often not comparable. Secondly, implementing samplers and target distributions often requires a nontrivial amount of effort in terms of calibration, 7 parallelism, and evaluation. To tackle these challenges, we propose DISCS (DIS-8 Crete Sampling), a tailored package and benchmark that supports unified and 9 efficient implementation and evaluations for discrete sampling in three types of 10 11 tasks: sampling for classical graphical models, combinatorial optimization, and energy based generative models. Throughout the comprehensive evaluations in 12 *DISCS*, we acquired new insights into scalability, design principles for proposal 13 distributions, and lessons for adaptive sampling design. DISCS implements rep-14 resentative discrete samplers in existing research works as baselines, and offers a 15 simple interface that researchers can conveniently design new discrete samplers 16 17 and compare with baselines in a calibrated setup directly.

# **18 1** Introduction

Sampling in discrete spaces has been an important problem in physics (Edwards & Anderson, 19 20 1975; Baumgärtner et al., 2012), statistics (Robert & Casella, 2013; Carpenter et al., 2017), and computer science (LeCun et al., 2006; Wang & Cho, 2019) for decades. Since sampling from a target 21 distribution  $\pi(x) \propto \exp(-f(x))$  in a discrete space  $\mathcal{X}$  is typically intractable, one usually resorts 22 to MCMC methods (Metropolis et al., 1953; Hastings, 1970). However, except for a few algorithms 23 such as Swedesen-Wang for the Ising model (Swendsen & Wang, 1987) and Hamze-Freitas for 24 hierachical models (Hamze & de Freitas, 2012), which exploit special structure of the underlying 25 problem, sampling in a general discrete space has primarily relied on Gibbs sampling, which exhibits 26 notoriously poor efficiency in high dimensional spaces. 27

Recently, a family of locally balanced samplers (Zanella, 2020; Grathwohl et al., 2021; Sun et al., 28 2021; Zhang et al., 2022), using ratio informed proposal distributions,  $\frac{\pi(y)}{\pi(x)}$ , have significantly 29 improved sampling efficiency by exploiting modern accelerators like GPUs and TPUs. From the 30 perspective of gradient flow on the Wasserstein manifold of distributions, Gibbs sampling is simply a 31 coordinate descent algorithm, whereas locally balanced samplers perform as full gradient descent 32 (Sun et al., 2022a). Despite the advances in locally balanced samplers, a quantitative benchmark 33 is still missing. One important reason is that there is no consensus on the experimental setting. 34 Particularly, the initialization of energy based generative models, random seeds used in graphical 35 models, and the protocol of hyper-parameter tuning all have a significant impact on performance. 36 As a result, some empirical results in different research papers may not be comparable. Under this 37 circumstance, a unified benchmark is in crucial need for boosting the research in discrete sampling. 38

Submitted to ICML 2023 Workshop: Sampling and Optimization in Discrete Space. Do not distribute.

There are two key challenges that seriously hinder the appearance of such a benchmark. First, a 39 sampler may perform well in one target distribution while poorly in another one. To thoroughly 40 examine the performance of a sampler, a qualified benchmark needs to collect a set of representative 41 distributions that covers the potential applications of a discrete sampler. Second, the evaluation of 42 discrete samplers is complicated. Although the commonly used metric ESS (Vehtari et al., 2021) can 43 effectively reflect the efficiency of a sampler in Monte Carlo integration or Bayesian inference, it is 44 not very informative in scenarios when the sampler guides the search in combinatorial optimization 45 problems, or performs as a decoder in deep generative models. 46

To address the two challenges, we propose *DISCS*, a tailored benchmark for discrete sampling. 47 In particular, *DISCS* consists of three groups of tasks: sampling from classical graphical models, 48 sampling for solving combinatorial optimization problems, and sampling from deep EBMs. These 49 tasks cover the topics of simulation and optimization, and models ranging from hand-designed 50 graphical models to learned deep EBMs. For each task, we collect the representative problems from 51 both synthetic and real-world applications, for example graph partitioning for distributed computing 52 and language model for text generation. We carefully design the evaluation metrics in DISCS. In 53 sampling classical graphical models tasks, DISCS uses the ESS as standard. In sampling for solving 54 combinatorial optimization tasks, DISCS runs simulated annealing (Kirkpatrick et al., 1983) with 55 multiple chains and report the average of the best results in each chain. In sampling from energy 56 based generative models, DISCS employs domain specific ways to measure the sample quality. 57

DISCS offers a convenient interface for researchers to implement new discrete samplers, without 58 worrying about parallelism, experiment loop and evaluation. DISCS can efficiently sweep over 59 different tasks and configurations in parallel and thus the evaluation reported in this paper can be 60 easily reproduced. Also, DISCS implements existing discrete samplers random walk Metropolis 61 (Metropolis et al., 1953), block Gibbs, Hamming ball sampler (Titsias & Yau, 2017), LB (Zanella, 62 2020), GWG (Grathwohl et al., 2021), PAS (Sun et al., 2021), DMALA (Zhang et al., 2022), DLMC 63 (Sun et al., 2022a), and is actively maintaining to add new samplers. Researchers can directly compare 64 the results with the state-of-the-art methods. 65

66 With *DISCS*, we observe an interesting phenomenon that the locally balanced weight function 67  $g(t) = \sqrt{t}$  performs better (worse) than  $g(t) = \frac{t}{t+1}$  when Ising model has temperature higher (lower) 68 than the critical temperature. There have been a lot of studies about how to select the locally balanced 69 function for a locally balanced sampler (Zanella, 2020; Sansone, 2022), but the answer remains open. 70 We hope the observations in this paper can provide some insight on this question.

We wrap the *DISCS* package as a JAX library to facilitate the research in discrete sampling. The
 library will be open sourced at https://github.com/google-research/discs. The paper is
 organized as follows:

- In section 2, we cover the related sampling tasks and discrete samplers.
- In section 3, we formulate the discrete sampling problem.
- In section 4, we introduce the discrete sampling tasks and evaluation metrics in *DISCS*. We also report the results for existing discrete samplers.
- In section 5, we discuss the contribution and limitations of *DISCS*.

#### 79 2 Related Work

<sup>80</sup> Discrete sampling has been widely used to study the physical picture of spin glasses (Hukushima &

81 Nemoto, 1996; Katzgraber et al., 2001), solve combinatorial optimization via simulated annealing

82 (Kirkpatrick et al., 1983), and for training or decoding deep energy based models (Wang & Cho, 2019;

<sup>83</sup> Du et al., 2020; Dai et al., 2020b). However, they primarily depend on Gibbs sampling, which could <sup>84</sup> be very slow in high dimensional space.

Since the seminal work Zanella (2020), the recent years have witnessed significant progresses for
 discrete sampling in the both theory and practice. Zanella (2020) introduces the locally balanced

- proposal  $q(x, y) \propto g(\frac{\pi(y)}{\pi(x)})$ , where  $y \in N(X)$  restricted within a small neighborhood of x and  $g(\cdot)$ :
- 88  $\mathbb{R}_+ \to \mathbb{R}_+$  satisfying  $g(a) = ag(\frac{1}{a})$ , and prove it is asymptotically optimal. In the following works,
- PAS (Sun et al., 2021) and DMALA (Zhang et al., 2022) generalize locally balanced proposal to large
- <sup>90</sup> neighborhoods by introducing an auxiliary path and mimicking the diffusion process, respectively.
- 91 Inspired by these locally balanced samplers, Sun et al. (2022a) generalize the Langevin dynamics

in continuous space to discrete Langevin dynamics (DLD) in discrete space as a continuous time 92 Markov chain  $\frac{d}{dh}\mathbb{P}(X^{t+h} = y|X^t = x) = g(\frac{\pi(y)}{\pi(x)})$ , and show that previous locally balanced 93 samplers are simulations of DLD with different discretization strategies. In the view of Wasserstein 94 gradient flow, the Gibbs sampling can be seen as coordinate descent and DLD gives a full gradient 95 descent. Hence, locally balanced samplers induced from DLD provides a principled framework to 96 utilize the modern accelerators like GPUs and TPUs to accelerate discrete sampling. Besides the 97 discretization of DLD, another crucial part to design a locally balanced sampler is estimating the probability ratio  $\frac{\pi(y)}{\pi(x)}$ . Grathwohl et al. (2021) proposes to used gradient approximation  $\frac{\pi(y)}{\pi(x)} \approx$ 98 99  $\exp(-\langle \nabla f(x), y - x \rangle)$  and obtains good performance on various classical models and deep energy 100 based models. When the Hessian is available, Rhodes & Gutmann (2022); Sun et al. (2023a) use 101 102 second order approximation via Gaussian integral trick (Hubbard, 1959) to further improve the sampling efficiency on skewed target distributions. When the gradient is not available, Xiang et al. 103 (2023) use zero order approximation via Newton's series. 104

Besides designing the sampler, Sun et al. (2022b) proves that when tuning path length in PAS (Sun et al., 2021), the optimal efficiency is obtained when average acceptance rate is 0.574, and design an adaptive tuning algorithm for PAS. Sansone (2022) learn locally balanced weight function for locally balanced proposal, but how to select the weight function in a principled manner is still unclear.

## **109 3** Formulation for Sampling in Discrete Space

The sampling in discrete space can be formulated as the following problem: in a finite discrete space  $\mathcal{X}$ , we have an energy function  $f(\cdot) : \mathcal{X} \to \mathbb{R}$ . We consider a target distribution

$$\pi(x) = \frac{\exp(-\beta f(x))}{Z}, \quad Z = \sum_{z \in \mathcal{X}} \exp(-\beta f(z)), \tag{1}$$

where  $\beta$  is the inverse temperature. When the normalizer Z is intractable, people usually resort to Markov chain Monte Carlo (MCMC). Metropolis-Hastings (M-H) (Metropolis et al., 1953; Hastings, 1970) is a commonly used general purpose MCMC algorithm. Specifically, given a current state  $x^{(t)}$ , the M-H algorithm proposes a candidate state y from a proposal distribution  $q(x^{(t)}, y)$ . Then, with probability

$$\min\left\{1, \frac{\pi(y)q(y, x^{(t)})}{\pi(x^{(t)})q(x^{(t)}, y)}\right\},\tag{2}$$

the proposed state is accepted and  $x^{(t+1)} = y$ ; otherwise,  $x^{(t+1)} = x^{(t)}$ . In this way, the detailed balance condition is satisfied and the M-H sampler generates a Markov chain  $x^{(0)}, x^{(1)}, ...$  that has  $\pi$ as its stationary distribution.

### **4** Benchmark for Sampling in Discrete Space

The recent development of locally balanced samplers that use the ratio  $\frac{\pi(y)}{\pi(x)}$  to guide  $q(x, \cdot)$  have significantly improved the sampling efficiency in discrete space. However, there is no consensus for many experimental settings and the empirical results in different research papers may not be comparable. Under this circumstance, we propose *DISCS* as a benchmark for general purpose samplers in discrete space. In Section 4.1, we introduces the baselines in *DISDS*. In Section 4.2, 4.3, 4.4, we introduce the tasks considered in *DISCS* and how the discrete samplers are evaluated on these tasks. We also report the results of the baselines.

#### 128 4.1 Baselines

We include both classical discrete samplers and locally balanced samplers in recent research papers as baselines in our benchmark. Specifically, *DISCS* implements

131 1. Random Walk Metropolis (RWM) (Metropolis et al., 1953).

- 132 2. Block Gibbs (BG), where BG- $\langle a \rangle$  denotes using block Gibbs with block size *a*.
- 133 3. Hamming Ball Sampler (HB) (Titsias & Yau, 2017), where HB-<*a>-<b>* denotes using block size
   134 a and Hamming ball size b.

- 4. Gibbs with Gradient (GWG) (Grathwohl et al., 2021), a locally balanced sampler that use gradient to approximation the probability ratio. For binary distribution, GWG has a scaling factor *L* to determine how many sites to flip per step.
- <sup>138</sup> 5. Path Auxiliary Sampler (PAS) (Sun et al., 2021), a locally balanced sampler that has a scaling <sup>139</sup> factor L to determine the path length.
- 140 6. Discrete Metropolis Adjusted Langevin Algorithm (DMALA)(Zhang et al., 2022), a locally 141 balanced sampler that has a scaling factor  $\alpha$  to determine the step size.
- <sup>142</sup> 7. Discrete Langevin Monte Carlo (DLMC) (Sun et al., 2022a), a locally balanced sampler that has <sup>143</sup> a scaling factor  $\tau$  to determine the simulation time of DLD. DLMC has multiple choices for its
- 143 a scaling factor  $\tau$  to determine the simulation time of DLD. DLMC has multiple choices for its 144 numerical solver to approximate the transition matrix. *DISCS* considers the two versions used in
- the original paper, DLMC that uses an interpolation and DLMCf that uses Euler's forward method.

**Remark: weight function** All the locally balanced samplers have the flexibility to select locally balanced function.  $g(t) = \sqrt{t}$  and  $g(t) = \frac{t}{t+1}$  are the two most commonly used weight functions. In this paper, we will use  $\sqrt{t}$  by default. When we use both of them, we use <sampler>-<func> to refer the type of the weight function.

**Remark: scaling** Since the scalings of the proposal distribution in RWM, PAS, DMALA, and 150 DLMC are tunable, we considers two versions with adaptive tuning or binary search tuning for fair 151 comparison. Sun et al. (2022b, 2023b) propose adaptive tuning algorithm for PAS and DLMC when 152 the target distribution is factorized. In practice, we find that they also apply well for other locally 153 balanced samplers and for more general target distributions. Hence, in this paper, we use the adaptive 154 tuning algorithm by default to tune the scaling for locally balanced samplers. In the several exceptions 155 where the adaptive algorithm does not apply, we will use <sampler-name>-noA to indicate the results 156 from binary search tuning. 157

#### 158 4.2 Sampling from Classical Graphical Models

This section covers the classical graphical models that are widely used in physics and statistics, 159 including Bernoulli Models, Ising Models (Ising, 1924), and Factorial Hidden Markov Models 160 (Ghahramani & Jordan, 1995). The graphical models have large flexibility, for example, the number 161 of discrete variables, the number of categories for each discrete variable, and the temperature of the 162 model. The performances of different samplers can heavily depends on these configurations. DISCS 163 provides tools to automatically sweep over hundreds of configurations by one click. Same as the 164 routine in Monte Carlo integration or Bayesian inference, *DISCS* uses the Effective Sample Size 165 (ESS) to measure the efficiency for each sampler and reports the ESS normalized by the number of 166 calling energy function and the ESS normalized by the running time. 167

We use Ising Models as an example in the main text, and the more results are reported in Appendix. For an Ising Model defined on a 2D grid, where the state space  $\mathcal{X} = \{-1, 1\}^{p \times p}$  represents the spins on all nodes. For each state  $x \in \mathcal{X}$ , the energy function is defined as:

$$f(x) = -\sum_{i,j} J_{ij} x_i x_j - \sum_i h_i x_i$$
(3)

where  $J_{ii}$  is the internel interaction and the  $h_i$  is the external field. The configurations J and h can 171 be set freely in DISCS. In the main text, we report the results using the configuration from Zanella 172 (2020). Specifically,  $J_{ij} = 0.5$ ,  $h_i = \mu_i + \sigma_i$ , where  $\sigma_i \sim \mathcal{N}(0, 2.25)$  and  $\mu_i = 0.5$  if node *i* is located in a circle has the same center as the 2D grid and radius  $\frac{p}{2\sqrt{2}}$ , else -0.5. We consider the 173 174 target distribution  $\pi(x) \propto \exp(-\beta f(x))$ , where  $\beta$  is the inverse temperature. Using *DISCS*, one can 175 easily investigate the influence of the model dimension. In Figure 1, one can see that the traditional 176 samplers, RWM, GB, HB, have significant decrease in ESS when the model dimension increases, 177 while the locally balanced samplers are less affected as the ratio information  $\frac{\pi(y)}{\pi(x)}$  effectively guides the proposal distribution. The overall trends basically follows the prediction from Sun et al. (2022b) 178 179 that the ESS is  $O(d^{-1})$  for RWM and  $O(d^{-\frac{1}{3}})$  for PAS. 180 Through DISCS, researchers can also easily evaluate the samplers with different temperature. In 181

Figure 2, we evaluate Ising models with inverse temperatures from 0.1607 to 0.7607. We consider Ising model without external field:  $h_i \equiv 0$  and  $J_{ij} \equiv 1$  as we know the critical temperature for this configuration is  $\frac{2}{\log(1+\sqrt{2})}$  which means the critical point for inverse temperature  $\beta = 0.4407$ . From the results, we can see that



Figure 1: Results on Ising model with different dimensions

- The Ising model is harder to sample from when the inverse temperature  $\beta$  is closer to the critical 186 point, which is consistent with the theory in statistical physics 187
- When the inverse temperature  $\beta$  is lower than the critical point, using weight function  $g(t) = \sqrt{t}$ 188

gives larger ESS; When the inverse temperature is larger than the critical point, using weight function  $g(t) = \frac{t}{t+1}$  consistently obtains larger ESS. 189

190

The second observation implies that one should use ratio function  $\frac{t}{t+1}$  for target distributions with 191 sharp landscapes. We will revisit this conclusion in Figure 5 and Table 2. 192



Figure 2: Performance of locally balanced samplers with different types of weight functions v.s temperature on: (left)  $50 \times 50$  Ising model, (right)  $100 \times 100$  Ising model

The categorical version of Ising model is Potts model, where each site of a state  $x_i$  has values in a 193

symmetry group, instead of  $\{-1, 1\}$ . For simplicity, we denote the symmetry group as a set of one hot vectors  $C = \{e_1, ..., e_c\}$  with  $h_i \in \mathbb{R}^C, J_{ij} \in \mathbb{R}^{C \times C}$ . In this way, the energy function becomes: 194

195

$$f(x) = -\sum_{i,j} x_i^{\top} J_{ij} x_j - \sum_i \langle h_i, x_i \rangle$$
(4)

In Figure 3, one can see the sampling efficiency is very robust with respect to the number of category. 196 The result for BG-2 on Potts model with 256 categories are omitted as it takes over 100 hours. 197

#### 4.3 Sampling for Solving Combinatorial Optimiazation 198

Combinatorial optimization is a core challenge in domains like logistics, supply chain management 199 and hardware design, and has been a fundamental problem of study in computer science for decades. 200 Combining with simulated annealing Kirkpatrick et al. (1983), discrete sampling algorithm is a 201 powerful tool to solve combinatorial optimization problems (Sun et al., 2023b). In expectation, a 202 sampler with a faster mixing rate can find better solutions. Hence, the second type of tasks is sampling 203 for solving combinatorial optimization problems. Currently, DISCS covers four problems: Maximum 204 Independent Set, Max Clique, Max Cut, and Balanced Graph Partition. Without loss of generality, 205 206 we consider combinatorial optimization that admit the following form:

$$\min_{x \in \mathcal{C} = \{0, 1, \dots, C-1\}^d} a(x), \quad \text{s.t.} \quad b(x) = 0$$
(5)



Figure 3: Results of Potts models with different number of categories

For ease of exposition, we also assume  $b(x) \ge 0$ ,  $\forall x \in C$ , but otherwise do not limit the form of *a* and *b*. To convert the optimization problem to a sampling problem, we first rewrite the constrained optimization into a penalty form via a penalty coefficient  $\lambda$ , then treat this as an energy function for an EBM. In particular, the energy function takes the form:

$$f(x) = a(x) + \lambda \cdot b(x) \tag{6}$$

Then, we define the probability of x at inverse temperature  $\beta$  by:

$$p_{\beta}(x) \propto \exp(-\beta f(x))$$
 (7)

A naive approach to this problem would be directly sampling from  $p_{\beta \to \infty}(x)$ , but such a distribution

is highly nonsmooth and unsuitable for MCMC methods. Instead, following classical simulated annealing, we define a sequence of distributions parameterized by a sequence of decaying temperatures:

<sup>214</sup> nearing, we define a sequence of distributions parameterized by a sequence of decaying temperatures

$$\mathcal{P} = [p_{\beta_0}(x), p_{\beta_1}(x), \dots, p_{\beta_T}(x)]$$
(8)

where the sequence  $\beta_0 < \beta_1 < \ldots < \beta_T \rightarrow \infty$  converges to a large enough value as T increases.

**Example 1:** Max Cut A cut on a graph G = (V, E) is to find a partition of the graph nodes into two 216 complementary sets  $V = V_1 \cup V_2$ , such that the number of edges in E between  $V_1$  and  $V_2$  is as large 217 as possible. Max Cut is an unconstrained problem, which makes its formulation relatively simple. 218 We can set  $\mathcal{C} = \{0,1\}$  such that  $x_i = 0$  represents  $i \in V_1$  and  $x_i = 1$  means  $x_i \in V_2$ . Then we 219 can write  $a(x) = -x^{\top}Ax, b(x) \equiv 0$ , where A is the adjacency matrix of G. By applying simulated 220 annealing with the same temperature schedule, we can compare the performance for each sampler. 221 We report the results in Figure 4. The ratio is computed by dividing the cut size for the solutions 222 obtained by running Gurobi for one hour (Dai et al., 2020a). The legends are sorted according to the 223 optimal value they find. One can see that the PAS leads the results. Also, locally balanced samplers 224 significantly outperforms the traditional samplers, especially when the graph size increases. 225

**Example 2: Maximum Independent Set** On a graph G = (V, E), an independent set  $S \subset V$ 226 means that for any  $i, j \in S$ ,  $(i, j) \notin E$ . We can set  $\mathcal{C} = \{0, 1\}$  such that  $x_i = 0$  means  $i \notin S$  and  $x_i = 1$  means  $i \in S$ . Then we can write  $a(x) = -\sum_{i \in V} x_i$  and  $b(x) = \sum_{(i,j) \in E} x_i x_j$ . For the 227 228 penalty coefficient  $\lambda$ , we follow Sun et al. (2022c) to select  $\lambda = 1.0001$  being a value slightly larger 229 than 1. We run all samplers on five groups of small ER graphs with 700 to 800 nodes, each group has 230 128 graphs with densities varying 0.05, 0.10, 0.15, 0.20, and 0.25. We also run all samplers on 16 231 large ER graphs with 9000 to 11000 nodes. For each configurations, we run 32 chains with the same 232 running time and report the average of the best results found by each chain in Table 1. One can easily 233 see that PAS obtains the best result. 234

#### 235 4.4 Sampling from Energy Based Generative Models

The discrete samplers can also play as the decoder in generative models. In particular, given a dataset  $\mathcal{D} = \{X_i\}_{i=1}^N$  sampled from the target distribution  $\pi$ , one can train an energy function  $f_{\theta}(\cdot)$ , such that the energy based model  $\pi_{\theta}(\cdot) \propto \exp(-f_{\theta}(\cdot))$  fits the dataset  $\mathcal{D}$ . *DISCS* provides multiple checkpoints for the energy function trained on real-world image or language datasets. Researchers can easily evaluate their samplers after loading the learned energy function.



Figure 4: Results for MAXCUT on ER graphs. The ratio is computed by dividing the optimal cut size obtained from running Gurobi for 1 hour. (top) ratio with respect to number of M-H steps, (bottom) ratio with respect to running time.

Table 1: Results for MIS on ER graphs. The set found by sampling algorithm is not necessary an independent set, we report a lower bound: set size - # pair of adjacent nodes in the set.

| Complex |         | ER[700-800] |        |        |        |          |  |  |  |  |
|---------|---------|-------------|--------|--------|--------|----------|--|--|--|--|
| Sampler | 0.05    | 0.10        | 0.15   | 0.20   | 0.25   | 0.15     |  |  |  |  |
| HB-10-1 | 100.374 | 58.750      | 41.812 | 32.344 | 26.469 | 277.149  |  |  |  |  |
| BG-2    | 102.468 | 60.000      | 42.820 | 32.250 | 27.312 | 316.170  |  |  |  |  |
| RMW     | 97.186  | 56.249      | 40.429 | 31.219 | 25.594 | -555.674 |  |  |  |  |
| GWG-nA  | 104.812 | 62.125      | 44.383 | 34.812 | 28.187 | 367.310  |  |  |  |  |
| DMALA   | 104.750 | 62.031      | 44.195 | 34.375 | 28.031 | 357.058  |  |  |  |  |
| PAS     | 105.062 | 62.250      | 44.570 | 34.719 | 28.500 | 377.123  |  |  |  |  |
| DLMCf   | 104.450 | 62.219      | 44.078 | 34.469 | 28.125 | 354.121  |  |  |  |  |
| DLMC    | 104.844 | 62.187      | 44.273 | 34.500 | 28.281 | 355.058  |  |  |  |  |

For the models that are relatively simple, for example, Restricted Boltzmann Machine (RBM) trained 241 on MNIST (LeCun, 1998) and fashion-MNIST (Xiao et al., 2017), one can continue using ESS as the 242 metric. In Figure 5, we evaluate the samplers on RBMs trained on MNIST with 25 and 200 hidden 243 variables. One can see that 1) DLMC has the best performance, 2) when the hidden dimension is 244 larger, the learned distribution becomes sharper, hence  $\frac{t}{t+1}$  obtains better efficiency compared to 245  $\sqrt{t}$ , which is consistent with our observation in Figure 2. For more complicated deep energy based 246 models, a sampler may fail to mix within a reasonable steps. In this case, ESS is not a good metric. 247 To address this problem, *DISCS* provides multiple alternative measurements, including snapshots, 248 annealed importance sampling, and domain specific scores. 249

Snapshots After loading the checkpoint of energy based generative models, *DISCS* can generate snapshots of the sampling chains. For example, in Figure 6, we display the snapshots of sampling on a deep residual network trained on MNIST data (Sun et al., 2021) and on pretrained language model BERT<sup>1</sup>. One can see that locally balanced samplers generates samples with higher qualities, and can typically visit multiple modalities in the distribution.

**Domain Specific Scores** In many deep generative tasks, the goal is to efficiently sample high-quality samples, instead of mixing in the learned energy based models. In this scenario, domain specific scores that directly evaluate the sample qualities are a better choice. For example, *DISCS* provides text filling tasks based on pre-trained language models like BERT (Wang & Cho, 2019; Devlin et al., 2018). Following the settings in prior work (Zhang et al., 2022), *DISCS* randomly sample 20 sentences from TBC (Zhu et al., 2015) and WiKiText-103 (Merity et al., 2016), mask four words in each sentence (Donahue et al., 2020), and sample 25 sentences from the probability distribution given

<sup>&</sup>lt;sup>1</sup>loading the check point from https://huggingface.co/bert-base-uncased.



Figure 5: Results on RBMs trained on MNIST dataset. (top) RBM with 25 binary hidden variables, (bottom) RBM with 200 binary hidden variables



Figure 6: Snapshots of energy based generative models: (left) snapshots for every 1k steps on MNIST ResNet, (right) snapshots for text filling task on BERT in Table 2

by BERT. As a common practice in non-auto-regressive text generation, we select the top-5 sentences 262 with the highest likelihood out of 25 sentences to avoid low-quality generation (Gu et al., 2017; Zhou 263 et al., 2019). We evaluate the generated samples in terms of diversity and quality. For diversity, 264 we use self-BLEU (Zhu et al., 2018) and the number of unique n-grams (Wang & Cho, 2019) to 265 measure the difference between the generated sentences. For quality, we measure the BLEU score 266 (Papineni et al., 2002) between the generated texts and the original dataset, which is the combination 267 of TBC and WikiText-103. We report the quantitative results in Table 2. We do not have the results 268 for HB and BG as they are computationally infeasible for this task with 30k+ tokens. In this task, 269 the locally balanced sampler still outperforms RMW. Also, one can notice that the weight function 270  $\frac{t}{t+1}$  significantly outperforms  $\sqrt{t}$ . The reason is that the overparameterized neural network is a low 271 temperature system with sharp landscape. This phenomenon is consistent with the results in Figure 2. 272

# 273 5 Conclusion

DISCS is a tailored benchmark for discrete sampling. It implements various discrete sampling tasks
 and state-of-the-art discrete samplers and enables a fair comparison. From the results, we know
 that DLMC leads in sampling from classical graphical models, PAS leads in solving combinatorial

| Methods                      | Self-BLEU (↓) | Se    | elf   | WT    | 103   | TE    | 3C    | Corpus BLEU (†) |
|------------------------------|---------------|-------|-------|-------|-------|-------|-------|-----------------|
|                              |               | n=2   | n = 3 | n=2   | n = 3 | n=2   | n = 3 |                 |
| RMW                          | 92.41         | 6.26  | 9.10  | 18.97 | 26.73 | 19.33 | 26.67 | 16.24           |
| $GWG\sqrt{t}$                | 85.93         | 11.22 | 17.14 | 23.16 | 35.56 | 23.58 | 35.56 | 16.75           |
| DMALA $\sqrt{t}$             | 85.88         | 11.58 | 17.14 | 22.07 | 34.08 | 23.22 | 34.15 | 17.06           |
| $PAS\sqrt{t}$                | 85.39         | 11.37 | 17.60 | 22.61 | 35.53 | 23.65 | 35.47 | 16.57           |
| $DLMCf\sqrt{t}$              | 88.39         | 9.53  | 14.06 | 21.00 | 31.85 | 22.27 | 31.98 | 16.70           |
| $DLMC\sqrt{t}$               | 85.28         | 12.05 | 17.65 | 24.03 | 36.34 | 24.51 | 36.27 | 16.45           |
| $GWG\frac{t}{t+1}$           | 81.15         | 15.47 | 22.70 | 25.62 | 38.91 | 25.62 | 38.58 | 16.68           |
| $DMALA\frac{t}{t+1}$         | 80.21         | 16.36 | 23.71 | 25.60 | 39.39 | 26.75 | 39.72 | 16.53           |
| $PAS \frac{t}{t+1}$          | 81.02         | 15.62 | 22.65 | 25.59 | 39.28 | 26.08 | 39.48 | 16.69           |
| $\text{DLMCf} \frac{t}{t+1}$ | 80.12         | 16.25 | 23.76 | 25.41 | 39.31 | 26.86 | 39.57 | 16.73           |
| $DLMC\frac{t}{t+1}$          | 84.55         | 12.62 | 18.47 | 24.27 | 37.28 | 24.94 | 37.14 | 16.69           |

Table 2: Quantative results on text infilling. The reference text for computing the Corpus BLEU is the combination of WT103 and TBC.

optimization problems, DLMCf and DMALA has the best performance on language models. We believe more efficient discrete samplers can be obtained by designing better discretization of DLD (Sun et al., 2022a). *DISCS* is a convenient tools during this process. The researcher can freely set the configurations for tasks and samplers and *DISCS* will automatically compile the program and run the processes in parallel. Besides, we observe that the choice of the locally balanced weight function should depends on the critical temperature of the target distribution. We believe this observation is insightful and will lead to a deeper understanding of locally balanced samplers.

Of course, *DISCS* does not include all existing tasks or samplers in discrete sampling, for example, the zero order (Xiang et al., 2023) and second order (Sun et al., 2023a) approximation methods. We will keep iterating *DISCS* and more features will be added in the future. We wrap *DISCS* to a JAX library. Researchers can conveniently implement customer tasks or samplers to accelerate their study and, in the meanwhile, contribute the code to *DISCS* for further improvement. We believe *DISCS* will be a powerful tools for researchers and facilitate the future research in discrete sampling.

# 290 **References**

Baumgärtner, A., Burkitt, A., Ceperley, D., De Raedt, H., Ferrenberg, A., Heermann, D., Herrmann,
 H., Landau, D., Levesque, D., von der Linden, W., et al. *The Monte Carlo method in condensed matter physics*, volume 71. Springer Science & Business Media, 2012.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,
 Guo, J., Li, P., and Riddell, A. Stan: A probabilistic programming language. *Journal of statistical software*, 76(1), 2017.

- Dai, H., Chen, X., Li, Y., Gao, X., and Song, L. A framework for differentiable discovery of graph
   algorithms. 2020a.
- Dai, H., Singh, R., Dai, B., Sutton, C., and Schuurmans, D. Learning discrete energy-based models
   via auxiliary-variable local exploration. *arXiv preprint arXiv:2011.05363*, 2020b.
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
- Donahue, C., Lee, M., and Liang, P. Enabling language models to fill in the blanks. *arXiv preprint arXiv:2005.05339*, 2020.
- <sup>305</sup> Du, Y., Li, S., Tenenbaum, J., and Mordatch, I. Improved contrastive divergence training of energy <sup>306</sup> based models. *arXiv preprint arXiv:2012.01316*, 2020.
- Edwards, S. F. and Anderson, P. W. Theory of spin glasses. *Journal of Physics F: Metal Physics*, 5 (5):965, 1975.

- Ghahramani, Z. and Jordan, M. Factorial hidden markov models. *Advances in Neural Information Processing Systems*, 8, 1995.
- Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D., and Maddison, C. J. Oops I took a gradient:
- Scalable sampling for discrete distributions. *arXiv preprint arXiv:2102.04509*, 2021.
- Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R. Non-autoregressive neural machine translation. *arXiv preprint arXiv:1711.02281*, 2017.
- Hamze, F. and de Freitas, N. From fields to trees. *arXiv preprint arXiv:1207.4149*, 2012.
- Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. 1970.
- Hubbard, J. Calculation of partition functions. *Physical Review Letters*, 3(2):77, 1959.
- Hukushima, K. and Nemoto, K. Exchange monte carlo method and application to spin glass simulations. *Journal of the Physical Society of Japan*, 65(6):1604–1608, 1996.
- <sup>320</sup> Ising, E. *Beitrag zur theorie des ferro-und paramagnetismus*. PhD thesis, Grefe & Tiedemann, 1924.
- Katzgraber, H. G., Palassini, M., and Young, A. Monte carlo simulations of spin glasses at low
   temperatures. *Physical Review B*, 63(18):184422, 2001.
- Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. Optimization by simulated annealing. *science*, 220 (4598):671–680, 1983.
- LeCun, Y. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
- LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. A tutorial on energy-based learning.
   *Predicting structured data*, 1(0), 2006.
- Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*, 2016.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. Equation of state calculations by fast computing machines. *The journal of chemical physics*, 21(6):1087–1092, 1953.
- Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for automatic evaluation of machine
   translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, pp. 311–318, 2002.
- Rhodes, B. and Gutmann, M. Enhanced gradient-based mcmc in discrete spaces. *arXiv preprint arXiv:2208.00040*, 2022.
- Robert, C. and Casella, G. *Monte Carlo statistical methods*. Springer Science & Business Media,
   2013.
- Sansone, E. Lsb: Local self-balancing mcmc in discrete spaces. In *International Conference on Machine Learning*, pp. 19205–19220. PMLR, 2022.
- Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxiliary proposal for MCMC in discrete space.
   In *International Conference on Learning Representations*, 2021.
- Sun, H., Dai, H., Dai, B., Zhou, H., and Schuurmans, D. Discrete Langevin sampler via Wasserstein
   gradient flow. *arXiv preprint arXiv:2206.14897*, 2022a.
- Sun, H., Dai, H., and Schuurmans, D. Optimal scaling for locally balanced proposals in discrete
   spaces. *arXiv preprint arXiv:2209.08183*, 2022b.
- Sun, H., Guha, E. K., and Dai, H. Annealed training for combinatorial optimization on graphs. *arXiv preprint arXiv:2207.11542*, 2022c.
- Sun, H., Dai, B., Sutton, C., Schuurmans, D., and Dai, H. Any-scale balanced samplers for discrete
   space. In *The Eleventh International Conference on Learning Representations*, 2023a.

- Sun, H., Goshvadi, K., Nova, A., Schuurmans, D., and Dai, H. Revisiting sampling for combinatorial
   optimization. In *International Conference on Machine Learning*, pp. 19205–19220. PMLR, 2023b.
- Swendsen, R. H. and Wang, J.-S. Nonuniversal critical dynamics in Monte Carlo simulations.
   *Physical review letters*, 58(2):86, 1987.
- Titsias, M. K. and Yau, C. The Hamming ball sampler. *Journal of the American Statistical Association*, 112(520):1598–1611, 2017.
- Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.-C. Rank-normalization, folding,
   and localization: An improved r for assessing convergence of mcmc (with discussion). *Bayesian analysis*, 16(2):667–718, 2021.
- Wang, A. and Cho, K. Bert has a mouth, and it must speak: Bert as a markov random field language model. *arXiv preprint arXiv:1902.04094*, 2019.
- Xiang, Y., Zhu, D., Lei, B., Xu, D., and Zhang, R. Efficient informed proposals for discrete distribu tions via newton's series approximation. In *International Conference on Artificial Intelligence and Statistics*, pp. 7288–7310. PMLR, 2023.
- Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine
   learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
- Zanella, G. Informed proposals for local MCMC in discrete spaces. *Journal of the American Statistical Association*, 115(530):852–865, 2020.
- Zhang, R., Liu, X., and Liu, Q. A Langevin-like sampler for discrete distributions. In *International Conference on Machine Learning*, pp. 26375–26396. PMLR, 2022.
- Zhou, C., Neubig, G., and Gu, J. Understanding knowledge distillation in non-autoregressive machine
   translation. *arXiv preprint arXiv:1911.02727*, 2019.
- Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S. Aligning
   books and movies: Towards story-like visual explanations by watching movies and reading books.
   In *Proceedings of the IEEE international conference on computer vision*, pp. 19–27, 2015.
- Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J., and Yu, Y. Texygen: A benchmarking
- platform for text generation models. In *The 41st international ACM SIGIR conference on research*
- *& development in information retrieval*, pp. 1097–1100, 2018.



Figure 7: Bernoulli

- 380 A Appendix
- 381 A.1 Put to Appendix

382



Figure 8: Categorical

Table 3: MAXCUT.

| 14610 61 11110 6 11 |                |         |         |         |         |         |         |           |         |         |           |          |
|---------------------|----------------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|-----------|----------|
| Complan             | Deculto        |         |         |         | BA      |         |         |           |         | ER      |           | OPTSICOM |
| Sampler             | Results        | 16-20   | 32-10   | 64-75   | 128-150 | 256-300 | 512-600 | 1024-1100 | 256-300 | 512-600 | 1024-1100 |          |
| UR 10.1             | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.008   | 1.014     | 1.020   | 1.000   | 0.998     | 1.000    |
| IID-10-1            | Time(s)        | 371.284 | 377.306 | 374.813 | 391.639 | 396.169 | 571.651 | 945.267   | 165.510 | 208.001 | 744.191   | 37.673   |
| PC 2                | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.009   | 1.014     | 1.021   | 1.001   | 0.999     | 1.000    |
| BG-2                | Time(s)        | 258.592 | 269.129 | 275.041 | 276.931 | 265.860 | 289.496 | 578.785   | 134.558 | 168.507 | 647.610   | 8.525    |
| DMW                 | Ratio $\alpha$ | 0.998   | 1.000   | 1.000   | 1.000   | 0.999   | 1.005   | 1.007     | 1.019   | 0.997   | 0.996     | 1.000    |
| KIVI W              | Time(s)        | 267.107 | 267.307 | 264.320 | 279.304 | 270.651 | 287.389 | 532.926   | 133.536 | 166.701 | 633.315   | 29.480   |
| Ratio a             | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.010   | 1.017     | 1.021   | 1.002   | 1.001     | 1.000    |
| Gw0-IIA             | Time(s)        | 261.047 | 265.713 | 289.458 | 275.961 | 272.817 | 362.360 | 713.788   | 132.10  | 233.100 | 833.010   | 40.062   |
| DMALA               | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.010   | 1.018     | 1.021   | 1.002   | 1.002     | 1.000    |
| DMALA               | Time(s)        | 265.716 | 269.469 | 284.112 | 274.513 | 272.284 | 375.455 | 745.436   | 138.927 | 230.589 | 821.567   | 26.754   |
| DAC                 | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.010   | 1.018     | 1.021   | 1.002   | 1.002     | 1.000    |
| FAS                 | Time(s)        | 259.921 | 269.407 | 275.017 | 275.289 | 290.025 | 470.204 | 958.977   | 146.716 | 465.481 | 3400.855  | 29.607   |
| DI MCE              | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.010   | 1.018     | 1.021   | 1.002   | 1.001     | 1.000    |
| DLMCF Time(s        | Time(s)        | 260.800 | 263.145 | 272.938 | 278.782 | 266.559 | 382.859 | 755.190   | 136.420 | 226.126 | 819.769   | 26.276   |
| DIMC                | Ratio $\alpha$ | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.010   | 1.018     | 1.021   | 1.002   | 1.002     | 1.000    |
| DLMC                | Time(s)        | 265.501 | 275.059 | 271.643 | 272.305 | 271.338 | 382.552 | 782.099   | 135.631 | 225.540 | 821.111   | 26.684   |



Figure 9: Ising



Omniglot

Figure 10: EBM



Figure 11: Potts



Figure 12: FHMM









Figure 14: MAXCUT



Figure 15: maxclique

| Table 4: MIS. |         |         |         |                |         |         |           |          |  |  |  |
|---------------|---------|---------|---------|----------------|---------|---------|-----------|----------|--|--|--|
| Commlan       | Graphs  |         | E       | ER[9000-11000] | SATLIB  |         |           |          |  |  |  |
| Sampler       | Density | 0.05    | 0.10    | 0.15           | 0.20    | 0.25    | 0.15      |          |  |  |  |
| HB-10-1       | Size    | 100.374 | 58.750  | 41.812         | 32.344  | 26.469  | 277.149   | 434.804  |  |  |  |
|               | Time(s) | 213.092 | 377.306 | 342.295        | 207.034 | 214.940 | 7569.712  | 2063.689 |  |  |  |
| BG-2          | Size    | 102.468 | 60.000  | 42.820         | 32.250  | 27.312  | 316.170   | 434.545  |  |  |  |
| DO-2          | Time(s) | 145.713 | 195.405 | 281.493        | 147.512 | 144.054 | 6539.562  | 1477.161 |  |  |  |
| DMW           | Size    | 97.186  | 56.249  | 40.429         | 31.219  | 25.594  | -555.674  | 432.746  |  |  |  |
|               | Time(s) | 142.046 | 145.021 | 249.789        | 148.570 | 140.886 | 6200.869  | 1468.328 |  |  |  |
| GWG-nA        | Size    | 104.812 | 62.125  | 44.383         | 34.812  | 28.187  | 367.310   | 435.419  |  |  |  |
|               | Time(s) | 139.442 | 146.758 | 368.836        | 151.717 | 155.275 | 12349.148 | 1488.152 |  |  |  |
| DMALA         | Size    | 104.750 | 62.031  | 44.195         | 34.375  | 28.031  | 357.058   | 436.152  |  |  |  |
| DMALA         | Time(s) | 145.635 | 154.437 | 357.307        | 148.924 | 149.366 | 12384.69  | 1494.575 |  |  |  |
| PAS           | Size    | 105.062 | 62.250  | 44.570         | 34.719  | 28.500  | 377.123   | 436.644  |  |  |  |
| ras           | Time(s) | 149.502 | 155.382 | 379.686        | 149.785 | 154.238 | 12621.083 | 1517.682 |  |  |  |
| DI MCE        | Size    | 104.450 | 62.219  | 44.078         | 34.469  | 28.125  | 354.121   | 435.894  |  |  |  |
| DLMCF         | Time(s) | 145.683 | 150.777 | 363.143        | 151.334 | 150.206 | 12446.108 | 1486.004 |  |  |  |
| DI MC         | Size    | 104.844 | 62.187  | 44.273         | 34.500  | 28.281  | 355.058   | 436.046  |  |  |  |
|               | Time(s) | 146.617 | 147.487 | 362.663        | 147.344 | 149.942 | 12488.156 | 1428.965 |  |  |  |





Figure 16: mis

| Sampler      | Results        | RB       | TWITTER |
|--------------|----------------|----------|---------|
| UB 10 1      | Ratio $\alpha$ | 0.850    | 0.966   |
| 11D-10-1     | Time(s)        | 862.447  | 3.408   |
| PC 2         | Ratio $\alpha$ | 0.859    | 0.995   |
| <b>BU</b> -2 | Time(s)        | 796.404  | 3.163   |
| DMW          | Ratio $\alpha$ | 0.841    | 0.584   |
| KIVI W       | Time(s)        | 841.698  | 2.832   |
| CWC -        | Ratio $\alpha$ | 0.878    | 0.999   |
| GwG-llA      | Time(s)        | 1262.900 | 3.016   |
|              | Ratio $\alpha$ | 0.876    | 0.999   |
| DMALA        | Time(s)        | 1280.807 | 3.095   |
| DAG          | Ratio $\alpha$ | 0.878    | 0.999   |
| PAS          | Time(s)        | 1271.269 | 3.090   |
| DI MCE       | Ratio $\alpha$ | 0.871    | 0.999   |
| DLMCF        | Time(s)        | 1266.417 | 2.994   |
|              | Ratio $\alpha$ | 0.875    | 0.999   |
| DLMC         | Time(s)        | 1319.794 | 3.062   |

Table 5: MAXCLIQUE.

| Metric                      | Samplers | VGG   | MNIST-conv | ResNet | AlexNet | Inception-v3 |
|-----------------------------|----------|-------|------------|--------|---------|--------------|
|                             | HB-10-1  | 0.050 | 0.046      | 0.050  | 0.037   | 0.065        |
|                             | BG-2     | 0.048 | 0.045      | 0.050  | 0.038   | 0.069        |
|                             | RMW      | 0.054 | 0.046      | 0.092  | 0.052   | 0.117        |
|                             | GWG      | 0.102 | 0.046      | 0.159  | 0.063   | 0.164        |
|                             | DMALA    | 0.084 | 0.058      | 0.178  | 0.063   | 0.176        |
| Edge out ratio              | DMALA-nA | 0.059 | 0.045      | 0.048  | 0.039   | 0.054        |
| Euge cut ratio $\downarrow$ | PAS      | 0.053 | 0.045      | 0.047  | 0.037   | 0.052        |
|                             | PAS-nA   | 0.084 | 0.050      | 0.138  | 0.053   | 0.144        |
|                             | DLMCF    | 0.086 | 0.063      | 0.178  | 0.053   | 0.176        |
|                             | DLMCF-nA | 0.092 | 0.069      | 0.048  | 0.085   | 0.052        |
|                             | DLMC     | 0.105 | 0.056      | 0.183  | 0.097   | 0.182        |
|                             | DLMC-nA  | 0.113 | 0.048      | 0.082  | 0.091   | 0.086        |
|                             | HB-10-1  | 0.999 | 0.999      | 0.999  | 0.999   | 0.999        |
|                             | BG-2     | 0.999 | 0.997      | 0.999  | 0.999   | 0.999        |
|                             | RMW      | 0.999 | 0.998      | 0.999  | 0.999   | 0.999        |
|                             | GWG      | 0.999 | 0.997      | 0.999  | 0.999   | 0.999        |
|                             | DMALA    | 0.999 | 0.998      | 0.999  | 0.999   | 0.999        |
| Dalanaanaa A                | DMALA-nA | 0.999 | 0.997      | 0.999  | 0.999   | 0.999        |
| Dataticeness                | PAS      | 0.999 | 0.997      | 0.999  | 1.000   | 0.999        |
|                             | PAS-nA   | 0.999 | 0.998      | 0.999  | 0.999   | 0.999        |
|                             | DLMCF    | 0.999 | 0.997      | 0.999  | 0.999   | 0.999        |
|                             | DLMCF-nA | 0.999 | 0.995      | 0.999  | 0.999   | 0.999        |
|                             | DLMC     | 0.999 | 0.994      | 0.999  | 0.999   | 0.999        |
|                             | DLMC-nA  | 0.999 | 0.993      | 0.999  | 0.999   | 0.999        |

Table 6: Graph partition.

 Table 7: Quantative results on text infilling. The reference text for computing the Corpus BLEU is the combination of WT103 and TBC.

| Methods                        | Self-BLEU $(\downarrow)$ | Se    | elf   | WT    | 103   | TE    | 3C    | Corpus BLEU (†) |
|--------------------------------|--------------------------|-------|-------|-------|-------|-------|-------|-----------------|
|                                |                          | n=2   | n = 3 | n=2   | n = 3 | n=2   | n = 3 |                 |
| RMW                            | 92.41                    | 6.26  | 9.10  | 18.97 | 26.73 | 19.33 | 26.67 | 16.24           |
| $GWG\sqrt{t}$                  | 85.93                    | 11.22 | 17.14 | 23.16 | 35.56 | 23.58 | 35.56 | 16.75           |
| $GWG\frac{t}{t+1}$             | 81.15                    | 15.47 | 22.70 | 25.62 | 38.91 | 25.62 | 38.58 | 16.68           |
| DMALA- $nA\sqrt{t}$            | 83.99                    | 13.26 | 19.52 | 24.33 | 36.40 | 25.30 | 36.40 | 16.37           |
| DMALA-nA $\frac{t}{t+1}$       | 80.44                    | 15.86 | 23.58 | 25.79 | 39.88 | 26.57 | 40.20 | 16.64           |
| $\mathbf{DMALA}\sqrt{t}$       | 85.88                    | 11.58 | 17.14 | 22.07 | 34.08 | 23.22 | 34.15 | 17.06           |
| $DMALA \frac{t}{t+1}$          | 80.21                    | 16.36 | 23.71 | 25.60 | 39.39 | 26.75 | 39.72 | 16.53           |
| $PAS\sqrt{t}$                  | 85.39                    | 11.37 | 17.60 | 22.61 | 35.53 | 23.65 | 35.47 | 16.57           |
| $PAS \frac{t}{t+1}$            | 81.02                    | 15.62 | 22.65 | 25.59 | 39.28 | 26.08 | 39.48 | 16.69           |
| DLMCf-nA $\sqrt{t}$            | 91.57                    | 7.25  | 10.42 | 19.53 | 28.31 | 20.13 | 28.18 | 16.56           |
| DLMCf-nA $\frac{t}{t+1}$       | 81.66                    | 15.31 | 21.78 | 26.39 | 39.56 | 27.60 | 39.69 | 16.31           |
| $DLMCf\sqrt{t}$                | 88.39                    | 9.53  | 14.06 | 21.00 | 31.85 | 22.27 | 31.98 | 16.70           |
| $\text{DLMCf}_{\frac{t}{t+1}}$ | 80.12                    | 16.25 | 23.76 | 25.41 | 39.31 | 26.86 | 39.57 | 16.73           |
| DLMC-nA $\sqrt{t}$             | 83.74                    | 12.74 | 19.64 | 24.27 | 37.27 | 24.94 | 37.34 | 16.73           |
| DLMC-nA $\frac{t}{t+1}$        | 82.26                    | 14.18 | 21.41 | 25.51 | 39.10 | 26.18 | 39.29 | 16.55           |
| $DLMC\sqrt{t}$                 | 85.28                    | 12.05 | 17.65 | 24.03 | 36.34 | 24.51 | 36.27 | 16.45           |
| $DLMC\frac{t}{t+1}$            | 84.55                    | 12.62 | 18.47 | 24.27 | 37.28 | 24.94 | 37.14 | 16.69           |