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Table 5: Main notations and their descriptions.
Notation Description

• Spaces and Labels

R̄ = {[xl, xr]|xl, xr ∈ R, xl ≤ xr} the set of all real-valued intervals

R̄p = {([xl
1, x

r
1], · · · , [xl

p, x
r
p])

⊤} the set of all p-dimension interval-valued vector

X̄ ⊂ R̄p input (feature) space of LIND problem

Xv ⊂ Rp, v ∈ [c] single-view input (feature) space

X = X1 × · · · × Xc ⊂ Rp × · · · × Rp multi-view input (feature) space

Y output (label) space

[K] = {1, · · · ,K} 1, · · · ,K represent the labels in Y
• Distributions

X̄ = [X l, Xr] interval-valued random variable

X̄ = (X̄1, · · · , X̄p)
⊤ interval-valued random vector

Xl = (X l
1, · · · , X l

p)
⊤, real-valued random vector

Xr = (Xr
1, · · · , Xr

p)
⊤

Dl,Dr distribution of real-valued random vector Xl,Xr

D̄ interval distribution over X̄
D multi-view distribution over X
S̄X̄ = {x̄i = (x̄i1, · · · , x̄ip)

⊤}mi=1 a sample drawn i.i.d. from X̄
SXv = {xv

i = (xv
i1, · · · , xv

ip)
⊤}mi=1 the single-view sample drawn i.i.d. from Xv

SX = {Xi = (x1
i , · · · ,xc

i )}mi=1 the multi-view sample drawn i.i.d. from X
• Loss Function ad Function Spaces

ℓ(·, ·) loss : RK × Y → R+

H hypothesis space of the LIND problem

Hv hypothesis space of v-th view, v = 1, · · · , c
Hco multi-view hypothesis space

fv predict function of hv ∈ Hv , v = 1, · · · , c
fco predict function of hco ∈ Hco

• Risks and Complexities

RD̄(h) risk of h ∈ H
RD(hco) risk of hco ∈ Hco

R̂S̄X̄
(H) empirical Rademacher complexity of H with respect to the sam-

ple S̄X̄

RS̄X̄
(H) Rademacher complexity of H̄ with respect to the sample S̄X̄

RSXv (Hv) Rademacher complexity of Hv with respect to the sample SXv

RSX (Hco) Rademacher complexity of Hco with respect to the sample SX

A NOTATIONS

In this section, we summarize important notations in Table 5.

To prove Theorem 2, 3 and Corollary 1, for any hv ∈ Hv , we let

hv(x
v
i ) : Xv → RK

xv
i → (hv1(x

v
i ), · · · , hvK(xv

i ))
⊤.
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Without loss of generality, we suppose that
K∑

k=1

hvk(x
v
i ) = 1 and the predict function fv of hv is

defined as

fv(x
v
i ) = argmax1≤k≤K hvk(x

v
i ).

Then, for any hco ∈ Hco, we let

hco(Xi) : X → RK

Xi = (x1
i , · · · ,xc

i ) → (h1
co(Xi), · · · , hK

co(Xi))
⊤,

where hq
co(Xi) =

c∑
v=1

wq
v
⊤hv(x

v
i ),w

q
v = (wq

v1, · · · , w
q
vK)⊤ and without loss of generality, we

suppose
K∑
q=1

hq
co(Xi) = 1. Therefore, we have suphco∈Hco

∥ hco ∥∞ ≤ 1. The predict function fco

of hco is defined as

fco(Xi) = argmax1≤q≤K hq
co(Xi).

B PROOFS

In this appendix, we prove Theorem 1, 2, 3 and Corollary 1 in Section 3.2. To prove Theorem 1, we
first give some related definitions and prove the Azuma’s Inequality and McDiarmid’s Inequality of
interval-valued random variables.
Definition 3 (Interval Probability Density Function). Suppose X l, Xr are two real-valued random
variables and have the same continuous pdf pX(x). We define p̄X̄(x) as the interval pdf of interval-
valued random variable X̄ , where

p̄X̄(x) =

[
min

x∈[Xl,Xr]
pX(x), max

x∈[Xl,Xr]
pX(x)

]
.

Let X̄ = (X̄1, · · · , X̄p)
⊤ be a p-interval-valued random vector and the interval pdf of X̄j is

p̄X̄j
(x), j ∈ [p]. Then, we denote the joint interval pdf of X̄ as

p̄X̄(x) =

[
p∏

j=1

min
xj∈[Xl

j ,X
r
j ]
pXj (xj),

p∏
j=1

max
xj∈[Xl

j ,X
r
j ]
pXj (xj)

]
,x = (x1, · · · , xp)

⊤.

Definition 4 (Interval Probability Distribution). Let X̄ = (X̄1, · · · , X̄p)
⊤ be a p-interval-valued

random vector with the joint interval pdf p̄X̄(x). Let Xl = (X l
1, · · · , X l

p)
⊤,Xr = (Xr

1, · · · , Xr
p)

⊤

be two real-valued random vectors following probability distribution Dl,Dr. We define D̄ as the
interval probability distribution of X̄ (denoted as X̄ ∼ D̄), if

D̄(R̄p) =
∫̄
p̄X̄(x)dx = 1,

where
∫̄
p̄X̄(x)dx = 1

2

∫
dDl(x) + 1

2

∫
dDr(x). Therefore, X̄ ∼ D̄ if and only if Xl ∼ Dl and

Xr ∼ Dr. Then, we denote P(X̄ ∈ B̄) = D̄(B̄) as the probability of the event {X̄ ∈ B̄}, where
B̄ ∈ B̄ and B̄ is the Borel σ-algebra in R̄p (Jeffreys, 1998).
Definition 5. Let X̄ = (X̄1, · · · , X̄p)

⊤ be a p-interval-valued random vector with the joint interval
pdf p̄X̄(x) and Xl = (X l

1, · · · , X l
p)

⊤ ∼ Dl,Xr = (Xr
1, · · · , Xr

p)
⊤ ∼ Dr are two real-valued

random vectors. Then, the probability with respect to the function g : X̄ → R+ is defined as:

P(g(X̄) ≥ ε) =
1

2

∫
A

dDl(x) +
1

2

∫
B

dDr(x),

where A = {Xl ∈ Rp : g(X̄) ≥ ε},B = {Xr ∈ Rp : g(X̄) ≥ ε}.
Definition 6 (Independence). The interval-valued random vectors X̄1, · · · , X̄n are said to be (mu-
tually) independent if and only if the real-valued random vectors Xl

1, · · · ,Xl
n,X

r
1, · · · ,Xr

n are
(mutually) independent. Then, we denote X̄1, · · · , X̄n as i.i.d. interval-valued random vectors if
and only if X̄1, · · · , X̄n are independent and have the same interval probability distribution.
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Definition 7. The empirical Rademacher complexity of H with respect to S̄X̄ is defined as:

R̂S̄X̄
(H) = Eσ

[
sup
h∈H

1
m

m∑
i=1

K∑
k=1

σikhk(x̄i)

]
, (4)

where σ = [σik]m×K is a m × K matrix, with σiks independent random variables drawn from
the Rademacher distribution, i.e. P(σik = +1) = P(σik = −1) = 1

2 , i ∈ [m], k ∈ [K]. The
Rademacher complexity RS̄X̄

(H) is equal to the interval expectation of R̂S̄X̄
(H).

Definition 8. A sequence of V1, V2, · · · is a martingale difference sequence with respect to interval-
valued random variables X̄1, X̄2, · · · if for any i > 0, Vi is a real-value function of X̄1, · · · , X̄i and
ED̄[Vi+1|X̄1, · · · , X̄i] = 0.

Theorem 4 (Azuma’s Inequality of Interval-valued Random Variables). Let V1, V2, · · · be a mar-
tingale difference sequence with respect to the interval-valued random variables X̄1, X̄2, · · · and
assume that for any i > 0 there is a constant ci ≥ 0 and Zi, which is a real-value function of
X̄1, · · · , X̄i−1, satisfies

Zi ≤ Vi ≤ Zi + ci.

Then for any ε > 0 and m ∈ N+, the following inequalities hold:

P
[

m∑
i=1

Vi ≥ ε

]
≤ exp −2ε2

m∑
i=1

c2i

,

P
[

m∑
i=1

Vi ≤ −ε

]
≤ exp −2ε2

m∑
i=1

c2i

.
(5)

Proof. Suppose X̄ = [X l, Xr] is an interval-valued random variable. According to Definition 5, we
have

P(g(X̄) ≥ ε) = 1
2

(∫
A
e−tg(X̄)etg(X̄)dDl(x) +

∫
B
e−tg(X̄)etg(X̄)dDr(x)

)
≤ e−tε 1

2

(∫
A
etg(X̄)dDl(x) +

∫
B
etg(X̄)dDr(x)

)
≤ e−tεED̄[e

tg(X̄)].

By the convexity of x → ex, for any x ∈ [a, b], the following holds:

etx ≤ b−x
b−ae

ta + x−a
b−a e

tb.

Thus, using ED̄[Vi+1|X̄1, · · · , X̄i] = 0, then

ED̄[e
tVi+1 |X̄1, · · · , X̄i] ≤ ED̄

[
Zi+1+ci+1−Vi+1

ci+1
etZi+1 + Vi+1−Zi+1

ci+1
et(Zi+1+ci+1)|X̄1, · · · , X̄i

]
= Zi+1+ci+1

ci+1
etZi+1 + −Zi+1

ci+1
et(Zi+1+ci+1) ≤ et

2c2i+1/8.

Let Sk =
k∑

i=1

Vi. Then, for any t > 0, we can write

P[Sm ≥ ε] ≤ e−tεED̄[e
tSm ]

= e−tεED̄[e
tSm−1ED̄[e

tVm |X̄1, X̄2, · · · , X̄m−1]]

≤ e−tεED̄[e
tSm−1 ]et

2c2m/8(iterating previous argument)

≤ e−tεe
t2

m∑
i=1

c2i /8
(let t = 4ε/

m∑
i=1

c2i ) = e

−2ε2

m∑
i=1

c2
i ,

the second statement is shown in a similar way.

Theorem 5 (McDiarmid’s Inequality of Interval-valued Random Variables). Let X̄1, · · · , X̄m ∈
X̄ ⊂ R̄p be a set of m ≥ 1 interval-valued random vectors and assume that there exist
c1, c2, · · · , cm > 0 such that f : X̄m → R satisfies the following conditions:

|f(X̄1, · · · , X̄i, · · · , X̄m)− f(X̄1, · · · , X̄
′

i, · · · , X̄m)| ≤ ci,
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for any i ∈ [m] and any points X̄1, · · · , X̄i, · · · , X̄m, X̄
′

i ∈ X̄ . Let f(S̄) denote f(X̄1, · · · , X̄m),
then, for any ε > 0, the following inequalities hold:

P[f(S̄)− ES̄ [f(S̄)] ≥ ε] ≤ exp −2ε2
m∑

i=1
c2i

,

P[f(S̄)− ES̄ [f(S̄)] ≤ −ε] ≤ exp −2ε2
m∑

i=1
c2i

.
(6)

Proof. Define a sequence of random variables Vk, k ∈ [m], as follows:

V = f(S̄)− ES̄ [f(S̄)],
V1 = ES̄ [V |X̄1]− ES̄ [V ],
Vk = ES̄ [V |X̄1, · · · , X̄k]− ES̄ [V |X̄1, · · · , X̄k−1].

Note that V =
m∑
i=1

Vi. Furthermore, the interval-valued random vector ES̄ [V |X̄1, · · · , X̄k] is a

function of X̄1, · · · , X̄k, therefore:

ES̄ [ES̄ [V |X̄1, · · · , X̄k]|X̄1, · · · , X̄k−1] = ES̄ [V |X̄1, · · · , X̄k−1],

which implies ES̄ [Vk|X̄1, · · · , X̄k−1] = 0. Thus, the sequence (Vk), k ∈ [m] is a martingale
difference sequence. Next, observe that, since ES̄ [f(S̄)] is a scalar, Vk can be expressed as follows:

Vk = ES̄ [f(S̄)|X̄1, · · · , X̄k]− ES̄ [f(S̄)|X̄1, · · · , X̄k−1].

Thus, we can define an upper bound Wk and lower bound Uk for Vk by:

Wk = sup
X̄

ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄]− ES̄ [f(S̄)|X̄1, · · · , X̄k],

Uk = inf
X̄′

ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄
′
]− ES̄ [f(S̄)|X̄1, · · · , X̄k],

Wk − Uk = sup
X̄,X̄′

{ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄]− ES̄ [f(S̄)|X̄1, · · · , X̄k, X̄
′
]}

≤ 1
2 sup
X̄,X̄′

{E(Dl)m−k [|f(S̄1)− f(S̄2)|] + E(Dr)m−k [|f(S̄1)− f(S̄2)|]}

≤ ck,

where S̄1 = (X̄1, · · · , X̄k, X̄, X̄k+1, · · · , X̄m), S̄1 = (X̄1, · · · , X̄k, X̄
′
, X̄k+1, · · · , X̄m). Thus,

Uk ≤ Vk ≤ Wk ≤ Uk+ck. In the view of these inequalities, we can apply Theorem 4 to V =
m∑
i=1

Vi,

which yields the result.

B.1 PROOF OF THEOREM 1

For any sample S̄ = {z̄i = (x̄i, yi)}mi=1 ∼ D̄m and any ℓ ∈ LH, we denote

Φ(S̄) = sup
ℓ∈LH

{ED̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i)} = sup
ℓ∈LH

{ED̄[ℓ(z̄)]− ÊS̄ [ℓ(z̄)]}.

Let S̄ and S̄
′

be two samples differing by exactly one point, say z̄m in S̄ and z̄
′

m in S̄
′
. Then, since

the difference of suprema does not exceed the supremum of the difference, we have

Φ(S̄
′
)− Φ(S̄) ≤ sup

ℓ∈LH

{ÊS̄ [ℓ(z̄)]− ÊS̄′ [ℓ(z̄)]} ≤ sup
ℓ∈LH

ℓ(z̄m)−ℓ(z̄
′
m)

m ≤ Cℓ

m .

Similarly, we can obtain Φ(S̄) − Φ(S̄
′
) ≤ Cℓ

m , thus |Φ(S̄′
) − Φ(S̄)| ≤ Cℓ

m . Based on Definition 2,
Φ(S̄) is a function of random variables Xl

i and Xr
i and we have

ES̄′{ÊS̄′ [ℓ(z̄
′
)]} = 1

2{EDl [ 1m

m∑
i=1

ℓ(z̄
′

i)] + EDr [ 1m

m∑
i=1

ℓ(z̄
′

i)]}

= 1
2{

1
m

m∑
i=1

EDl [ℓ(z̄
′

i)] +
1
m

m∑
i=1

EDr [ℓ(z̄
′

i)]}

= 1
2{EDl [ℓ(z̄)] + EDr [ℓ(z̄)]} = ES̄′ [ℓ(z̄)].
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Then, by Theorem 5, for any δ > 0, with probability at least 1− δ/2, the following holds:

Φ(S̄) ≤ ES̄ [Φ(S̄)] + Cℓ

√
log(2/δ)

2m ,

ES̄ [Φ(S̄)] = ES̄ [ sup
ℓ∈LH

{ES̄′ [ℓ(z̄)]− ÊS̄ [ℓ(z̄)]}] = ES̄ [ sup
ℓ∈LH

ES̄′{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]}].

Because

sup
ℓ∈LH

ES̄′{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]}

= sup
ℓ∈LH

1
2{E(Dl)m [ÊS̄′ [ℓ(z̄

′
)]− ÊS̄ [ℓ(z̄)]] + E(Dr)m [ÊS̄′ [ℓ(z̄

′
)]− ÊS̄ [ℓ(z̄)]]}

≤ 1
2 sup
ℓ∈LH

{E(Dl)m [ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]] + E(Dr)m [ÊS̄′ [ℓ(z̄

′
)]− ÊS̄ [ℓ(z̄)]]}

≤ 1
2{E(Dl)m sup

ℓ∈LH

[ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]] + E(Dr)m sup

ℓ∈LH

[ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]]}

= ES̄′ sup
ℓ∈LH

{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]}.

Then, we have

ES̄ [Φ(S̄)] ≤ ES̄,S̄′ sup
ℓ∈LH

{ÊS̄′ [ℓ(z̄
′
)]− ÊS̄ [ℓ(z̄)]} = ES̄,S̄′ sup

ℓ∈LH

{ 1
m

m∑
i=1

[ℓ(z̄
′

i)− ℓ(z̄i)]}.

We introduce Rademacher variables σis, that are uniformly distributed independent random vari-
ables taking values in {−1,+1},

ES̄ [Φ(S̄)] ≤ ES̄,S̄′Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

[σiℓ(z̄
′

i)− ℓ(z̄i)]}(sup(U + V ) ≤ supU + supV )

≤ ES̄′Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

σiℓ(z̄
′

i)}+ ES̄Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

−σiℓ(z̄i)}.

Because the definition of Rademacher complexity and the fact that the variables σi and −σi are
distributed in the same way, then

ES̄ [Φ(S̄)] ≤ 2ES̄Eσ sup
ℓ∈LH

{ 1
m

m∑
i=1

σiℓ(z̄i)} = 2RS̄(LH).

Then using δ instead of δ/2, with probability 1− δ, the following holds :

Φ(S̄) ≤ 2RS̄(LH) + Cℓ

√
log(1/δ)

2m

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≤ 2RS̄(LH) + Cℓ

√
log(1/δ)

2m .
(7)

We observe that changing one point in S̄ changes R̂S̄(LH) by at most Cℓ/m. Then, again using
Theorem 5, with probability 1− δ/2 the following holds:

RS̄(LH) ≤ R̂S̄(LH) + Cℓ

√
log(2/δ)

2m .

Then with probability at least 1− δ:

Φ(S̄) ≤ 2R̂S̄(LH) + 3Cℓ

√
log(1/δ)

2m

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≤ 2R̂S̄(LH) + 3Cℓ

√
log(1/δ)

2m .
(8)

Next we let,

Ψ(S̄) = inf
ℓ∈LH

{Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i)} = − sup
ℓ∈LH

{−Ez̄∼D̄[ℓ(z̄)] + ÊS̄ [ℓ(z̄)]}.
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In the same way, with probability at least 1− δ the following holds:

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≥ −2RS̄(LH)− Cℓ

√
log(1/δ)

2m

Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i) ≥ −2R̂S̄(LH)− 3Cℓ

√
log(2/δ)

2m .
(9)

Since ℓ is Lipschitz continuous, according to Maurer (2016), we have

R̂S̄(LH) ≤
√
2LℓR̂S̄X̄

(H). (10)

Following from Eqs. (7), (8), (9) and for any δ > 0, with probability at least 1 − δ, each of the
following holds for all ℓ ∈ LH:

|Ez̄∼D̄[ℓ(z̄)]− 1
m

m∑
i=1

ℓ(z̄i)| ≤ 2R̂S̄(LH) + 3Cℓ

√
log(2/δ)

2m . (11)

Using RD̄(h) = ED̄[ℓ(h(X̄), y)] and Eqs. (10) and (11), we have for any δ > 0, with probability at
least 1− δ, each of the following holds for all ℓ ∈ LH̄:

|RD̄(h)− R̂D̄(h)| ≤ 2
√
2LℓR̂S̄X̄

(H) + 3Cℓ

√
log(2/δ)

2m .

B.2 PROOF OF THEOREM 2

Let X = (x1, · · · ,xc) ∈ X . Without loss of generality, we suppose err(f1) ≤ · · · ≤ err(fc). First,
we consider the case where c = 2. Then, we provide an upper bound on the error rate of fco.

err(fco) = PD(fco(X) ̸= y)
= P(fco(X) ̸= y|X ∈ DC

F (f1, f2)) + P(fco(X) ̸= y|X ∈ DF (f1, f2))
≤ 1

2 [err(f1) + err(f2)− PD(X ∈ DF (f1, f2))] + P(fco(X) ̸= y|X ∈ DF (f1, f2)),
(12)

where DC
F (f1, f2) is denoted as the complement set of DF (f1, f2). According to Eq. (12) and

err(f1) ≤ err(f2), if

P(fco(X) ̸= y|X ∈ DF (f1, f2)) ≤ 1
2 [err(f1)− err(f2) + PD(X ∈ DF (f1, f2))],

we have err(fco) ≤ err(f1). Next, we consider the case where c > 2. For c > 2, we have
hco ∈ Hco,

hq
co(X) =

k+1∑
v=1

wq
v
⊤hv(x

v) = wq
1
⊤
h1(x

1) +
c∑

v=2
wq

v
⊤hv(x

v).

So exists αq ∈ R+, such that
K∑
q=1

αq

c∑
v=2

wq
v
⊤hv(x

v) = 1, then exists

hc−1
co ∈ Hc−1

co (x2, · · · ,xc), where hc−1,q
co = αq

c∑
v=2

wq
v
⊤hv(x

v).

We combine the last c− 1 views i.e., X
′
= (x2, · · · ,xc),X = (x1,X

′
). So exists

hc−1
co ∈ Hc−1

co (x2, · · · ,xc) ⊂ H(X
′
), such that hq

co(X) = wq
1
⊤
h1(x

1) + 1
αq

hc−1,q
co (X

′
).

Therefore we have hco ∈ Hco(x
1,X

′
). Let f c−1

co (X) = argmax1≤q≤K hc−1,q
co (X) denoted as the

predict function of hc−1
co . Because the conclusion is true when c = 2, so exists M ∈ (0, 1), such

that
if P(fco(X) ̸= y|X ∈ DF (f1, f

c−1
co )) ≤ M,we have err(fco) ≤ err(f1).

Because DF (f1, f
c−1
co ) ⊂ DF (f1, · · · , fc), so

P(fco(X) ̸= y|X ∈ DF (f1, f
c−1
co )) ≤ P(fco(X) ̸= y|X ∈ DF (f1, · · · , fc)).

Therefore, the conclusion is true when c > 2 which yields the result.
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B.3 PROOF OF COROLLARY 1

According to Theorem 3.1, 3.2 in Mohri et al. (2012) and Theorem 2 in Maurer (2016), we have

|RD(hco)− R̂D(hco)| ≤ 2
√
2LcoRSX

(Hco) + C
′

ℓ

√
log(1/δ)

2m . (13)

Next, let

W =
(
w1

1
⊤
, · · · ,w1

c
⊤
, · · · ,wK

1
⊤
, · · · ,wK

c
⊤
)⊤

,

H =

(
m∑
i=1

σi1h1(x
1
i )

⊤, · · · ,
m∑
i=1

σi1hc(x
c
i )

⊤, · · · ,
m∑
i=1

σiKh1(x
1
i )

⊤, · · · ,
m∑
i=1

σiKhc(x
c
i )

⊤
)⊤

.

Then, we have

RSX
(Hco) = 1

mED,σ[ sup
hco∈Hco

m∑
i=1

K∑
q=1

σiqh
q
co(Xi)]

= 1
mED,σ[ sup

hj∈Hv,||W||2≤Λ

m∑
i=1

K∑
q=1

σiq

c∑
v=1

wq
v
⊤hv(x

v
i )]

= 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

⟨W,H⟩]

≤ 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

||W||2||H||2](using Cauchy-Schwarz inequality)

≤ Λ
mED,σ[ sup

hv∈Hv

[
c∑

v=1

K∑
q=1

||
m∑
i=1

σiqhv(x
v
i )||22]

1
2 ]

(using Jensen’s inequality and i ̸= j ⇒ Eσ⃗[σipσjp] = 0)

≤ Λ
m

[
ED[ sup

hj∈Hj

K
m∑
i=1

c∑
v=1

||hv(x
v
i )||22]

] 1
2

≤ Λ
m

√
Kcm =

√
KcΛ2

m .

Then, we yield the final result

|RD(hco)− R̂D(hco)| ≤ 2Lco

√
2KcΛ2

m + C
′

ℓ

√
log(1/δ)

2m . (14)

B.4 PROOF OF THEOREM 3

Because
K∑
q=1

c∑
v=1

K∑
k=1

wq
vkhvk(x

v
i ) = 1 and for any v ∈ [c], k ∈ [K], 0 ≤ hvk(x

v
i ) ≤ 1, so

K∑
q=1

c∑
v=1

K∑
k=1

wq
vk ≤ 1. Then,

RSX
(Hco) = 1

mED,σ[ sup
hco∈Hco

m∑
i=1

K∑
q=1

σiqh
q
co(Xi)]

= 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

m∑
i=1

K∑
q=1

σiq

c∑
v=1

wq
v
⊤hv(x

v
i )]

= 1
mED,σ[ sup

hv∈Hv,||W||2≤Λ

c∑
v=1

K∑
q=1

K∑
k=1

wq
vk

m∑
i=1

σiqhvk(x
v
i )]

≤ 1
mED,σ[ sup

hv∈Hv

max
v∈[c],q∈[K]

m∑
i=1

K∑
k=1

σikhvk(x
v
i )]

≤ max
v∈[c]

RSXv (Hv)

= min
v∈[c]

RSXv (Hv) + max
v∈[c]

RSXv (Hv)− min
v∈[c]

RSXv (Hv)
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C MEMBERSHIP FUNCTION-BASED METHOD

In this section, we give further details of the membership function-based method to extract multi-
view information from interval-valued data.

First, we introduce two types of fuzzy number and four different defuzzification methods used to
construct the membership function-based method. The first type of fuzzy number called triangular
fuzzy number. A triangular fuzzy number x̃ can be characterized by Tr(a1, b1, a2) and the member-
ship function is shown as follows:

µx̃(t) =



0, t < a1
t− a1
b1 − a1

, a1 ≤ t < b1

t− a2
b1 − a2

, b1 ≤ t < a2

0, t ≥ a2.

Gaussian fuzzy number is the second type of fuzzy number. A Gaussian fuzzy number x̃ can be
characterized by Ga(c, δ1, δ2) and the membership function is given in the following equation:

µx̃(t) =

{
exp(−(t− c)/2δ1)

2, t < c

exp(−(t− c)/2δ2)
2, t ≥ c.

Next, we introduce the four different defuzzification methods.

MOM. The first method is called Mean/Middle of Maxima (MOM) (Oussalah, 2002) which is
widely-used due to its calculation simplicity. MOM is defined as:

MOM(x̃) = Mean(t = argmaxt µx̃(t)). (15)
COG. The Centre of Gravity (COG) (Oussalah, 2002) is another widely-used defuzzification
method. The definitions of COG for discrete and continuous membership functions are shown as
follows:

COG(x̃) =

∑
tµx̃(t)∑
µx̃(t)

(discrete) =
∫
tµx̃(t)dt∫
µx̃(t)dt

(continuous). (16)

ALC. The third approach, called averaging level cuts (ALC) (Oussalah, 2002), is defined as the flat
averaging of all midpoints of the α-cuts.

ALC(x̃) = 1
2

∫ 1

0
(x̃L

α + x̃U
α )dα. (17)

VAL. The final method is called value of a fuzzy number (VAL) (Delgado et al., 1998) which uses
α-levels as weighting factors in averaging the α-cut midpoints. VAL is defined as :

VAL(x̃) =
∫ 1

0
α(x̃L

α + x̃U
α )dα. (18)

We denote D = {(x̄i, yi)}mi=1 as the interval-valued dataset, where x̄i = (x̄i1, · · · , x̄ip)
⊤ ∈

R̄p, yi ∈ [K]. Then, the construction process of the membership function-based method is intro-
duced. We divide this method into two parts. In the first part, we use two functions F1(·;β), F2(·;β)
to transfer a interval-valued feature to a triangular fuzzy number and a Gaussian fuzzy number re-
spectively. F1(·;β), F2(·;β) are defined as:

F1(x̄ij ;β) = Tr(xl
ij , βx

l
ij + (1− β)xr

ij , x
r
ij),

F2(x̄ij ;β) = Ga(βxl
ij + (1− β)xr

ij , S1j , S2j),

S1j =
√
Var(Aj), S2j =

√
Var(Bj),

Aj = {xl
ij : i ∈ [m], (x̄i, yi) ∈ D}, Bj = {xr

ij : i ∈ [m], (x̄i, yi) ∈ D}, j ∈ [p],

where β ∈ [0, 1] is a hyperparameter to control the shape of the membership function, Var(·) is
used to find the variance of the set. Using the above process, one interval-valued feature x̄i can be
transferred into two fuzzy-valued features x̃1

i = (x̃1
i1, · · · , x̃1

ip)
⊤ and x̃2

i = (x̃2
i1, · · · , x̃2

ip)
⊤, where

x̃τ
i = Fτ (x̄i;β) = (Fτ (x̄i1;β), · · · , Fτ (x̄ip;β))

⊤, τ = 1, 2.

20



Under review as a conference paper at ICLR 2023

Table 6: Hyperparameters for the proposed method and four baselines
Algorithm Basic classifier Hyperparameters Ranges

DF-SVM regularization parameter, kernel type,
shape parameter β

{0.1, 0.2, · · · , 1, 2, · · · , 10}, {‘linear’,
‘poly’, ‘rbf’}, {0, 0.1, · · · , 1}

DF-MLP learning rate, shape parameter β {0.001, 0.01, 0.1}, {0, 0.1, · · · , 1}

Mv-IIE-2, Mv-IIE-3 SVM regularization parameter, kernel type {0.1, 0.2, · · · , 1, 2, · · · , 10}, {‘linear’,
‘poly’, ‘rbf’}

RF min samples leaf, the number of trees {1, · · · , 10}, {5, 10, · · · , 100}

Net learning rate {0.001, 0.01, 0.1}

Mv-IIE same above same above, shape parameter β same above, {0, 0.1, · · · , 1}

In the second part, we use the four defuzzification methods to transfer the two fuzzy-valued features
x̃1
i , x̃

2
i into eight crisp-valued features

MOM ◦ Fτ (x̄i;β),COG ◦ Fτ (x̄i;β),ALC ◦ Fτ (x̄i;β),VAL ◦ Fτ (x̄i;β), τ = 1, 2.

According to Eq. (15), we find that MOM ◦ Fτ (x̄i;β) = MOM ◦ F2(x̄i;β). Therefore, we
can use the aforementioned membership function-based method to extract multi-view information,
which contains seven parts: MOM ◦ F1(x̄i;β) and COG ◦ Fτ (x̄i;β),ALC ◦ Fτ (x̄i;β),VAL ◦
Fτ (x̄i;β), τ = 1, 2. We denote T = {Tv(·;β)}7v=1 as a set of transfer functions constructed by
using the membership function-based method, where

T1 = MOM ◦ F1,T2 = COG ◦ F1,T3 = COG ◦ F2,T4 = ALC ◦ F1,
T5 = ALC ◦ F2,T6 = VAL ◦ F1,T7 = VAL ◦ F2.

By applying the aforementioned transfer functions to extract crisp-valued information from the
interval-valued data, one interval-valued feature x̄i can be transferred into seven different parts
XMv

i = (x1
i , · · · ,x7

i ), where for any i ∈ [m], v ∈ [7],xv
i = Tv(x̄i;β),Tv ∈ T .

D EXPERIMENTAL DETAILS

In this section, the experiment details of all the baselines and our approach on both synthetic and
real-world datasets are given. Moreover, the experiment details of the INPP framework are given.
We implement the model with PyTorch 1.9.0. All experiments are conducted on a NVIDIA Quadro
GV100 GPU with 32 GB memory.

Synthetic Datasets: For DF-MLP and Mv-IIE with basic classifier C3, Adam (Kingma & Ba,
2015) is used as the optimization algorithm with momentum = 0.9, weight decay = 0.0001, and
cross-entropy loss is used as the category label prediction loss. We set epochs equal to 200 and the
mini-batch size equal to 200 for all datasets. The network structure of the basic classifier C3 is a two-
layer network with ReLU and Dropout in all the layers (100× 100×#classes). For each algorithm
on each dataset, we randomly divide each dataset into a training set (60%), a validation set (20%)
and a test set (20%). First, we select the hyperparameters that can obtain the highest classification
accuracy on the validation set. The hyperparameters that need to be selected are shown in Table 6.
Then, the selected optimal hyperparameters are used to test the performance of each algorithm on
the test set. In addition, the validation set is also used to select the candidate views of our proposed
framework. We repeat the entire experiment process 10 times. Thus, the final results are shown in
the form of ”mean± standard deviation”. Classification accuracy is used to evaluate the performance
of the proposed model. The definition of classification accuracy is shown as follows:

Accuracy =
|x̄ ∈ X̄ : f(x̄) = argmink∈[1,K] hk(x̄)|

|x̄ ∈ X̄ |
,

where f(x̄) is the ground truth label of x̄, while h(x̄) = (h1(x̄), · · · , hK(x̄))⊤ is the label predicted
by the presented algorithms and the baselines.

Real-world Datasets: The experiment details of the proposed method and the four baselines are
basically the same as the synthetic datasets. We note that the mushroom dataset is an imbalanced
dataset which means that each category contains a different number of instances. Therefore, we
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Raw data: Interval-valued data:
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same method
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Figure 4: INPP framework: The input party (denoted in orange) applies two interval methods to transfer the
raw data into two interval-valued datasets. The computation party (denoted in blue) uses DEN to train Model
1 by applying Mv-IIE framework and DIN is used to fine-tune Model 1 to obtain Model 2. The results’ party
(denoted in green) uses Model 2 for new data prediction.

preprocess this dataset using a random oversampling technique (KMeansSMOTE (Last et al., 2017))
and use balanced accuracy (Brodersen et al., 2010) instead of ordinary classification accuracy to
compare model performance on the mushroom dataset. The definition of balanced accuracy is shown
as follows:

Balanced Accuracy = 1
K

K∑
k=1

(Recall of k-th class),

Recall = TP/(TP + FN),

where TP is true positive, TN is true negative, FP is false positive and FN is false negative. After the
process of the random oversampling technique, the data of each category in the mushroom dataset
is expanded to 30. In addition, the Wilcoxon rank-sum test results of the method, which obtains the
best performance, compared to the other methods are given on real-world datasets.

INPP Framework: The structure of INPP framework is shown in Figure 4. We randomly divide
the original dataset (letter recognition dataset) into a raw dataset from the data owner(s) (70%) and
a new dataset (30%) from the results’ party. We choose L = 6, T = 15 and set q = 0.20, 0.30, 0.50.
From Table 3, Mv-IIE with SVM-rbf (SVM with radial basis kernel function) achieve best outcomes
on the second synthetic dataset. Therefore, we use SVM-rbf as the basic classifier of Mv-IIE in this
experiment. The experimental details of Mv-IIE are the same as the aforementioned. The experiment
details of the four well-known machine learning methods on the original dataset are the same as the
experiment details of the four baselines on the synthetic datasets.

E DETAILS OF THE TWO REAL-WORLD DATASETS DESCRIPTIONS

In this section, we briefly introduce the two real-world datasets used in the experiments.

Mushroom Dataset : The first dataset is extracted from https://www.mykoweb.com/CAF/, which
contains 248 instances in 17 fungi species categories. There are five interval-valued variables: the
pileus cap width Pw, the stipe length Sl, the stipe thickness St, the spores major axis length Sma,
and the spores minor axis length Smi. Some instances of the mushroom dataset are shown in Table
1. The goal of our experiment on this dataset is to predict the species category of the California
mushroom using five interval-valued features.
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Table 7: Some Instances of the Weather Dataset
Local times T P0 P U Td Y

31/12/2021 [10.6, 13.3] [757.8, 760.3] [759.4, 762.1] [81, 93] [9.4, 11.1] 1

24/12/2021 [4.4, 12.2] [757.3, 762.1] [759.0, 763.6] [40, 61] [-5.0, 1.7] 0

23/12/2021 [-1.1, 5.0] [763.4, 768.2] [762.2, 769.9] [38, 55] [-10.0, 5.0] 0

22/12/2021 [2.8, 10.6] [752.5, 761.6] [754.0, 763.2] [34, 93] [-9.4, 2.2] 1

Table 8: Experiment results (accuracy±standard deviation of accuracies) of the ablation study on the synthetic
and real-world datasets. The bold value represents the highest accuracy in each column.

Algorithms Basic classifier First synthetic dataset Second synthetic dataset Mushroom dataset Weather dataset

view 1 C1 97.97%±0.80% 94.22% ±2.05% 76.81%±3.07% 96.94%±0.96%

C2 97.85%±0.92% 91.27%±2.31% 82.29%±5.26% 97.03%±0.68%

C3 98.12%±0.66% 92.21%±1.76% 77.56%±3.36% 96.80%±1.25%

view 2 C1 96.50%±0.56% 94.26% ±1.99% 76.66%±3.83% 97.12%±0.74%

C2 95.10%±1.10% 91.81%±1.87% 83.35%±5.06% 96.83%±0.97%

C3 96.47%±0.68% 92.45%±1.85% 79.62%±4.15% 96.83%±0.96%

view 3 C1 95.20%±0.56% 94.41% ±2.05% 76.55%±3.25% 97.01%±0.94%

C2 94.00%±0.81% 91.67%±2.28% 82.44%±4.65% 96.69%±0.99%

C3 94.30%±0.91% 91.52%±2.62% 79.62%±3.32% 96.78%±1.12%

view 4 C1 97.82%±0.61% 94.26% ±2.10% 76.67%±3.86% 97.12%±0.98%

C2 97.13%±1.04% 90.88%±2.98% 82.45%±5.26% 96.72%±1.20%

C3 97.62%±0.93% 92.21%±2.15% 79.39%±3.32% 96.76%±0.98%

view 5 C1 97.97%±0.80% 94.17% ±1.87% 75.07%±3.18% 96.96%±0.89%

C2 97.50%±0.78% 91.08%±2.49% 82.70%±4.88% 96.96%±0.69%

C3 98.12%±0.66% 90.49%±2.19% 71.38%±5.94% 96.42%±1.03%

view 6 C1 98.00%±0.80% 94.17% ±2.13% 77.12%±3.14% 97.01%±0.87%

C2 98.05%±0.76% 90.54%±2.11% 82.78%±5.08% 96.94%±0.70%

C3 98.12%±0.66% 92.55%±1.65% 77.90%±4.48% 96.58%±1.05%

view 7 C1 97.95%±0.77% 94.36% ±2.02% 76.81%±3.07% 97.05%±0.75%

C2 97.38%±1.03% 90.54%±2.07% 82.89%±5.13% 97.03%±0.68%

C3 98.12%±0.66% 91.57%±2.33% 75.13%±4.82% 96.96%±1.04%

Mv-IIE C1 98.25% ± 0.69% 94.66% ± 1.81% 81.75%±4.09% 97.26% ± 0.81%

C2 97.13%±1.18% 90.49%±2.51% 83.69% ± 3.39% 96.46%±0.73%

C3 98.05%±0.72% 86.96%±1.35% 82.67%±3.14% 96.62%±1.20%

Weather Dataset : The second dataset is the meteorological data of Washington (from January
1, 2016 to December 31, 2021), provided by the ‘Reliable Prognosis’ site (https://rp5.ru/), which
contains 2191 instances. Each instance in this dataset is the meteorological data for one day in
Washington, which is described by five interval-valued variables (air temperature T , atmospheric
pressure at weather station level P0, atmospheric pressure reduced to main sea level P , humidity U
and dew-point temperature Td) and one category variable (Precipitation or not: 0 ≡ No Precipita-
tion, 1 ≡ Precipitation). Some instances of this dataset are shown in Table 7. We aim to use the five
interval-valued features for precipitation prediction.

F ABLATION STUDY

This section shows the ablation study of the Mv-IIE framework. We present the predictions on all
single-view features using the three basic classifiers on both synthetic and real-world datasets. All
results are illustrate in Table 8. This verifies the proposed framework’s superiority and rationality in
addressing interval-valued data classification problems.
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