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A APPENDIX

A.1 INITIATOR PBT ON ROSENBROCK
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(a) Initiator PBT (minimum loss=0.20) (b) Initiator PBT, small steps (minimum loss=0.048)

Figure 2: Trajectories of 100 PBT training steps (16 jobs per step) on the Rosenbrock function with
a = 1 and b = 100 (minimum at the red cross (1, 1), trajectories go from blue to green)

A.2 LANGUAGE MODELING ON PENN TREE BANK

Table 3: The dropouts from Transformer-XL that we tune through PBT.

dropouta | applied to multi-head attention layers
dropoute | to remove words from embedding layer
dropoutf | applied to positionwise ff layers
dropouti | for input embedding vectors

dropouto | applied to the output (before the logit)
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Figure 3: Dropout schedule of the best run of ROMUL 32 workers on PTB

A.3 REGULARIZATION SCHEDULES ON WIKITEXT-103
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Figure 4: Lower dropout values are better early, but are outperformed by more strongly regularized
models later (red, orange and blue lines) - here on wikitext103 with a 247M parameters language
model from Fan et al. (2019) (Adaptive Inputs + LayerDrop). PBT algorithms would tend to reduce
dropout aggressively early on: after that, even if the dropout is increased later, the performance
remains worse than training with a high dropout from the beginning (red line). Perhaps counterin-
tuitively, this hints against increasing regularization over the course of the training - in the opposite,
we observe that fine-tuning the model without dropout significatively improves test performance
(purple line reaches 17.98 test perplexity) compared to the baseline (green: 18.42 test perplexity)
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