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ABSTRACT

Humans experience the world as a series of connected events, which can be or-
ganized hierarchically based on their conceptual knowledge. Drawing from this
cognitive insight, we explore how our natural ability to organize and relate in-
formation can revolutionize the training of deep learning models. Our novel
approach directly addresses the challenge of catastrophic forgetting by lever-
aging the relationships within continuously emerging class data. In particular,
by creating a tree structure from an expanding set of labels, we uncover fresh
perspectives on the data relationship, pinpointing groups of similar classes that
easily lead to confusion. Additionally, we dive deeper into the hidden connec-
tions between classes by analyzing the behavior of the original pretrained model
via an optimal transport-based approach. From these revelations, we propose a
novel regularization loss function that encourages models to focus on challeng-
ing areas of knowledge, effectively boosting performance. Our experimental re-
sults demonstrate our effectiveness across a range of Continual learning bench-
marks, paving the way for more effective AI systems. Our code is available at
https://anonymous.4open.science/r/RefCL-EFC5/.

1 INTRODUCTION

Continual Learning (CL) (Wang et al., 2024; Lopez-Paz & Ranzato, 2017) is a research direction
that focuses on realizing the human dream of creating truly intelligent systems, where machines
can learn on the go, accumulate knowledge, and operate in constantly changing environments as a
human’s companion. Despite the impressive capabilities of A.I systems, Continual Learning remains
a challenging scenario due to the tendency to forget obtained knowledge when facing new ones,
known as catastrophic forgetting (French, 1999). In dealing with this challenge, traditional CL
methods often rely on storing past data for replaying during new tasks Lopez-Paz & Ranzato (2017);
Buzzega et al. (2020), which can raise concerns about memory usage and privacy. Besides, prior
work shows that replay methods result in overfitting and poor generalization Lopez-Paz & Ranzato
(2017); Verwimp et al. (2021); del Rio et al. (2023). To overcome these limitations, recent methods
leverage the strong generalization ability of pretrained models (Han et al., 2021; Jia et al., 2022) to
solve sequences of CL tasks. A notable line of work is the prompt-based approach (Wang et al.,
2022b; Smith et al., 2023; Li et al., 2024b), where a small set of learnable prompts is injected into
pretrained backbones for adapting emerging tasks over time.

While these prompt-based methods have demonstrably achieved impressive results, they only con-
sider forgetting caused by changes of common parameters across tasks during learning (Wang et al.,
2022c;b) or the inherent mismatch between the chosen prompts at training and testing (Wang et al.,
2023; Tran et al., 2023; Zhanxin Gao, 2024). In this work, we further complement these views by
showing that the forgetting of old tasks can potentially come from the uncontrolled overlap between
old and new emerging class representations in the latent space. That is, models will become more
confused in distinguishing these classes, resulting in performance degradation w.r.t previous tasks
over time (i.e., forgetting). Furthermore, we find that existing methods only utilize limited infor-
mation from the training dataset and often treat classes equally during training. Consequently, they
overlook the opportunities to enhance the distinguishability of models, especially between the class
representations of old and new tasks, and thus, hinder the models’ ability to mitigate forgetting.
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In addition, we see that human learning behavior has many valuable aspects, especially analyzing
data, organizing them in a meaningful way, and finding connections between old and new knowl-
edge (Schön, 1983; Sweller, 1988; Mayer, 2005). Inspired by these practices, we investigate the
characteristics of common benchmark datasets, as well as the behavior of pretrained models. Our
findings reveal that the data can be categorized into consistent groups, regardless of their arrival
times. Each of these groups usually includes classes with similar semantic information that models
may confuse and, thus, should be paid more attention to during training. See Appendices C and D.

Therefore, we propose a novel training strategy that constantly arranges emerging class labels in
groups, following a tree-like taxonomy. In particular, during training a new task, models are trained
to distinguish all classes so far, especially focusing on classes within the same leaf group. We
observe that images belonging to concepts/labels within each of these leaf groups share strong visual
and semantic correlations, leading to overlap in the latent space, which compromises performance.
Thus, by encouraging models to contrast these classes more distinctly, we can reduce the overlap of
easily confused ones. This strategy not only mitigates forgetting when new classes emerge, but also
consolidates domain-specific knowledge in each leaf group. In addition, based on human learning
habits, we find that individuals with stronger foundational knowledge often absorb new information
faster and more effectively. Thus, we propose an optimal transport-based technique to further utilize
priori from pretrained models, where their initial behaviors will provide another perspective on the
relationships between classes.

Contribution. We introduce a method named Reflecting and Linking knowledge: Dynamic Label
Structures for Prompt-based Continual Learning (RefCL). Our main contributions are as follows:

• Inspired from Cognitive Science, we propose a novel approach to reduce forgetting by ex-
amining the relationships between data (i.e., reflecting and linking old and new knowledge).
By dynamically constructing label-based hierarchical taxonomies and leveraging the prior
knowledge of pretrained models via an optimal transport-based approach, we can identify
the challenging knowledge areas that require further focus during the sequence of tasks.

• Experimentally, our method demonstrated significant superiority over state-of-the-art meth-
ods on various continual learning benchmarks.

Organization. Firstly, we present related work in Section 2. Next, we formulate the problem and
summarize the causes of forgetting in prompt-based Continual Learning models in Section 3. Fol-
lowing that, we discuss the motivation provided by insights from Cognitive Science, and then present
the proposed training strategy, emphasizing the importance of leveraging relationships between class
data (Section 4). We then present the experimental results to demonstrate the effectiveness of our
method (Section 5). Finally, we discuss the limitations and suggest future directions in Section 6.

2 RELATED WORK

Class Incremental Learning (CIL). This is one of the most challenging and widely studied CL
scenarios (Van de Ven & Tolias, 2019; Wang et al., 2023; He et al., 2025), where task identity
is unknown during testing, and data of previous tasks is inaccessible during current training. We
follow the setting of CIL and propose a novel approach for prompt-based CL models.
Prompt-based Continual Learning. This line of work employs the power of pretrained backbone
to quickly adapt to the sequence of downstream tasks by updating just a small number of parameters/
prompts for different tasks. In initial work like Wang et al. (2022c;b); Smith et al. (2023), the absence
of explicit training constraints often leads to feature overlapping between classes from different
tasks. Therefore, recent methods employ some types of contrastive loss (Wang et al., 2023; Li
et al., 2023) or utilize Vision Language models (Wang et al., 2022a; Nicolas et al., 2024) to better
separate features from tasks. Nevertheless, they treat all classes equally during training, missing the
opportunity to efficiently distinguish classes, which have many similarities and are easily confused.
Alternatively, we propose a novel approach to reveal the relationships between class data, allowing
the model to identify and develop a deeper understanding of the respective knowledge areas, thereby
effectively improving model performance.
Using hierarchical label structures. In Deep Learning, existing work (Dimitrovski et al., 2011;
Chalkidis et al., 2020; Yi et al., 2022; Liu et al., 2021) have considered using hierarchical label sys-
tems for efficient representation learning. However, these approaches require all labels in advance,
which is not suitable for Continual Learning. Recent researches in CL (Lee et al., 2023; Cao et al.,
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2024) have considered hierarchical structures to either expand the label set to create new learn-
ing scenarios or manage memory buffers for rehearsal settings. However, these structures cannot
indicate the semantic relationships between class labels for effective representation learning. Alter-
natively, in the line of work where text information is utilized effectively and creatively (Lee et al.,
2025; Li et al., 2024a), we introduce a new approach to dynamically building a label-based taxon-
omy over time for CL models. With the participation of experts, the tree is gradually constructed
as new tasks arise, suggesting relationships between class data and enhancing the learning of new
knowledge while effectively reducing the forgetting of old information.
When comparing our label-based taxonomy strategy with the use of VLMs such as (Lee et al.,
2025; Li et al., 2024a; Snæbjarnarson et al., 2025; Liu et al., 2025), we only need to train the vision
model with the mapping from the label-based taxonomy, whereas VLMs require training both the
vision and language components. Therefore, our approach is more time-efficient.

3 BACKGROUND

3.1 PROBLEM FORMULATION

We consider the Class Incremental Learning setting (Zhou et al., 2024; Lopez-Paz & Ranzato, 2017;
Wang et al., 2023), where a model has to learn from a sequence of T visual classification tasks
without revisiting old task data during training or accessing task IDs during inference. Each task
t ∈ {1, ..., T} has a respective dataset Dt, containing nt i.i.d. samples (xit, y

i
t)
nt

i=1. In this work,
we design our model as a composition of two components: a pretrained Vision Transformer (ViT)
(Dosovitskiy et al., 2021) backbone fΦ and a classification head hψ . That is, we have the model
parameters θ = (Φ, ψ). Similar to other existing prompt-based methods Wang et al. (2023); Smith
et al. (2023), we incorporate into the pretrained ViT backbone a set of prompts P . We denote the
overall network after incorporating the prompts as fΦ,P .

3.2 FORGETTING IN PROMPT-BASED METHODS

In Continual Learning, forgetting refers to the phenomenon where performance of previous tasks de-
creases over time. Most prompt-based CL methods, which leverage the power of pretrained models,
attribute forgetting either to (I) changes in backbone parameters when using the common prompt
pool P for all tasks (Wang et al., 2022c;b) or to (II) the inherent mismatch between the models used
at training and testing, as discussed and analyzed in Zhanxin Gao (2024); Tran et al. (2023). Other
work such as (Li et al., 2023) suggests that the cause also arises from (III) overlapping between old
and new emerging class representations, which bear high semantic resemblance to previous sam-
ples. In Appendix B, we also provide empirical studies to complement the third views, confirming
that the overlap causes confusion in distinguishing between old and new classes, thereby reducing
the performance of learned tasks over time. This is coincidentally similar to the behavior of human
memory, where although the old knowledge exists somewhere in the brain, still be confused due to
the newly acquired information (Anderson & Neely, 1996; Wimber et al., 2015; Loftus, 2005; Nader
et al., 2000; Wixted, 2004). This motivates us to propose a novel method, focusing on identifying
easily confused class pairs, thereby reducing forgetting and improving model performance.

4 PROPOSED METHOD

In the previous section, we noted that increasing overlap in data representations as more tasks arrive
is one of the main reasons leading to performance degradation (i.e., forgetting). Therefore, if we can
identify groups of easily confused classes/concepts, we will better enhance the distinguishability
of models and thus reduce forgetting. In addition, insights from Cognitive Science (Section 4.1),
regarding the benefits of organizing information in a meaningful way, suggest us to arrange labels
from CL tasks in a hierarchical taxonomy to identify these groups of classes.

Interestingly, we find that we can build the tree where concepts within the same leaf group tend to be
visually and semantically similar. These concepts likely cause more overlap in the visual latent space
and causing confusion for the models (See Appendix D). Motivated by this observation, we propose
group-based contrastive learning in Section 4.2 to maximize the separability of these concepts, thus
mitigating forgetting over time. Furthermore, to reinforce the method’s effectiveness, Section 4.3
presents an optimal transport-based technique, harnessing priori of pretrained backbones from a new
perspective.
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4.1 MOTIVATION
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Figure 1: Problem: When new classes arrive (e.g.,
learning Task 3), the latent space of a model for
all tasks so far becomes fuller, and class repre-
sentations tend to be overlapped, leading to per-
formance degradation in old tasks. Our solu-
tion: We focus more on separating easily con-
fused classes (using ”inner-group constraint” -
green arrows ↔) whose concepts/labels lie in
the same leaf group on a label-based hierarchical
taxonomy, suggested by expert knowledge. The
”outer-group constraint” brieftly represents for
the common constraints like Cross Entropy Loss/
Supervised Contrastive loss, applying for all class
so far. [Best viewed in color mode]

Insights from Cognitive Science. Research
in Cognitive Science highlights the importance
of reflection, and organization of information
as critical components for effective learning.
Studies show that when learners take time to
reflect on their experiences, they deepen their
understanding and enhance retention (Schön,
1983). This reflective practice encourages in-
dividuals to connect new information with ex-
isting knowledge, fostering a more integrated
learning experience (Bransford et al., 2000).
Moreover, organizing information into coherent
structures, such as outlines or concept maps, al-
lows learners to see relationships between con-
cepts, making it easier to retrieve and reflect the
information later (Mayer, 2005).
Our Approach. It is evident that besides reflec-
tion - comparison of old and new knowledge,
the key factor in learning efficiently is to orga-
nize and link information in an insightful way,
where concepts are arranged according to their
semantic meanings. This observation motivates
us to develop deep learning models that learn
concepts structured in hierarchical taxonomies.
Specifically, we propose structuring data labels in tree-like taxonomies, which can be flexibly and
consistently expanded over time using domain expertise. Based on this structure, we have a view of
the relationships between all classes so far, especially identifying which classes belong to the same
group with many shared characteristics, easily confused, and require more focus to distinguish.

Root

Natural

Man-made

Animals

Plants

Environment

Mammals

"mouse", "porcupine",four-legged

"woman", "man"
two-legged

Aquatic

Reptiles
"trout", "aquarium_fish", 

Task 1
Task 2
Task 3

 "dolphin", "flatfish", "crab"

"otter", "hamster"

"shark", "seal", "lobster",

"oak_tree",  "pine_tree""willow_tree",

Figure 2: The label-based hierarchical taxonomy when learning Task 3, on Split-CIFAR100. The
colors (i.e., blue, red, orange) of the label names represent the task order in which the corresponding
classes appear. Accordingly, the tree-like taxonomy is gradually developed and detailed over time.
[Best viewed in color mode]

Taking the learning process of Split-CIFAR-100 as an example, when training on task t = 3, we can
construct a tree-like taxonomy of concepts/labels, as shown in Figure 2. We observe that the classes
under a same leaf in the structure (e.g., oak tree, willow tree, and pine tree in the leaf group ”plants”)
exhibit strong visual and semantic correlations. Consequently, as shown in Figure 3a, these class
features are more overlapping with each other rather than with another class from other leaf groups
(e.g., ”four-legged”). In this way, the tree-like taxonomy serves as a tool to help identify easily
confused classes, facilitating the subsequent process of making them more separable in the feature
space (See Appendix D to see the alignment between our label-based taxonomies and visual latent
space). Leveraging the insight obtained from the taxonomy above, we aim to train a network so that
all class representations must be distinct, especially those within each leaf group. In this way, the
overlap between classes—particularly between old and new ones—is significantly reduced, which
effectively mitigates forgetting and enhances model performance.
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(b) Ours (RefCL)

Figure 3: t-SNE visualizations of classes within leaf groups of Four-legged animals (• circular
points) and Plants (▲ triangular points) when learning Task 3, Split-CIFAR-100. The appearance
order of the classes: Task 1 - ”mouse”, ”porcupine”, ”oak tree”; Task 2 - ”willow tree”; Task 3
- ”otter”, ”hamster”, ”pine tree” (also refer to Fig. 1 and 2). We can see that if we train tasks
independently with LCE as in existing work like (Wang et al., 2022c; Smith et al., 2023), the classes
within each leaf group, which arrive at different time, can be overlapped seriously (Fig. 3a). Alter-
natively, by using the our taxonomy-based strategy, we can effectively reflecting and linking old and
new knowledge, thus enhancing model representation learning and reducing forgetting (Fig. 3b).

4.2 LEVERAGING HIERARCHICAL TAXONOMIES FOR BETTER REPRESENTATION LEARNING

During the training process, whenever a new class appears, its label name is automatically added to
the tree-like taxonomy, into a leaf group containing classes with similar characteristics (Figure 2). To
develop this hierarchical structure, we can rely on expert knowledge, which can help incrementally
construct a meaningful related tree (refer to Appendix C for further details). Structuring information
in this way will provides useful insights during training, indicating how each knowledge is related
to the other and which group of concepts requires further focus.

Particularly, for each task t, we dedicate a set of prompt Pt. We aim to minimize overlap between
all classes so far, especially focusing on increasing the separability between classes belonging to
the same leaf group on the taxonomy (e.g., four-legged mammals, plants, etc.,). That is, taxonomy
acts as a reference information channel to support the training process. Let g be a leaf group on
the taxonomy G (i.e., g ∈ G), Xg

k and Y gk denote the corresponding sets of input samples and labels
under the group g that belong to the task k (k ≤ t). Besides Cross Entropy loss LCE , we propose
using a regularization loss function for sample each x that arrives in task t and belongs to leaf group
g as follows:

LG(ψ,Pt,x) = αLg(ψ,Pt,x) + βLall(ψ,Pt,x) (1)
where we have defined

Lg(·) = − log
∑

x′∈Xg
1...t|yx′=yx

u(zx · zx′)∑
x̄∈Xg

1...t
u(zx · zx̄)

,

Lall(·) = − log
∑

x′∈X1...t|yx′=yx

u(zx · zx′)∑
x̄∈X1...t

u(zx · zx̄)

are the Supervised Contrastive losses that we put on class representation within leaf group g, and
all classes so far, respectively; and u(zx · zx′) = exp(zx·zx′

τ ), with zx = fΦ,Pt
(x) is the feature

vector on the latent space of the prompt-based model and yx is the ground truth label of x, τ is the
temperature with τ = 0.1 for all experiments, and α is the coefficient that controls how much we
want to force classes within leaf group g stay apart further. 1

1Note that because the data of old tasks can not be accessed when training the new one, we follow previous
work (Wang et al., 2023; Li et al., 2024b) to encode the information of each trained class c in the form of a
Gaussian Mixture model GMMc = {N (µc,i,Σc,i)}Ki=1, at the end of the corresponding task, where K is the
number of components. Then in task t, each representation zx̄, x̄ ∈ Xc of each old class c, is sampled from
GMMc, to compute loss functions in Eq. (1).
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Looking closer at Eq. (1), this equation implies that when learning a new task, the model will be
encouraged to identify the decision boundary between all old and new classes (i.e., using Lall -
outer-group constraint). Besides, it will especially focusing on those in the same leaf group, which
often share many common characteristics and can confuse classification models (i.e., using Lg -
inner-group constraint), see Figure 1.
Discussion. This manipulation matches the way our brain naturally works: Without reflecting
and linking, we would be confused about old and new concepts, especially those sharing many
common characteristics, leading to incorrect judgments and decisions in practice. For AI models,
learning new tasks without thoroughly considering the learned information of old tasks can lead
to uncontrolled overlapping in the latent space, resulting in forgetting the learned knowledge and
harming final performance. In this work, thanks to the insight from hierarchical taxonomies, we
can identify which group of classes that easy to get overlapped in the latent space (see classes ”oak
tree, pine tree, willow tree” in Figure 3a), thereby actively intervening and enhancing the model
representation learning, thus reducing forgetting in the CL environment.

4.3 HARNESSING PRIOR KNOWLEDGE FROM PRETRAINED MODELS VIA OPTIMAL
TRANSPORT
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0.00 21.18 22.24 36.93 38.96 39.68

21.18 0.00 26.16 37.24 39.54 39.17

22.24 26.16 0.00 37.48 40.23 40.35

36.93 37.24 37.48 0.00 26.05 32.04

38.96 39.54 40.23 26.05 0.00 30.69

39.68 39.17 40.35 32.04 30.69 0.00

Figure 4: L2-Wassertein distance between classes
(Split-CIFAR-100) in latent space of a pretrained
backbone (Sup-21K). Within a leaf group (i.e.,
”plant” or ”four-legged mammals”), there may be
data classes with varying levels of correlation in
the latent space.

Considering a leaf group, there may be data
classes with varying levels of overlap in the
latent space. For example, Figure 4 provides
statistical results regarding the relative position
of classes in leaf groups ”plants” and ”four-
legged mammals” in the latent space of a pre-
trained model. We can see that in the group
of animals, the L2-Wasserstein distance be-
tween class representations of ”mouse” and
”porcupine” (30.69) is more significant than the
one between ”mouse” and ”hamster” (26.05),
meaning that the class representation of the sec-
ond pair can overlap more than the first one.
This empirical result suggests that although
the strategy in Section 4.2 helps improve the
model’s ability to recognize difficult-to-identify
classes, we still treat all classes in that group
equally. Thus, the algorithm may inadvertently
ignore the pairs of classes that are easily con-
fused and need to be further distinguished.

Additionally, pretrained models are extensively
trained on large datasets, which results in their
substantial generalization abilities. That is the reason why they are considered as good starting
points for the adaptation to downstream tasks (Devlin et al., 2019; Brown et al., 2020; He et al.,
2016; Raffel et al., 2020). Therefore, we propose utilizing the pretrained models from another
novel perspective, which can comprehend the use of the label-based taxonomy in Section 4.2 during
training. Particularly, we take advantage of these pretrained models to obtain prior assumptions
about the relationships between the class representations, thereby elegantly intervening in better
separating each pair of classes within each leaf group.

More specifically, to extract the relationship between the classes, we compute the L2-Wasserstein
distance (W2) between feature distributions of each class pair. We denote DΦ

ci be the distribution of
class ci on the latent space of the pretrained model fΦ - to distinguish it from the one on prompted
latent space of fΦ,P , as described in Section 4.2. The distribution DΦ

ci is obtained in the form of a
Gaussian Mixture model at the end of the respective task, only once and then kept fixed for the next
reuse; therefore, it does not impose a computational burden (See Appendix E.3). In this way, when
t tasks have arrived, we have the corresponding sets of distributions {DΦ

c }c∈Y1,t of all mt classes so
far. Thus, we can gradually complete the WD-based matrix M , showing the distance between pairs
of classes as follows:

M ∈ Rmt×mt , where Mi,j =W2(D
Φ
ci , D

Φ
cj ). (2)

6
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The fact is that the smaller theW2 between the latent distribution of two classes, the more overlapped
they are, and the more force may be needed to separate them. Thus, we employ these results to obtain
the corresponding weight factors, which control how much constraint needs to be applied to each
class pair. Particularly, we compute the weight matrix:

Γ = [γij ]mt×mt
= [1/exp(Mij/δ)]mt×mt

(3)

where δ is a temperature. We then apply this information to obtain a weighted version of Lg , in
which the closer the two class distributions are, the larger the weight assigned, and they will be
further focused to push away:

L
′

g(·) = − log
∑

x′∈Xg
1..t|yx′=yx

u(zx · zx′)∑
x̄∈Xg

1..t
γyxyx̃u(zx · zx̄)

(4)

This strategy is completely economical and aligns well with the CL learning scheme, as the distance
between representations of each class pair only needs to be computed once, and the matrix M
is continuously expanded when new classes arrive. Practically, when learning a new task, the first
epoch is for capturing information about the behavior of the pretrained model on the data of this task.
Moreover, this approach is also aligned with the findings in Cognitive Science (Osgood & Bower,
1953; Baltes, 1987), showing that the accumulated experiences of past learning (i.e., knowledge
contained in pretrained models) create momentum for future learning (i.e., adapting model for a
sequence of downstream tasks).

Finally, the final objective function of our full method can be formulated as follows:

L = LCE + LG , where LG = αL
′

g + βLall (5)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets. We use 4 common CIL benchmarks, including Split CIFAR-100, Split ImageNet-R,
5-Datasets, and Split CUB-200.
Baselines. We compare ours with 8 typical and state-of-the-art prompted-based methods, includ-
ing L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b), CODA-Prompt (Smith et al., 2023),
HiDe-Prompt (Wang et al., 2023), OVOR (Huang et al., 2024), ITA-IA3 (Porrello et al., 2025), APT
(Chen et al., 2025), RainbowPrompt (Hong et al., 2025).
Metrics. We use two metrics: Final Average Accuracy (FAA) and Final Forgetting Measure
(FFM). Please refer to Appendix A for further details, including datasets, baselines, metrics, and
other training configurations.

5.2 EXPERIMENTAL RESULT

Our approach achieves superior results compared to baselines. Table 1 presents the overall
performance comparison between our proposed method and other baselines. The key observation is
that our method is the strongest one, because the gap compared with the runner-up method being up
to around 1.5% of FAA on all the datasets. Additionally, our method avoids forgetting better than
all baselines, by a gap up to 17% on 5-Datasets.
Ablation studies. Figure 5 reports the ablation studies of our training strategy. Particularly, com-
pared to training tasks independently using Cross Entropy loss LCE like in DualP and L2P, exploit-
ing the relationships between data with the label-based taxonomy and the OT-based strategy (ours)
helps improve FAA by about 5% to 10% (Figure 5a). Besides, when examining the role of exploiting
additional prior information from pretrained backbones using the OT approach upon the taxonomy,
we see that FAA is improved from 0.6% to 0.8% (Figure 5b). These results demonstrate the positive
impact of this component. In both figures, the improvements on Split-CIFAR100 and 5-Datasets
are the lowest, while it is more pronounced on Split-CUB-200. This may be because the groups of
these two datasets (Split-CIFAR100 and 5-Datasets) have fewer overlapping classes, as the classes
in each group likely have more recognizable features. Meanwhile, Split-CUB-200 is a dataset of
birds with images that can be difficult for human eyes to recognize, thus so our method performs
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Table 1: Overall performance comparison. We provide FAA and FFM of all methods, with stan-
dard deviation taken over at least 3 runs of different random seeds. The results corresponding to the
best FAA among baselines are underlined.

Method
Split CIFAR-100 Split ImageNet-R 5-Datasets Split CUB-200

FAA (↑) FFM (↓) FAA (↑) FFM (↓) FAA (↑) FFM (↓) FAA (↑) FFM (↓)

L2P 83.06 ±0.17 6.58 ±0.40 63.65 ±0.12 7.51 ±0.17 81.84 ±0.95 4.58 ±0.53 74.52 ±0.92 11.25 ±0.23

DualPrompt 86.60 ±0.19 4.45 ±0.16 68.79 ±0.31 4.49 ±0.14 77.91±0.45 13.17 ±0.71 82.05±0.95 3.56 ±0.53

OVOR 86.68 ±0.22 5.25 ±0.12 75.72 ±0.82 5.77 ±0.12 82.34 ±0.48 4.83 ±0.35 78.12 ±0.65 8.13 ±0.52

CODA-Prompt 86.94 ±0.63 4.04 ±0.18 70.03 ±0.47 5.17 ±0.22 64.20 ±0.53 17.22 ±0.55 74.34 ±0.68 12.05 ±0.41

HiDe-Prompt 92.61 ±0.28 1.52 ±0.10 75.06 ±0.12 4.05 ±0.19 93.92 ±0.33 2.31 ±0.12 86.62 ±0.35 2.55 ±0.15

ITA-IA3 91.08±0.31 2.25±0.18 72.75±0.26 5.65±0.31 85.75±0.45 3.62±0.28 84.23±0.42 3.83±0.38

APT 89.22±0.65 3.21±0.52 79.40±0.47 4.38 ±0.46 80.25 ±0.56 4.26±0.43 78.52±0.95 7.65±0.88

Rainbow-Prompt 89.86±0.11 3.44±0.26 79.09±0.13 3.90±0.23 81.23±0.45 4.02±0.52 84.65±0.42 3.84 ±0.35

Ours (RefCL) 93.94 ±0.23 1.05 ±0.15 79.65 ±0.12 3.06 ±0.22 95.02 ±0.20 1.21 ±0.15 87.93 ±0.22 2.01 ±0.23
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Figure 5: Ablation studies about our training strategy. Figure (b) depicts the performance improve-
ment after applying our OT-based technique to our taxonomy strategy (Eq.4). The efficiency of this
technique w/o our taxonomy strategy is further analysed in Appendix E.4.

better. Furthermore, Figure 5c provides the experimental results when varying α and β. The data
show significant degradations of model performance when each loss function of LG is eliminated,
demonstrating their specific roles. In particular, w/o using our taxonomy and OT-based strategy
(αLg = 0), the performance can decrease up to 5.65%. Besides, the effect of Lall can be clearly
seen when β = 0, as it helps constrain the relative correlations of all classes.

t-SNE visualization on latent space. Figure 3 illustrates the effect of our method in im-
proving the model’s representation learning on Split-CIFAR100. Specifically, the classes
are better clustered, and the separation between them is more distinct. Especially, the
classes ”oak tree”, ”willow tree”, and ”pine tree” are divided into clear clusters, rather
than being mixed together as in the traditional training strategy, where tasks are trained
independently. We also provide other visualizations on other datasets in Appendix E.2.
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Figure 6: Model performance when δ, in Eq (3),
varies.

The impact of δ in OT technique. Figure
6 illustrates the dependence of model perfor-
mance on the value of the coefficient δ in our
OT technique (see Eq.3). The results show that
if δ is too small, the performance can go down
significantly, even worse than HiDE-Prompt.
This occurs because the values of the weight
matrix will be too large, leading to classes,
which have strong correlations in the latent
space of fΦ, being pushed too far apart. This causes an imbalance compared to the overall correlation
of all classes and unexpected overlapping. Conversely, if δ is set too large, the corresponding weight
will be small, preventing achieving optimal efficiency. For Split-CIFAR-100 and Split-CUB-200,
the optimal values are δ = 500 and 100, respectively.
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The alignment between the label-based taxonomy and visual space The trees used in our ex-
periment are built based on the information of the labels and the visual identity of the corresponding
data (See Appendix C). The success of our experiment comes from the appropriate correlation be-
tween the visual space and the arrangement of their labels on the taxonomy. In the main paper, we
present Figure 2, a part of the tree obtained when training Split-CIFAR100, along with the tSNE
visualization in Figure 3a, and the distributional distance between pairs of classes in Figure 4. The
results show that basically, if labels are on the same leaf group, the visual space will likely share
a lot of common information and have a high possibility of overlapping, causing the model to be
confused and make wrong judgments. We provide in Figure 7 other measures of average cosine sim-
ilarity and Euclidean distance between pairs of classes, the results basically show the consistency
and explain why our method works. Similar results for other datasets are provided in Appendix D.
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Figure 7: Correlation in latent space of class pairs (Split-CIFAR-100).

The superiority of our proposed method on various types of pretrained backbones. Table 2
demonstrates that our method consistently outperforms the strongest baseline, HiDE-Prompt across
all cases. This confirms the superior effectiveness of our method across a diverse range of types of
pretrained models.

Table 2: Comparison when using different pretrained backbones.

Backbone
Split CIFAR-100 Split Imagenet-R 5-Datasets Split CUB-200

RefCL HiDE-Prompt RefCL HiDE-Prompt RefCL HiDE-Prompt RefCL HiDE-Prompt
Sup-21K 93.94 92.61 79.65 75.06 94.96 93.83 87.92 86.56
iBOT-21K 94.01 93.02 75.12 70.83 95.21 94.88 80.06 78.23
iBOT-1K 94.27 93.48 75.80 71.33 94.59 93.89 79.22 78.54
DINO-1K 94.12 93.51 72.25 68.11 94.20 93.50 78.98 78.42
MoCo-1K 92.32 91.57 68.23 63.77 94.22 93.28 78.32 77.63

Other results. We also provide experimental results in Appendix E, related to model performance
when using different taxonomy structures, and analyze other aspects of our OT technique, the coeffi-
cients α, β, τ when using loss functions. Additionally, we verify the correlation between taxonomy
and visual space when considering other datasets and pretrained models, as well as discuss the cur-
rent limitations and potential impacts of the proposed method.

6 CONCLUSION

In this work, we demonstrate the importance of meaningfully organizing data information rather than
just lumping them together for training. Particularly, we propose arranging data labels into tree-like
taxonomies to identify data groups that are likely to confuse models. This approach encourages the
models to focus and develop deeper knowledge about each group, reducing forgetting and motivating
more effective learning in subsequent tasks. Additionally, we propose leveraging the initial behavior
of pretrained models to obtain hidden structures of training data, providing a new perspective to
further enhance performance. Finally, the experimental results demonstrate our effectiveness.
Limitations. Despite this novel approach, the quality of the hierarchical taxonomy depends on the
quality of expert knowledge. For example, if similar image classes are not assigned to the same leaf
group in this label-based taxonomy, the constraint we put on each such group may not perform as
expected.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In order to facilitate the reproduction of our empirical results, we provide detailed descriptions of
the experimental setup in Section 5 and Appendix A. All datasets used in this study are publicly
available, enabling full replication of our experiments.

USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policy, we disclose our use of Large Language Models (LLMs)
during the preparation of this paper. Large language models were employed for (i) editorial pur-
poses, including grammar correction and spelling refinement. (ii) The generation of label-based
taxonomies, which help guide the training process of the main model, as described in Appendix C.

However, all scientific ideas, model design, and experimental results reported in this paper are en-
tirely conceived and executed by the authors. The LLM was never used to generate research con-
cepts, hypotheses, or experimental findings. The authors take full responsibility for the content of
the paper.
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Supplement to “Reflexing and Linking knowledge: Dynamic La-
bel Structures for Prompt-based Continual Learning“

A EXPERIMENTAL SETTINGS

A.1 DATASETS

We adopt the following common benchmarks:

• Split CIFAR-100 (Krizhevsky et al., 2009): This dataset includes images from 100 differ-
ent classes, each being relatively small in size. The classes are randomly organized into 10
sequential tasks, with each task containing a unique set of classes.

• Split ImageNet-R (Krizhevsky et al., 2009): This dataset contains images from 200 exten-
sive classes. It includes difficult examples from the original ImageNet dataset, as well as
newly acquired images that display a variety of styles. The classes are randomly divided
into 10 distinct incremental tasks.

• 5-Datasets (Ebrahimi et al., 2020): This composite dataset incorporates CIFAR-10
(Krizhevsky et al., 2009), MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al.,
2017), SVHN (Netzer et al., 2011), and notMNIST (Bulatov, 2011). Each of these is
treated as a separate incremental task, enabling the evaluation of the impact of substantial
variations between tasks.

• Split CUB-200 (Wah et al., 2011): This dataset contains fine-grained images of 200 distinct
bird species. It is randomly divided into 10 incremental tasks, each with a unique subset of
classes.

A.2 BASELINES

In the main paper, we use CL methods with pretrained ViT as the backbone. We group them into (a)
the group using a common prompt pool for all tasks, and (b) the group dedicating distinct prompt
sets for each task:

(1) L2P (Wang et al., 2022c): The first prompt-based work for continual learning (CL) suggested
using a common prompt pool, selecting the top k most suitable prompts for each sample during
training and testing. This approach might facilitate knowledge transfer between tasks but also risks
catastrophic forgetting. Unlike our approach, L2P doesn’t focus on training classifiers or setting
constraints on features from old and new tasks during training, which may limit the model’s pre-
dictability.

(2) DualPrompt (Wang et al., 2022b): The prompt-based method aims to address L2P’s limitations
by attaching complementary prompts to the pretrained backbone, rather than only at input. DualP
introduces additional prompt sets for each task to leverage task-specific instructions alongside invari-
ant information from the common pool. However, like L2P, it does not focus on efficiently learning
the classification head. Additionally, selecting the wrong prompt ID for task-specific instructions
during testing can negatively impact model performance.

(3) OVOR (Huang et al., 2024): while using only a common prompt pool for all tasks, this work
introduces a regularization method for Class-incremental learning that uses virtual outliers to tighten
decision boundaries, reducing confusion between classes from different tasks. Experimental results
demonstrate the role of representation learning, which focuses on reducing overlapping between
class representations.

(4) CODA-Prompt (Smith et al., 2023): This prompt-based approach uses task-specific learnable
prompts for each task. Similar to L2P, CODA employs a pool of prompts and keys, computing a
weighted sum from these prompts to generate the real prompt. The weights are based on the cosine
similarity between queries and keys. To avoid task prediction at the end of the task sequence, the
weighted sum always considers all prompts. CODA improves over DualP and L2P by optimizing
keys and prompts simultaneously, but it still hasn’t addressed the drawbacks mentioned for DualP.

(5) HiDe-Prompt (Wang et al., 2023): a recent SOTA prompt-based method that decomposes learn-
ing CIL into 3 modules: a task inference, a within-task predictor and a task-adaptive predictor. The
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second module trains prompts for each task with a contrastive regularization that tries to push fea-
tures of new tasks away from prototypes of old ones. To predict task identity, it trains a classification
head on top of the pretrained ViT. TAP is similar to a fine-tuning step that aims to alleviate classifier
bias using the Gaussian distribution of all classes seen so far. However, this method does not declare
the relationship between data during training, thereby missing the opportunity to improve model
performance.

(6) ITA-IA3 (Porrello et al., 2025): Provides theoretical analysis and valuable insights related to
demystify compositionality in standard non-linear networks through the second order Taylor ap-
proximation of the loss function. The proposed formulation highlights the importance of staying
within the pre-training basin to achieve composable modules. Moreover, it provides the basis for
two dual incremental training algorithms: the one from the perspective of multiple models trained
individually, while the other aims to optimize the composed model as a whole. In our experiment,
we compare our method with the first version in this paper.

(7) APT (Chen et al., 2025): This method proposed training a unified set of shared prompts for all
tasks and, instead of concatenating these prompts to the input, directly alters the attention compu-
tation of the CLS token by incorporating the prompts. This straightforward and lightweight design
significantly lowers computational complexity—reducing both inference costs and the number of
trainable parameters—while also removing the necessity to optimize prompt lengths for various
downstream tasks. This results in a more efficient and effective solution for rehearsal-free class-
incremental learning.

(8) Rainbow-Prompt (Hong et al., 2025): Different from other methods, this paper introduced an
innovative prompt-evolving mechanism that adaptively combines base prompts (i.e., task-specific
prompts) into a single unified prompt while maintaining diversity. By transforming and aligning
both previously learned and newly introduced base prompts, model will continuously updates ac-
cumulated knowledge to support the learning of new tasks. Additionally, they proposed to use a
learnable probabilistic gate that dynamically decides which layers to activate during the evolution
process.

A.3 METRICS

In our study, we employed two key metrics: the Final Average Accuracy (FAA) and the Final Forget-
ting Measure (FFM). To define these, we first consider the accuracy on the i-th task after the model
has been trained up to the t-th task, denoted as Ai,t. The average accuracy of all tasks observed
up to the t-th task is calculated as AAt = 1

t

∑t
i=1Ai,t. Upon the completion of all T tasks, we

report the Final Average Accuracy as FAA = AAT . Additionally, we calculate the Final Forgetting
Measure, defined as FFM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1} (Ai,t −Ai,T ). The FAA serves as the

principal indicator for assessing the ultimate performance in continual learning models, while the
FFM evaluates the extent of catastrophic forgetting experienced by the model.

A.4 IMPLEMENTATION DETAILS

Our implementation basically aligns with the methodologies employed in prior research Wang et al.
(2022c); Smith et al. (2023); Chen et al. (2025). Specifically, our framework incorporates the use
of a pretrained Vision Transformer (ViT-B/16) as the backbone architecture. For the optimization
process, we utilized the Adam optimizer, configured with hyper-parameters β1 set to 0.9 and β2 set
to 0.999. The training process was conducted using batches of 24 samples, and a fixed learning rate
of 0.03 was applied across all models except for CODA-Prompt. For CODA-Prompt, we employed
a cosine decaying learning rate strategy, starting at 0.001. Additionally, a grid search technique was
implemented to determine the most appropriate number of epochs for effective training. Regarding
the pre-processing of input data, images were resized to a standard dimension of 224 × 224 pixels
and normalized within a range of [0, 1] to ensure consistency in input data format.

In Table 1 of the main paper, the results of L2P, DualPrompt, CODA-Prompt, and HiDe-Prompt on
Split CIFAR-100 and Split ImageNet-R are taken from (Wang et al., 2023). Their results on the
other two datasets are produced from the official code provided by the authors. For the remaining
baselines, the reported results are also reproduced from their official code.
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B FORGETTING IN PROMPT-BASED CONTINUAL LEARNING METHODS -
ANALYSE THE CAUSE W.R.T EMERGENCE OF NEW DATA

In Continual Learning, forgetting refers to the phenomenon in which performance on previously
learned tasks decreases over time. Current prompt-based CL methods, which leverage the power
of pretrained models, attribute forgetting either to (I) changes in backbone parameters when using
the common prompt pool P for all tasks (Wang et al., 2022c;b) or to (II) the inherent mismatch
between the models used at training and testing, as discussed and analyzed in Zhanxin Gao (2024);
Tran et al. (2023). Other work such as (Li et al., 2023) suggests that the cause also arises from
(III) overlapping between old and new emerging class representations, which bear high semantic
resemblance to previous samples. In this section, we also provide empirical studies to complement
the third views:

Dataset Feature shift

Split-Imagenet-R 0
Split-CIFAR-100 0
Split-CUB-200 0

(a) Feature shift corre-
sponding to D1 after
learning the sequence of
tasks.
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(b) ”Within task accuracy” on D1.
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(c) Model accuracy on D1

Figure 8: Empirical study about forgetting. We setup the experiment to eliminate factors (I) and
(II), which result in feature shift after learning the sequence of tasks - Table (a). Therefore, the
”within task accuracy” on D1, using classification head s1(x) to classify classes within task 1 only,
remains over time - Figure (b). However, when using head hψ to classify all classes observed so
far, the model accuracy on D1 decrease significantly - Figure (c), suggesting that besides feature
shift, there are other factors that lead to forgetting.

To uncover the third factor causing forgetting, we deliberately consider the cases where the behav-
ior of backbone w.r.t each learned task is unchanged over time - meaning (I) and (II) would not
happen. Firstly, to eliminate concerns about changing learned parameters (I), we consider methods
that propose using a distinct set of prompts Pt to a specific task t. Thus, we conduct experiments
on HiDE-Prompt (Wang et al., 2023), which is the latest SOTA in prompt-based CL. Then, the re-
maining potential factor is the difference between the prompt chosen at inference time. To this end,
the training is carried out as usual; when testing, we intentionally choose the right prompt for each
sample to ensure that there is no change in the backbone’s behavior compared to training. And the
features after backbone will be classified normally without taskID.

For a detailed examination, we propose an experimental setup to analyze the performance degra-
dation of corresponding models over time. Specifically, we train a classification head s1(x) on the
latent space fΦ,P1

(x) derived from the first task D1. As the model undergoes continual training on
a sequence of subsequent tasks, we assess the ability of s1(x) to classify instances from D1 over
time, defining this as within-task accuracy. This is different from model accuracy on D1, which is
obtained when we use the usual classification head hψ as the original design of HiDE-Prompt. This
classification head hψ considers all classes that the model has observed so far, instead of just data
of D1 as s1(x). The results in Figure 8b, show that within-task accuracy definitely remains. In con-
trast, Figure 8c, illustrates a significant decrease in true accuracy, raising the question of whether
we have overlooked additional factors contributing to final forgetfulness.

Additionally, considering the inference feature space of fΦ,P (x), we can see that as more tasks
arrive, the number of classes grows up, increasing the possibility of overlap between class distribu-
tions. To support this point, we illustrate the representations of some class images in Figure 1, as
well as the corresponding t-SNE visualizations in Figure 3. In particular, after Task 1, we have rep-
resentations of ”oak tree”, ”mouse”, and ”porcupine” located in quite separate locations. However,
when Task 2 and then Task 3 arrive, the appearance of classes ”willow tree” and ”pine tree” makes

3
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class ”oak tree” no longer maintain the separation from the remaining classes as before, leading to
a remarkable drop in performance of previous tasks.

Based on the evidence above, we can see that the overlap causes confusion in distinguishing between
old and new classes, thereby reducing the performance of learned tasks over time (i.e., forgetting).
This is coincidentally similar to the behavior of human memory, where although the old knowledge
exists somewhere in the brain, still be confused due to the newly acquired information (Anderson &
Neely, 1996; Wimber et al., 2015; Loftus, 2005; Nader et al., 2000; Wixted, 2004). Recognizing this
motivates us to propose a novel method, focusing on identifying easily confused class pairs, thereby
reducing forgetting and improving performance.

C USING LLMS (I.E., CHATGPT, LLAMA, ETC.,) TO BUILD TREE-LIKE
TAXONOMY DURING A SEQUENCE OF TASKS, INCREMENTALLY

How to generate taxonomy for training? To support the training process, we need the help of
experts to arrange the labels in the appropriate positions on the tree, thereby achieving the desired
effects during the training process, helping the model focus more on difficult knowledge areas. In
our experiments, we use LLMs as an expert simulation tool. In particular, we use the following
prompt structure to generate the taxonomies:

Given the label list: [’· · ·’], provide me the taxonomy from this
list, based on their origin, type, and shape, so that the image
encoders can recognize their images.

Example output, when the list [’· · · ’] is ["leopard", "rabbit", "mouse", "camel",
"trout", "aquarium fish", "snake", "rose", "lawn mower", "bottle"]:

taxonomy = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard",
"rabbit", "mouse", "camel"]

},
"Aquatic": ["trout",
"aquarium_fish"],
"Reptiles": ["snake"]

},
"Plants": {

"Flowers": ["rose"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle"]

}
}

Below is an example of generated taxonomies for each task of Split-CIFAR100:

T1 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard",
"rabbit", "mouse", "camel"]

},

4
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"Aquatic": ["trout",
"aquarium_fish"],
"Reptiles": ["snake"]

},
"Plants": {

"Flowers": ["rose"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle"]

}
}

}

T2 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard",
"rabbit", "mouse", "camel",
"otter"]

},
"Aquatic": ["trout",
"aquarium_fish",

"shark", "seal",
"lobster"],

"Reptiles": ["snake"]
},
"Plants": {

"Flowers": ["rose", "tulip"],
"Trees": ["palm_tree"]

}
},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle", "bowl"]

},
"Vehicles": {

"Wheeled": ["motorcycle"]
},
"Structures": {

"Buildings": ["skyscraper",
"house"]

}
}

}

T3 = ...
}

The taxonomies for other datasets are available in our source code.

Regarding the issue of CIL constraint violation? The model adheres to the training principles of
Class-Incremental Learning (CIL) since it inherently lacks any foresight into future data. Our model
only accesses data available up to the current training stage, along with the corresponding taxonomy
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established by the expert. While the expert contributes to the training process, this support is limited
to information relevant to the data that the model has already observed.

Flexibility of taxonomy (i) Label-based taxonomies can be built with any labeled dataset. The
architecture of these taxonomies can be diverse (as illustrated in Figures 12 and 13), depending
on the expert’s knowledge. However, it is necessary to ensure that the layers on the leaf node are
arranged properly for the model to be trained effectively, which comes from the expert’s knowledge.
(ii) In our experiment, these label-based taxonomies are continuously and consistently expanded as
new tasks emerge, mirroring how human understanding grows as we acquire new knowledge, reflect
on it, and connect it to what we already know.

D VERIFICATION OF THE ALIGNMENT BETWEEN LABEL-BASED
TAXONOMIES AND VISUAL LATENT SPACE

The label-based trees/taxonomies used in our experiment are built based on the information of the
labels and the visual identity of the corresponding data (See Appendix C). The success of our ex-
periment comes from the appropriate correlation between the visual space and the arrangement of
their labels on the taxonomy. In the main paper, we present Figure 2, a part of the tree obtained
when training Split-CIFAR100, along with the t-SNE visualization in Figure 3a, and the distribu-
tional distance between pairs of classes in Figure 4. The results show that basically, if labels are
on the same leaf group, the visual space will likely share a lot of common information and have a
high possibility of overlapping, causing the model to be confused and make wrong judgments. We
also provide in Figure 7 other measures of average cosine similarity and Euclidean distance between
pairs of classes, the results basically show the consistency and explain why our method works.

To better demonstrate the intuition that there is a correlation between the label-based tree-like taxon-
omy and visual space, we provide visualization results corresponding to different datasets in Figure
9, 10, 11. The results show that classes within the same leaf group often share many common visual
characteristics and likely have strong correlation and close distance in the latent space. Therefore,
identifying these such groups on the taxonomies will provide us with a reference channel to deter-
mine easily confusable classes, thereby enhancing the models’ representation learning.

E ADDITIONAL EXPERIMENTS

E.1 HOW DO DIFFERENT HIERARCHICAL TAXONOMY STRUCTURES AFFECT MODEL
PERFORMANCE?

Table 3: Performance comparison when using different LLMs to generate the corresponding taxon-
omy

LLMs used to build taxonomies
Split CIFAR-100 Split Imagenet-R Split CUB-200

Sup-21K iBOT-21K Sup-21K iBOT-21K Sup-21K iBOT-21K

Baseline (HiDE-Prompt) 92.61 93.02 75.06 70.83 86.56 78.23

Llama-3-70b-Groq 93.58 93.82 80.01 75.12 88.00 79.05

GPT-4o-Mini 93.94 94.01 79.65 74.12 87.93 79.02

Gemini-1.5-Pro 93.35 93.43 78.76 73.42 87.02 78.43

DeepSeek-R1 93.56 93.62 79.24 73.93 87.65 78.72

Mistral-Medium 93.12 93.35 78.54 73.12 87.00 78.22

Claude-3.5-Haiku 93.65 93.62 79.12 73.98 87.83 78.75

Average results of LLMs 93.53±0.28 93.64±0.24 79.18±0.52 73.95±0.69 87.57±0.45 78.8±0.33

Table 3 shows the performance of models when using the most advanced LLMs to support the
process of building label-based hierarchical taxonomies. Although the output samples presented in
Figures 12 and 13 indicate some notable differences in the approaches as well as the final results
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(a) Label-based taxonomy.
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(b) L2-Wasserstein distance.
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Figure 9: Relationship between visual features and taxonomies (Split-Imagenet-R)

of the corresponding LLMs’ trees constructed, the numerical results show that there is not much
difference when using these different LLMs.

This may stem from the sufficiently good knowledge and semantic capabilities of these powerful
models. That is, despite certain differences, most class labels are appropriately organized into their
corresponding leaf groups. Furthermore, the involvement of our OT-based technique once again
helps to modify the constraint level of the taxonomy-based strategy, resulting in not much difference
when using these LLMs. Overall, Llama-3-70B-Groq and GPT-4o-Mini are the two models that
yield the best results.

E.2 T-SNE VISUALIZATION ON DIFFERENT DATASETS

Figures 14, 15, 16 present visualizations of the latent space, demonstrating the effectiveness of our
method in actively linking knowledge and focusing on difficult knowledge areas, instead of learning
tasks independently like many current methods.
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(a) Label-based taxonomy
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(b) L2-Wasserstein distance.
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(c) Cosine similarity.
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Figure 10: Relationship between visual features and taxonomies (Split-CUB-200)

E.3 COMPUTATIONAL COST FOR COMPUTING WASSERSTEIN DISTANCE-BASED MATRIX IN
OUT OT-BASED STRATEGY (SECTION 4.3)

The results in Table 4 show that the computational cost of our Wasserstein distance matrix does not
cause computational burden during training, and does not affect the testing process.

E.4 THE EFFECTIVENESS OF OUR OT-BASED TECHNIQUE

This section provides an additional perspective on the effectiveness of our OT-based technique (Sec-
tion 4.3). Instead of demonstrating the effectiveness of this technique in reinforcing the strength of
the taxonomy strategy as mentioned in the main paper, we conduct experiments to show its effec-
tiveness when applied to conventional supervised contrastive loss. That is, at this point, the model’s
objective function is as follows:

L = LCE + LG = LCE + L
′

all (6)

where L′

all is the new version of Lall after applying our OT-based strategy:

L
′

all(·) = − log
∑

x′∈X1...t|yx′=yx

u(zx · zx′)∑
x̄∈X1...t

γyxyx̃u(zx · zx̄)
(7)
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(a) Label-based taxonomy
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(b) L2-Wasserstein distance.
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Figure 11: Relationship between visual features and taxonomies (5-Datasets)

Table 4: Computational cost

Training cost (min/task) Split-CIFAR-100 Split-ImageNet-R Split-CUB-200 5-Datasets
HiDE-Prompt 42.83 81.61 17.52 155.42
Ours 43.92 83.02 28.15 157.15
Ours (WS computation only) 0.024 0.095 0.095 0.006

WD Computation (S-CIFAR100) (s) Until Task 1 Until Task 5 Until Task 10
ViT-B16 0.015 0.36 1.43
Vit-L16 0.015 0.36 1.43
(num of classes so far) 10 50 100

Inference time (ms/sample) S-CIFAR100 S-ImageNetR S-CUB200 5-Datasets
HiDE-Prompt 21.92 21.92 21.92 21.92
Ours 21.92 21.92 21.92 21.92

Based on this, we conducted the related experiments and presented the results in Table 5. The data
show that the performance of the model when using the objective function in Eq.6 (B) is nearly
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T2 = {
    "Natural": {
        "Animals": {
            "Mammals": {
                "Four-legged": ["leopard", "rabbit", "mouse", "camel", "otter"]},
            "Aquatic": ["trout", "aquarium_fish", "shark", "seal", "lobster"],
            "Reptiles": ["snake"]},
        "Plants": {
            "Flowers": ["rose", "tulip"],
            "Trees": ["palm_tree"]}
    },
    "Man-Made": {
        "Objects": {
            "Tools": ["lawn_mower"],
            "Containers": ["bottle", "bowl"]},
        "Vehicles": {
            "Wheeled": ["motorcycle"]},
        "Structures": {
            "Buildings": ["skyscraper", "house"]}
    }
}

(a) GPT-4o-Mini

T2 = {
    "Biological Entities": {
        "Mammals": {
            "Terrestrial Predators": ["Leopard"],
            "Small Terrestrial Mammals": ["Rabbit","Mouse", "Camel"],
            "Aquatic/Semi-Aquatic Mammals": ["Otter", "Seal"]},
        "Marine Life": {
            "Fish": ["Trout", "Aquarium Fish", "Shark"],
            "Crustaceans": ["Lobster"]},
        "Reptiles": ["Snake"]
    },
    "Botanical Entities": {
        "Flowering Plants": ["Rose, Tulip"],
        "Tree": ["Palm Tree"]},
    "Man-Made Objects": {
        "Machinery": ["Lawn Mower", "Motorcycle"],
        "Containers": ["Bottle", "Bowl"],
        "Architectural Structures": ["Skyscraper", "House"]}
}

(b) Claude-3.5-Haiku

T2 = {
    "Animals": {
        "Mammals": {
            "Terrestrial": ["leopard", "rabbit", "mouse", "camel"],
            "Semi-aquatic": ["otter"],
            "Marine": ["seal"]},
        "Fish": {
            "Freshwater": ["trout", "aquarium_fish"],
            "Saltwater": ["shark"]},
        "Invertebrates": {
            "Crustaceans": ["lobster"]},
        "Reptiles": ["snake"]
    },
    "Plants": {
        "Flowers": ["rose", "tulip"],
        "Trees": ["palm_tree"]},
    "Objects": {
        "Man-made": {
            "Vehicles": ["motorcycle"],
            "Structures": ["skyscraper", "house"],
            "Containers": ["bottle", "bowl"],
            "Tools": ["lawn_mower"]}
    }
}

(c) Llama-3-70b-Groq

Figure 12: Taxonomy samples when using different LLMs (Llama, GPT, Claude), in
Task 2, with the label list ["leopard", "rabbit", "mouse", "camel", "trout",
"aquarium fish", "snake", "rose", "lawn mower", "bottle"]

equivalent to that of using our taxonomy strategy w / without the OT technique (C), helping to im-
prove performance by almost 6% compared to training tasks independently (A). The reason that (B)
has not surpassed (C) may be because (B) is only leveraging prior information from vision pretrained
models, while (C) also incorporates insights from LLMs regarding the relationships between data
classes. The effectiveness of this collaboration is demonstrated when our fully proposed method (D)
delivers superior results.
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T2 = {
    "Natural": {
        "Animals": {
            "Mammals": {
                "Felidae": ["leopard"], "Lagomorpha": ["rabbit"],
                "Rodentia": ["mouse"], "Artiodactyla": ["camel"]},
            "Fish": {
                "Freshwater": ["trout", "aquarium_fish"]},
                "Saltwater": ["shark"]},
            "Marine Mammals": ["seal"],
            "Semi-aquatic Mammals": ["otter"],
            "Invertebrates": {
                "Crustaceans": ["lobster"], "Reptiles": ["snake"]}
        },
        "Plants": {
            "Flowers": ["rose", "tulip"], "Trees": ["palm_tree"]}
    },
    "Man-Made": {
        "Containers": ["Bottle", "Bowl"], 
        "Structures": ["Skyscraper", "House"]},
        "Vehicles": ["Motorcycle"], "Tools": ["Lawn Mower"]
    }
}

(a) Gemini-1.5-Pro

T2 = {
    "Biological Entities": {
        "Terrestrial Mammals": ["leopard", "rabbit", "mouse", "camel"],
        "Aquatic/Semi-Aquatic Life": {
            "Freshwater": ["trout", "aquarium_fish"], "Saltwater": ["shark"],
"Amphibious": ["otter", "seal"]},
        "Reptiles/Invertebrates": ["snake", "lobster"],
        "Plants": {
            "Floral": ["rose", "tulip"], "Arboreal": ["palm_tree"]}
    },
    "Man-Made Objects": {
        "Containers": {
            "Vertical": ["bottle"], "Open": ["bowl"]},
        "Structures": {
            "Vertical": ["skyscraper"], "Horizontal": ["house"]},
        "Mechanical Devices": {
            "Vehicle": ["motorcycle"], "Tool": ["lawn_mower"]}
    }
}

(b) DeepSeek-R1

T2 = {
    "Biological Entities": {
        "Animals": {
            "Mammals": {
                "Terrestrial": {"Quadruped": {
                        "Carnivores": ["leopard"], "Lagomorphs": ["rabbit"],   
                            "Rodents": ["mouse"], "Artiodactyla": ["camel"]}},
                "Semi-aquatic": ["otter"],
                "Marine": ["seal"]},
            "Fish": {
                "Freshwater":["trout","aquarium_fish"],"Saltwater": ["shark"]},
            "Invertebrates": {
                "Crustaceans": ["lobster"], "Reptiles": ["snake"]},
        },
        "Plants": {"Flowers": ["rose", "tulip"], "Trees": ["palm_tree"]}
    },
    "Man-Made Objects": {
        "Tools": ["lawn_mower"], "Containers": ["bottle", "bowl"],
        "Vehicles": ["motorcycle"], 
        "Structures": ["skyscraper", "house"]}
}

(c) Mistral-Medium

Figure 13: Taxonomy samples when using different LLMs (Gemini, DeepSeek, Mistral), in
Task 2, with the label list ["leopard", "rabbit", "mouse", "camel", "trout",
"aquarium fish", "snake", "rose", "lawn mower", "bottle"]

E.5 EFFECT OF THE TEMPERATURE τ

In each of our experiments, we used a common temperature value τ for the two supervised con-
trastive loss functions (i.e., Lg and Lall). Table 6 below shows the model performance when this
value varies on Split-CIFAR-100 and Split-Imagenet-R. The results indicate that, in general, τ = 0.1
is the optimal value achieved.
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(a) Training tasks independently (b) Ours (RefCL)

Figure 14: t-SNE visualization on Split-Imagenet-R

(a) Training tasks independently (b) Ours (RefCL)

Figure 15: t-SNE visualization on Split-CUB-200

(a) Training tasks independently (b) Ours (RefCL)

Figure 16: t-SNE visualization on 5-Datasets

12



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 5: The efficiency of our OT-based technique

Dataset Split-CIFAR-100 Split-ImageNet-R 5-Dataset Split-CUB-200

(A) Baseline (training tasks independently, LCE only) 87.52 73.55 91.48 81.02

(B) Using OT-trick w/o taxonomies 93.04 78.69 94.12 86.85

(C) Using taxonomy w/o OT-based strategy 93.31 78.72 94.42 87.18

(D) Ours (both taxonomy and OT-based strategy) 93.94 79.65 95.02 87.93

Table 6: Performance when the temperature factor τ varies

Dataset 0.05 0.1 0.3 0.5 0.7

Split CIFAR-100 90.04 93.94 91.42 90.15 88.81

Split ImageNet-R 77.98 79.65 78.22 76.01 74.96

E.6 MODEL PERFORMANCE WHEN α, β VARY

Figures 17a and 17b show the changes in model performance when varying the values of α and β in
the objective function of the proposed method (Equation 5). Accordingly, the roles of L′

g and Lall
are clearly demonstrated and consistent with the insights obtained from the Split-CUB-200 dataset
mentioned earlier in the main paper. When either of these quantities is omitted, model performance
decreases significantly.
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Figure 17: Model performance when varying the value of α, β.

E.7 DISCUSSION

Limitation. Despite our novel approach, the quality of the hierarchical taxonomy can depend on
the quality of expert knowledge, thus affecting the model performance. For example, if similar
image classes are not assigned to the same leaf group in this label-based taxonomy, the constraint
we put on each such group may not perform as expected. Therefore, in our experiment, we utilize
the latest power full LLMs to support this strategy, thereby mitigating the possibility of inappropriate
organization which can harm performance. See Appendix E.1.

Potential impacts. In this paper, we aim for Continual Learning for Image Classification tasks.
However, this method may promise to effectively support more complex tasks in Computer Vision,
such as Object Detection, Action Recognition, etc., in general. Furthermore, organizing concepts
into groups may also hold promise for knowledge transfer strategies for CL settings, helping the
models flexibly reinforce relevant knowledge according to each specific domain, which we will
reserve for future work.
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