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ABSTRACT

Neural field methods have seen great progress in various long-standing tasks
in computer vision and computer graphics, including novel view synthesis and
geometry reconstruction. As existing neural field methods try to predict some
coordinate-based continuous target values, such as RGB for Neural Radiance Field
(NeRF), all of these methods are regression models and are optimized by some
regression loss. However, are regression models really better than classification
models for neural field methods? In this work, we try to visit this very fundamental
but overlooked question for neural fields from a machine learning perspective. We
successfully propose a novel Neural Field Classifier (NFC) framework which for-
mulates existing neural field methods as classification tasks rather than regression
tasks. The proposed NFC can easily transform arbitrary Neural Field Regressor
(NFR) into its classification variant via employing a novel Target Encoding module
and optimizing a classification loss. By encoding a continuous regression target
into a high-dimensional discrete encoding, we naturally formulate a multi-label
classification task. Extensive experiments demonstrate the impressive effectiveness
of NFC at the nearly free extra computational costs. Moreover, NFC also shows
robustness to sparse inputs, corrupted images, and dynamic scenes.

1 INTRODUCTION

Background Neural field methods emerge as promising methods for parameterizing a field, rep-
resented by a scalar, vector, or tensor, that has a target value for each point in space and time.
Neural field methods first gained great attention in computer vision and computer graphics, because
learning-based neural field methods show impressive performance in novel view synthesis and sur-
face reconstruction. Synthesizing novel-view images of a 3D scene from a group of images is a
long-standing task (Chen and Williams, 1993; Debevec et al., 1996; Levoy and Hanrahan, 1996;
Gortler et al., 1996; Shum and Kang, 2000) and has recently made significant progress with Neural
Radiance Field (NeRF) (Liu et al., 2020; Mildenhall et al., 2021). Neural surface representation
(Michalkiewicz et al., 2019; Niemeyer et al., 2020; Yariv et al., 2021; Wang et al., 2021) is another
important and long-standing problem orthogonal to novel view synthesis.

NeRF Basics Without losing generality, we take a standard NeRF as the example. NeRF can efficiently
represent a given scene by implicitly encoding volumetric density and color through a coordinate-
based neural network (often referred to as a simple multilayer perceptron or MLP). NeRF regresses
from a single 5D representation (x, y, z, θ, ϕ)- 3D coordinates x = (x, y, z) plus 2D viewing
directions d = (θ, ϕ)- to a single volume density σ and a view-dependent color c = (r, g, b). NeRF
approximates this continuous 5D scene representation with an MLP network fΘ : (x;d) → (c;σ)
and optimizes its weights Θ to map each input 5D coordinate to the corresponding volume density
and directional emitted color.

For a target view with pose, a camera ray can be parameterized as r(t) = o+ td with the ray origin
o and ray unit direction d. The expected color C(r) of camera ray r(t) with near and far bounds tn
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and tf is

Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t)dt, (1)

where T (t) = exp(−
∫ t

tn
σ(s)ds) denotes the accumulated transmittance along the ray from tn to t.

For simplicity, we have ignored the coarse and fine renderings via different sampling methods.

The rendered image pixel value for camera ray r can then be compared against the corresponding
ground truth pixel color value C(r), through the N sampled points along the ray. Note that
C = (R,G,B) is the color vector and R,G,B ∈ [0, 1] are the normalized continuous values,
while the raw color values are integers in [0, 255]. The conventional rendering loss is the regression
loss

L(Θ) =
1

∥R∥
∑
r∈R

∥Ĉ(r)−C(r)∥22, (2)

where ∥ · ∥2 is the ℓ2 norm , the ray/pixel r = (xr,dr, cr), and R is the training data (minibatch).

Motivation As the targets are continuous values in previous studies, people naturally formulate
neural fields as regression models. In this work, we visit a very fundamental but overlooked question:
are regression formulation really better than classification formulation for neural field methods? The
answer is negative. There exist overlooked pitfalls in existing neural fields. For example, NeRF
and its variants output N points’ predictions per pixel. Compared to classical supervised learning
methods where each data point has its own ground-truth label, supervision signals for NeRF are
obviously very weak and insufficient. In the presence of weak or noisy supervision, neural networks
may exhibit significant overfitting and poor generalization (Zhang et al., 2017; Xie et al., 2021a).

Contributions We mainly make three contributions.
1. We successfully design a novel Neural Field Classifier (NFC) framework which formulates

neural fields as classification tasks rather than regression tasks.
2. We propose Target Encoding and introduce a classification loss to transform existing Neural

Field Regressors (NFR) into NFC. The implementation is quite simple, as we only need to
revise the final layer of the original NFR and optimize a classification loss.

3. We are the first to explore regression versus classification for neural fields. Surprisingly,
classification models significantly and generally outperform its conventional regression
counterparts in extensive experiments at the nearly free extra computational cost.

2 METHODOLOGY

In this section, we formally introduce the NFC framework and two key ingredients: Target Encoding
and classification loss. Figure 1 illustrates the structure of NFC and NFR. .

Target Encoding and Decoding We first discuss our Target Encoding module and how to revise
existing neural field methods according to the encoding-decoding rule.

There are various ways to encode an continuous value into a discrete vector. For example, NeRF
projects the input continuous coordinates into a high-dimensional continuous vector via positional
encoding before feeding the inputs into neural networks. Thus, this is a kind of input encoding rule.
Our target encoding requires projecting a color value into a discrete vector so that we can classify.

Suppose C = (R,G,B) is the three-channel color. In the raw dataset without preprocessing, the
color values are actually integers in [0, 255]. For simplicity, we ignore the channel and consider a
single color value y ∈ [0, 255]. A very naive target encoding rule is that we directly use y as the class
label. Then we quickly formulate a 256-class classification problem via one-hot encoding for each
channel. However, this one-hot target encoding rule is naive and inefficient for two reasons. First, the
number of logits increases to 768 from 3, which can cost more memory and computational costs than
the original simple MLP. Second, this naive target encoding ignore the relevant information carried
by the classes. Suppose the ground-truth label of a sample is 0. If a model A predicts 1 and a model
B predicts 255, their loss will be equally high. This is obviously unreasonable, because 1 is a much
better prediction than 255.
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Figure 1: The illustration of standard Neural Field Regressors and our Neural Field Classifiers.
Our method makes two modifications on existing neural fields. First, due to the Target Encoding
module, the final output of neural networks need to be a high-dimensional color encoding rather than
a three-channel color value itself. The designed encoding rule connects our high-dimensional discrete
representation and the standard three-channel continuous representation. Second, we mainly use a
classification loss as the main optimization objective. Note that the classification loss, as the main
optimization objective, can be larger than the standard MSE loss by two orders of magnitude.

Target
Encoding

Figure 2: The illustration of Binary-Number Target Encoding.

Thus, a better target encoding rule is desired for neural field methods. Fortunately, we discover
that the classical binary-number system can work well as the target encoding rule for NFC. A
binary number is a number expressed in the base-2 numeral system, a method of mathematical
expression which uses only two symbols: 0 and 1. With such binary-number encoding rule, we can
express a color value y as an 8-bit binary number y, namely y = BinaryEncod(y). For example,
y = BinaryEncod(203) = [1, 1, 0, 0, 1, 0, 1, 1] can serve as the label vector for an 8-label binary
classification task. We illustrate the binary-number encoding in Figure 2.

Finally, we may let a neural network to predict 0 or 1 for each bit in the label vector y as long as we
increase the number of color logits from 3 to 24 and design a proper classification loss.

Classification Loss Classification losses are usually some probabilistic losses, such as Cross Entropy
(CE). In this work, we also use an CE-based classification loss as the main optimization objective. In
the binary-number system, the place values increase by the factor of 2. We also need to let the class
weight increase by the factor of 2 as the place values.

We first formulate a bit-wise classification loss as

lb(ŷ,y) =
1

255

8∑
j=1

2j−1 BCE(ŷ(j),y(j)), (3)

where j is the place index and ŷ is the predicted probability given by the final layer of the MLP. We
note that 2j−1 assigns a higher weight to the class with a higher place value.
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An alternative choice is that we first decode the predict probability ŷ back into a continuous value
Ĉ = 1

255 BinaryDecod(ŷ). We treat Ĉ as the weighted-averaged predicted probability for a channel
and interpret the ground-truth color value (∈ [0, 1]) as the ground-truth probabilistic soft label. Then
we obtain a channel-wise classification loss as

lc(Ĉ,C) = BCE(Ĉ,C) = BCE

(
1

255
BinaryDecod(ŷ),C

)
. (4)

Which classification loss should we choose? According to our empirical analysis, we find that two
classification losses both significantly improve exist neural fields, while the channel-wise classification
loss given by (4) has a simpler implementation than the bit-wise classification loss given by (3). In
the following of this paper, we use the channel-wise classification loss as the default classification
loss unless we specify it otherwise.

We point out that, due to the process of ray sampling and volume rendering, the predicted probability
Ĉ (or ŷ) of NFC does not strictly lie in (0, 1) like a standard image classification model. In the case
that the predicted probability is greater than or equal to one, the gradient of the classification loss
may explode. This case is impossible in image classification but may happen in neural fields due to
volume rendering. Thus, we slightly modify the classification loss as

lc(Ĉ,C) = BCE(min(Ĉ, 1− ϵ),C), (5)
where ϵ = 0.001 is desired for the numerical stability purpose.

As the min(·, ·) operation is non-differentiable, for the data points with C /∈ (0, 1), the gradient
will vanish and does not update neural networks. To solve the gradient vanishing problem, we let
the standard Mean Squared Error (MSE) loss serve as a minor optimization objective. So the final
optimization objective of NFC can be formulated as follow

LNFC(Ĉ,C) = ∥Ĉ −C∥22 + λBCE(min(Ĉ, 1− ϵ),C), (6)

where Ĉ = 1
255 BinaryDecod(ŷ) is the predicted color probability/value.

We note that the classification loss term is the main optimization objective, because the BCE-based
classification loss can be significantly larger than the standard MSE loss by more than one order of
magnitude during almost the whole training process (after the initial tens of iterations). In practice,
we do not need to fine-tune the hyperparameter ϵ. Fine-tuning λ is easy, because the advantage of
NFC over NFR is robust to a wide range of λ (e.g. [0.1, 100]).

3 RELATED WORK

In this section, we review representative related works and discuss their relations to our method.

Neural Fields Physicists proposed the concept of fields to continuously parameterize an underlying
physical quantity of an object or scene over space and time. Fields have been used to describe
physical phenomena (Sabella, 1988) and coordinate-based phenomena beyond physics, such as
computing image gradients (Schlüns and Klette, 1997) and simulating collisions (Osher et al., 2004).
Recent advances in computer vision and computer graphics showed increased interest in employing
coordinate-based neural networks, also called implicit neural networks, that maps a 3D spatial
coordinate to a flow field in fluid dynamics, or a colour and density field in 3D scene representation.
Such neural networks are often referred to as neural fields (Xie et al., 2022a) or implicit neural
representations (Sitzmann et al., 2020; Michalkiewicz et al., 2019; Niemeyer et al., 2020; Yariv et al.,
2021; Wang et al., 2021). Our previous work (Xie et al., 2023b) proposed a novel loss but focused on
employing structural information, while this work followed the experimental setting. To the best of
our knowledge, previous studies did not touch a classification framework of neural fields.

Target Encoding Target Encoding, also called Target Embedding, Label Encoding, or Label Embed-
ding, has been studied in previous classification studies of machine learning (Bengio et al., 2010;
Akata et al., 2013; 2015; Rodríguez et al., 2018; Jia and Zhang, 2021). However, previous studies
only study how to project one discrete-label space into another discrete-label space for standard
classification tasks. They failed to explore how to encode continuous targets for regression tasks
into discrete targets for classification tasks. The comparisons between regression formulation and
classification formulation of one machine learning task is also largely under-explored in related
machine learning studies.
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4 EMPIRICAL ANALYSIS AND DISCUSSION

In this section, we conduct extensive experiments to demonstrate the effectiveness of NFCs over their
standard regression counterparts.

We let the experimental settings follow original papers to produce the baselines, unless we specify it
otherwise. The basic principle of our experimental settings is to fairly compare NFC and NFR. Thus,
we keep all hyperparameters same for them. Our evaluation is also in line with the established image
and geometry assessment protocols within neural fields community. More experiments details can be
found in Appendix A.

We mainly choose four representative neural field methods as the backbones, including DVGO (Sun
et al., 2022), vanilla NeRF (Mildenhall et al., 2021), D-NeRF (Pumarola et al., 2021), and NeuS
(Wang et al., 2021). We present more quantitative results and supplementary experimental results
of Strivec (Gao et al., 2023) and 4DGS (Wu et al., 2023) in Appendix B. We implement the NFC
variants by modifying the final layers’ logits of the neural network architectures and the optimization
objective. For simplicity, we refer to NFC and NFR of a backbone (e.g. NeRF) as NeRF-R and
NeRF-C, respectively.

4.1 NOVEL VIEW SYNTHESIS EXPERIMENTS

Ground Truth Regression (Standard) Classification (Ours)

N
eR

F
D

V
G

O

Figure 3: Qualitative comparisons of NFC and NFR for static scenes. Top Row: NeRF. Bottom Row:
DVGO.

Static Scene We first empirically study novel view synthesis on common static scenes. We choose the
Replica Dataset and Tanks and Temples Advanced(T & T) as the benchmark datasets. The Replica
Dataset encompasses eight complex static scenes characterized by dense geometry, high resolution
HDR textures, and sparse training views. T & T Dataset is a popular 3D reconstruction dataset
known for its challenging conditions, including weak illumination, uniform appearance surfaces, and
large-scale scenes.

We first use DVGO, a popular accelerated NeRF variant, as the representative of the NeRF methods
because training the accelerated NeRF variants is more environment-friendly and can significantly
reduce the energy costs and carbon emissions of our work. We also evaluate vanilla NeRF and NeuS
as two backbones on T & T. Because the vanilla NeRF is still a common baseline in related studies,
while NeuS is a popular method which combines volume rendering and surface reconstruction.

The quantitative results in Table 1 and Table 2 support that NFC consistently improves three rep-
resentative classes of existing neural field methods. We display the qualitative results in Figure 3.
Particularly, DVGO, the accelerated variant which sometimes suffers from reconstructing challenging
scenes, can be strongly enhanced, while vanilla NeRF, a relatively slow neural field method, can
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Table 1: Quantitative results of DVGO on
Replica Dataset.

Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1 Regression 13.03 0.508 0.726
Classification 34.63 0.934 0.0582

Scene 2 Regression 14.81 0.654 0.640
Classification 33.82 0.942 0.0660

Scene 3 Regression 15.66 0.661 0.634
Classification 34.04 0.965 0.0451

Scene 4 Regression 18.17 0.696 0.546
Classification 36.52 0.977 0.0311

Scene 5 Regression 15.17 0.640 0.504
Classification 35.93 0.974 0.0576

Scene 6 Regression 21.33 0.854 0.254
Classification 29.75 0.941 0.0994

Scene 7 Regression 22.54 0.865 0.231
Classification 34.77 0.966 0.0432

Scene 8 Regression 15.89 0.724 0.519
Classification 33.40 0.952 0.0775

Mean Regression 17.08 0.700 0.507
Classification 34.11 0.956 0.0598

Table 2: Quantitative results of DVGO, (vanilla)
NeRF, NeuS on T&T Dataset. The mean metrics
are computed over four scenes of T&T.

Model Mode PSNR(↑) SSIM(↑) LPIPS(↓)

DVGO Regression 22.41 0.776 0.236
Classification 23.18 0.810 0.178

NeRF Regression 22.16 0.679 0.382
Classification 22.68 0.716 0.315

NeuS Regression 19.97 0.620 0.413
Classification 21.67 0.679 0.317

Table 3: Quantitative results of D-NeRF on dy-
namic scenes, LEGO and Hook.

Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓)

Lego Regression 21.64 0.839 0.165
Classification 23.11 0.886 0.121

Hook Regression 29.25 0.965 0.118
Classification 29.45 0.967 0.0392

Ground Truth Regression (Standard) Classification (Ours)
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Figure 4: Qualitative comparison of NFC and NFR. Top Row: Dynamic Scenes. Middle Row: Sparse
Inputs. Bottom Row: Corrupted Images.

also be consistently enhanced. The image quality improvement of DVGO on Replica Dataset is
notably impressive with a 99.7% PSNR gain. Given the difficulties in reconstructing complex scenes
in Replica, such as intricate texture patterns in complex objects, varying light condition and sparse
training views, the advantages of NFC over NFR become more significant.

Dynamic Scene Dynamic scene rendering is a popular but more challenging task, which requires the
capability of neural fields to model time domain. A NeRF variant, D-NeRF, has been specifically
designed to render dynamic scenes. We also study how NFC improves D-NeRF on two common
dynamic scenes, Lego and Hook (Pumarola et al., 2021). The quantitative results in Table 3 demon-
strate that D-NeRF-C can render dynamic scenes better. The qualitative results of dynamic scenes
in the top row of Figure 4 shows that that D-NeRF-C can produce better quality rendering results
than D-NeRF-R. Both quantitative and qualitative results demonstrate that D-NeRF-C significantly
surpasses D-NeRF-R.
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Challenging Scenes NeRF imposes high requirements on data collection, including relatively dense
training views, static illumination conditions, and precise camera calibration. These conditions can
be particularly challenging due to inherent errors or difficulties in data collection.

While common scenes in NeRF studies often look clear, the training images in practice may be limited
or corrupted due to realistic difficulties or inherent errors in data collection. For example, collected
digital images often contain Gaussian noise due to the sensor-related factors Boyat and Joshi (2015).
Robustness to data corruption and noise memorization can be an important performance metric for
neural networks in weakly-supervised learning but rarely touched by previous NeRF studies.

To further understand the effectiveness and robustness of NFC, we empirically study NFC and
NFR on two challenging tasks: (1) novel view synthesis with sparse inputs and (2) novel view
synthesis with image corruption. Our benchmark for these two tasks is the Truck scene in the T &
T Intermediate dataset, with DVGO selected as our backbone due to its adaptability.

Table 4: Quantitative results of neural rendering
with sparse training images.

Data Size Mode PSNR(↑) SSIM(↑) LPIPS(↓)

20% Regression 14.87 0.530 0.580
Classification 19.38 0.629 0.395

40% Regression 18.76 0.637 0.426
Classification 21.73 0.711 0.340

60% Regression 21.02 0.682 0.394
Classification 22.27 0.728 0.329

80% Regression 21.72 0.698 0.386
Classification 22.46 0.734 0.322

Table 5: Quantitative results of neural rendering
with corrupted training images.

Noise Scale Mode PSNR(↑) SSIM(↑) LPIPS(↓)

0.2 Regression 21.97 0.694 0.406
Classification 22.33 0.719 0.353

0.4 Regression 21.33 0.663 0.451
Classification 22.08 0.692 0.391

0.6 Regression 19.67 0.615 0.512
Classification 21.45 0.662 0.429

First, in the sparse-input task, we train DVGO with the sparse version of a simple Truck scene,
called Sparse Truck, where we randomly remove some training images. We visualize the qualitative
comparisons of NFC and NFR with sparse inputs in the middle row of Figure 4. The experimental
results in Table 4 and Figure 10 (of the appendix) further support that the advantage of NFC over
NFR becomes even more significant with fewer training inputs.

Second, in the image-corruption task, we inject Gaussian noise with the standard deviation as std
into original Truck images (each color value lies in [0, 1]) and obtain the corrupted version, called
Corrupted Truck. We visualize the qualitative comparisons of NFC and NFR with corrupted images
in Figure 4. The experimental results in Table 5 and Figure 11 (of the appendix) further support that
the advantage of NFC over NFR is robust to image corruption.

NFC can encounter the challenging scenes significantly better than NFR with the difficulties in
real-world data collection. This makes the proposed NFC even more competitive in the real-world
practice. This observation aligns with the significant improve observed for the Replica Dataset, which
is exactly a group of real-world challenging scenes.

4.2 NEURAL SURFACE RECONSTRUCTION EXPERIMENTS

Surface reconstruction or geometry reconstruction is a fundamental task in both computer vision and
computer graphics. Recent neural surface reconstruction methods Yariv et al. (2020; 2021); Oechsle
et al. (2021); Wang et al. (2021) represent another class of neural field method. To evaluate the
effectiveness of NFC for surface reconstruction, we choose a popular neural surface reconstruction
method, NeuS, as the backbone which can reconstruct both RGB images and surface information.
The training of NeuS requires no ground-truth surface information.

Given the requirement for both image and geometric assessments in surface reconstruction tasks,
we employ the Replica Dataset, which provides comprehensive visual and geometric ground-truth
for both image and geometry evaluation, and the T & T dataset for image quality evaluation. To
assess geometric quality, we employ a set of popular geometry quality metrics, including Chamfer-ℓ1
Distance, F-score, when ground-truth surface and geometric information is available.

In terms of geometric assessment, our NeuS-C model achieves highly impressive improvements. The
quantitative results in Table 6 demonstrate that all geometric metrics show impressive improvements
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Figure 5: Qualitative comparisons of RGB rendering, depth rendering and normal rendering between
NeuS-R and NeuS-C for neural surface reconstruction. Dataset: Replica Scene 8 (Office 4).

Table 6: Quantitative results of neural surface reconstruction on Replica. Model: NeuS.
Scene Training PSNR(↑) SSIM(↑) LPIPS(↓) Chamfer-ℓ1(↓) Accuracy(↓) Completeness(↓) Precision(↑) Recall(↑) F-score(↑) Normal C.(↑)

Scene 1 Regression 28.52 0.843 0.148 18.13 11.60 24.65 29.84 17.79 22.29 72.14
Classification 31.12 0.848 0.101 6.879 6.841 6.917 59.42 59.98 59.70 77.59

Scene 2 Regression 29.15 0.834 0.179 19.00 12.73 25.27 28.32 16.29 20.69 75.16
Classification 31.27 0.844 0.148 8.582 8.380 8.785 48.88 47.24 48.05 75.86

Scene 3 Regression 28.44 0.877 0.150 40.34 33.80 46.89 9.474 5.680 7.102 67.69
Classification 33.99 0.925 0.0778 8.022 7.906 8.138 53.23 51.76 52.48 76.00

Scene 4 Regression 31.84 0.874 0.152 18.90 13.61 24.19 22.25 12.52 16.02 71.89
Classification 37.44 0.939 0.0572 5.162 5.051 5.272 68.01 72.97 70.40 78.59

Scene 5 Regression 33.78 0.897 0.121 76.33 11.83 140.83 33.09 0.6030 1.184 58.05
Classification 37.59 0.940 0.0588 11.53 11.46 11.60 38.54 35.44 36.93 70.26

Scene 6 Regression 27.82 0.882 0.141 15.63 11.71 19.54 30.74 21.53 25.32 69.33
Classification 31.30 0.902 0.102 8.916 8.348 9.484 52.21 48.61 50.35 73.01

Scene 7 Regression 27.19 0.867 0.135 22.77 16.71 28.83 20.54 12.14 15.26 73.81
Classification 31.28 0.915 0.0773 6.151 5.460 6.842 70.22 62.44 66.10 83.43

Scene 8 Regression 28.29 0.908 0.130 30.82 25.71 35.92 15.34 8.730 11.13 68.86
Classification 35.43 0.948 0.0564 6.263 5.910 6.615 60.93 59.94 60.43 80.54

Mean (8 scenes) Regression 29.38 0.873 0.145 30.24 17.21 43.26 23.70 11.91 14.87 69.62
Classification 33.68 0.908 0.0848 7.689 7.420 7.957 56.43 54.80 55.56 76.91

with NFC across all eight scenes. For example, over the eight surface reconstruction tasks, the mean
Chamfer-ℓ1 Distance drops by 74.6%, while the mean F-score has improved by 273%. Most surface
quality metrics have been improved by more than 10 points. In terms of image quality, NFC also
exhibits substantial improvements in all image quality metrics over the eight scenes. The qualitative
results in Figure 5 show that NFC significantly improves NeuS in both surface reconstruction and RGB
rendering. These results quantitatively demonstrate the general effectiveness of NFC in improving
neural fields for surface reconstruction.

4.3 DISCUSSION AND ABLATION STUDY

In this section, we further discuss the effectiveness and efficiency of NFC.

Ablation Study We conduct ablation study on Target Encoding and Classification Loss using DVGO
and NeuS on Replica Dataset in Tables 7 and 8 , as well as Table 13 of the appendix. The quantita-
tive results demonstrate that Target Encoding is usually helpful and lead to expected performance
improvements, while the Classification Loss term plays a dominant role in the improvements of NFC.
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Table 7: Ablation study I. Model: DVGO. Dataset: Replica Scene 6. GPU: A100.
Mode PSNR(↑) SSIM(↑) LPIPS(↓) Training Time(minutes) Rendering Time(seconds)

NFR (Standard) 21.33 0.854 0.254 9.33 0.312

NFC w/o Target Encoding 27.99 0.935 0.110 9.76 0.312

NFC (Ours) 29.75 0.941 0.0994 9.93 0.328

Table 8: Ablation study II. Model: NeuS. Dataset: Replica Scene 7. GPU: A100.
Mode PSNR(↑) SSIM(↑) LPIPS(↓) Training Time(hours) Rendering Time(seconds)

NFR (Standard) 27.19 0.867 0.135 2.84 10.27

NFC w/o Target Encoding 30.03 0.899 0.0996 2.92 10.27

NFC (Ours) 31.28 0.915 0.0773 2.98 10.83

We believe that it may be fine enough to employ the classification loss technique alone in some cases,
while two components are both useful.

Computational Cost We study the computational costs of NFC and NFR in Tables 7 and 8. It shows
that the extra training cost of NFC is very limited (+6% for DVGO and +4% for NeuS) compared
with the significant empirical improvement, and the extra rendering cost is nearly zero.
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Figure 6: The curves of PSNR, SSIM, and LPIPS with respect to the
hyperparameter λ. NFC is robust to a wide range of λ. Model: DVGO.
Dataset: Replica Scene 3.
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Figure 7: The learning
curves of NFC and NFR.

Robustness to the hyperparameter λ The hyperparameter λ controls the weight of the classification
loss. We plot how the value of λ affects the model performance in Figure 6. The quantitative results
shows that a wide value range of λ can enhance the performance. This suggests that the proposed
NFC can be easily employed in practice with the default hyperparameter and limited fine-tuning cost.

Generalization We visualize the training and test PSNR curves of NFR and NFC using DVGO
on Replica Scene 6 in Figure 7. We observed that NFC has a slightly better training PSNR and a
much better test PSNR. This suggests that the main gain of NFC comes from generalization rather
than optimization. It is known that generalization closely relate to flatter minima of loss landscape
(Hochreiter and Schmidhuber, 1997; Xie et al., 2021b), while neural fields research largely lacks
generalization analysis. We leave theoretical interpretations as future work.

Limitations The main limitation is that NFC can often remarkably improve generalization, only
when poor generalization indeed exist. However, when tasks are simple or neural fields have strong
view generalization, the improvements become limited or even negligible (see appendix).

5 CONCLUSION

In this work, we visited a very fundamental but overlooked topic for neural field methods: regression
versus classification. Then we design a NFC framework which can formulate existing neural field
methods as classification models rather than regression models. Our extensive experiments support
that Target Encoding and classification loss can significantly improve the performance of most
existing neural field methods in novel view synthesis and geometry reconstruction. Moreover, the
improvement of NFC is robust to sparse inputs, image noise, and dynamic scenes. While our work
mainly focuses on 3D vision and reconstruction, we believe NRC is a general neural field framework.
We believe it will be very promising to explore and enhance the generalization of neural fields.
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A EXPERIMENTAL SETTINGS AND DETAILS

In this section, we present the experimental settings and details for reproducing the results. The main
principle of our experimental setting is to fairly compare NFC and NFR for NeRF and the variants.
Our experimental settings follows original papers to produce the baselines, unless we specify them
otherwise.

Classification Loss Setting We fine-tune the classification loss weight λ from {1, 2, 5, 10} for the
NeRF family and {1, 2, 5, 10, 20, 50, 100} for the NeuS family.

A.1 MODELS AND OPTIMIZATION

DVGO Setting We employ the sourcecode of DVGO (Version 2) in the original project (Sun et al.,
2022) without modifying training hyperparameters. So we train DVGO via Adam (Kingma and Ba,
2015) with the batch size B = 4096. The learning rate of density voxel grids and color/feature voxel
grids is 0.1, and the learning rate of the RGB net (MLP) is 0.001. The total number of iterations is
30000. We multiply the learning rate by 0.1 per 1000 iterations.

NeRF Setting We employ a popular open-source implementation (Yen-Chen, 2020) of the original
NeRF. Again, we follow its defaulted training setting. The learning rate is 0.0005, and the learning
rate scheduler is 0.1iters/500000.

D-NeRF Setting We directly employ the sourcecode of D-NeRF in the original project (Pumarola
et al., 2021). The learning rate is 0.0005. The total number of iterations is 800k. The learning rate
decay follows the original paper.

NeuS Setting We employ the NeuS implementation of SDFStudio (Yu et al., 2022) and follow its
default hyperparameters. The difference of the hyperparameters between SDFStudio and the original
paper (Wang et al., 2021) is that SDFStudio trains 100k iterations, while the original paper trains
300k iterations.

Strivec Setting We directly employ the sourcecode of Strivec in the original project (Gao et al., 2023)
and follow its original training setting on the classical Chair scene.

4DGS Setting We directly employ the sourcecode of 4DGS (Wu et al., 2023) and follow its original
training setting on the classical Mutant scene. As the target encoding is relatively expensive for
Gaussian Splatting, we use NFC-4DGS without target encoding as our method.

A.2 DATASETS

Replica Dataset Replica Dataset has no splitted training dataset and test dataset. In the experiments
on Replica, if one image index is divisible by 10, we move the image to the test dataset; if not, we
move the image to the training dataset. Thus, we have 90% images for training and 10% images for
evaluation.

T&T Dataset Advanced T&T Dataset Advanced has no splitted training data and test data. We
follow the original splitted way in the standard setting. In the experiments on T&T Dataset Advanced,
if one image index is divisible by 10, we move the image to the test T&T Dataset Advanced; if not,
we move the image to the training dataset. Similarly, we again have 90% images for training and
10% images for evaluation.

T&T Dataset Intermediate T&T Dataset Intermediate has splitted training data and test data. We
follow the original splitted way in the standard setting. In the experiments of sparse inputs, we
randomly remove the training images. In the experiments of corrupted images, we inject Gaussian
noise with the scale std into color values of the training images, and clip the corrupted color values
into [0, 1].

Dynamic Scenes: LEGO, Hook, and Mutant The three dynamics scenes are used in the original
D-NeRF paper. We use them in the same way without any modification.

Chair Scene from NeRF Synthetic We also use the classical Chair scene for evaluating NFC and
NFR with Strivec (Gao et al., 2023). Since the standard Chair scene is a quite simple benchmark, we
only use 20% training images of Chair to obtain a more challenging benchmark in our experiment.
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Ground Truth Regression Classification(Ours)

Figure 8: Qualitative comparisons of Strivec-C and Strivec-R for the classical Chair scene.

B SUPPLEMENTARY EMPIRICAL ANALYSIS AND DISCUSSION

In this section, we present supplementary experimental results.

We present the quantitative results of DVGO, NeRF, and NeuS on each T&T scenes in Tables 9, 10,
and 11, respectively.

We present the quantitative results and qualitative results of Trivec over the Chair scene in Table 12
and Figure 8, respectively. We present the qualitative results of 4DGS (Wu et al., 2023) in Figure
9. NFC also improves the performance of Trivec and 4DGS but not that significantly. Perhaps, it is
because Trivec and 4DGS can generalize well enough for common scenes. We conjecture that the
improvement of NFC is relatively significant for those challenging settings.

Table 9: Quantitative results of DVGO methods on T&T.

Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1 Regression 21.80 0.759 0.243
Classification 22.04 0.787 0.192

Scene 2 Regression 23.96 0.847 0.250
Classification 25.32 0.875 0.178

Scene 3 Regression 18.64 0.697 0.272
Classification 19.93 0.758 0.197

Scene 4 Regression 25.27 0.800 0.179
Classification 25.43 0.820 0.146

Mean Regression 22.41 0.776 0.236
Classification 23.18 0.810 0.178

Sparse inputs We plot the curves of PSNR, SSIM, and LPIPS with respect to the training data size
to compare NFC and NFR in Figure 10.

Robustness to corrupted images We plot the curves of PSNR, SSIM, and LPIPS with respect to the
image noise scale std to compare NFC and NFR in Figure 11.

Table 10: Quantitative results of (vanilla) NeRF on T&T.

Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1 Regression 22.20 0.682 0.349
Classification 22.24 0.691 0.342

Scene 2 Regression 23.97 0.799 0.374
Classification 25.01 0.835 0.289

Scene 3 Regression 18.63 0.548 0.513
Classification 19.36 0.628 0.369

Scene 4 Regression 23.87 0.688 0.293
Classification 24.12 0.713 0.262

Mean Regression 22.17 0.679 0.382
Classification 22.68 0.717 0.315
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Table 11: Quantitative results of NeuS on T&T.

Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1 Regression 20.73 0.636 0.393
Classification 21.31 0.682 0.310

Scene 2 Regression 21.26 0.739 0.434
Classification 22.70 0.794 0.290

Scene 3 Regression 17.58 0.551 0.428
Classification 19.08 0.601 0.345

Scene 4 Regression 20.32 0.554 0.398
Classification 22.59 0.640 0.322

Mean Regression 19.97 0.620 0.413
Classification 21.67 0.679 0.317

Table 12: Quantitative results of Strivec on the Chair scene.

Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓) Training Time(hours) Rendering Time(seconds)

Chair Regression 28.53 0.944 0.0672 1.16 4.38
Classification 32.10 0.969 0.0217 1.23 4.59

Ablation study over more scenes We present the ablation study of DVGO over all 8 Replica scenes
in Tables 13. The results show that the classification loss plays a dominant role in the proposed NFC,
while the Target Encoding module is still often helpful is most scenes (75%) and lead to expected
performance improvements.

Generalization We are surprised by the observation in Figure 7 that the generalization gap becomes
the main challenge of neural fields in these experiments. Even if neural field models can fit training
data very well, they may fail unexpectedly sometimes. According to existing theoretical knowledge in
deep learning, this indicates that loss landscape of neural field models has a lot of sharp minima that
generalize poorly. This pitfall is possibly mitigated by multiple ways that help selecting flat minima.
While this work focuses on reshaping loss landscape, our previous theoretical studies (Xie et al.,
2021c; 2022b; 2023a) also explore how to find flatter minima with advanced training algorithms only.
They are designed for general neural networks and likely also work well for neural fields. We tend
to believe these studies may also shed lights on future directions of theoretically understanding and
principally improving (generalization of) neural fields in a plug-and-play way without modifying the
model architectures.
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Ground Truth Regression (Standard) Classification (Ours)

Figure 9: Qualitative comparison of 4DGS-C and 4DGS-R for the dynamic Mutant scene. LIPIS:
0.0167 → 0.009.
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Figure 10: We plot the curves of PSNR, SSIM, and LPIPS with respect to the training data size,
namely the portion of training samples kept from the original training dataset. The improvement
of NFC is even more significant when the training data size decreases. Model: DVGO. Dataset:
T&T-Truck.
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Figure 11: We plot the curves of PSNR, SSIM, and LPIPS with respect to the image noise scale std.
The improvement of NFC is more significant when training image is corrupted by random noise.
Model: DVGO. Dataset: T&T-Truck.
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Table 13: Ablation study. Model: DVGO. Dataset: Replica 8 scenes.
Scene Mode PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
NFR (Standard) 13.03 0.508 0.726

NFC w/o Target Encoding 32.52 0.929 0.0718
NFC (Ours) 34.63 0.934 0.0582

Scene 2
NFR (Standard) 14.81 0.654 0.640

NFC w/o Target Encoding 33.92 0.951 0.0615
NFC (Ours) 33.82 0.942 0.0660

Scene 3
NFR (Standard) 15.66 0.661 0.634

NFC w/o Target Encoding 28.69 0.954 0.0715
NFC (Ours) 34.04 0.965 0.0451

Scene 4
NFR (Standard) 18.17 0.696 0.546

NFC w/o Target Encoding 37.35 0.976 0.0329
NFC (Ours) 36.52 0.977 0.0311

Scene 5
NFR (Standard) 15.17 0.640 0.504

NFC w/o Target Encoding 35.86 0.970 0.0595
NFC (Ours) 35.93 0.974 0.0576

Scene 6
NFR (Standard) 21.33 0.854 0.254

NFC w/o Target Encoding 27.99 0.935 0.110
NFC (Ours) 29.75 0.941 0.0994

Scene 7
NFR (Standard) 22.54 0.865 0.231

NFC w/o Target Encoding 27.66 0.903 0.153
NFC (Ours) 34.77 0.966 0.0432

Scene 8
NFR (Standard) 15.89 0.724 0.519

NFC w/o Target Encoding 36.11 0.967 0.0638
NFC (Ours) 33.40 0.952 0.0775

Mean
NFR (Standard) 17.08 0.700 0.507

NFC w/o Target Encoding 32.49 0.949 0.0676
NFC (Ours) 34.11 0.956 0.0598
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