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A BROADER IMPACTS AND LIMITATIONS

The abundance of training data not only enhances the performance of generative models but also
introduces issues with privacy, unfairness, and bias. Our proposed controllable unlearning frame-
work offers a viable solution to these issues. Our proposed framework is not limited to unlearning
in I2I generation models but can be easily extended to other types of generative models, including
text-to-image and text-to-text models. However, the unlearning framework presented herein has cer-
tain limitations. Note that Propositions [T] and [2] in Section 4] assume the convexity of the objective
function and the feasible set. This assumption is essential to guarantee that the yielded solutions are
Pareto optimal. In cases where the objective function and the feasible set are non-convex, the solu-
tions obtained from solving Eq. (€) can only be guaranteed to be weakly Pareto optimal (Miettinen|
1999) or Pareto stability (Chen et al.,[2024).

B DISCUSSION ON THE OBJECTIVE OF UNLEARNING

Describing the unlearning target as inpainting an image using only background content is feasible
to some extent, such as concept unlearning. For instance, if we aim to protect privacy by unlearning
parts of an image generation model that contain personal information (i.e., an abstract concept), we
can first identify the region of the image containing such information, then simply mask this region,
and subsequently generate a new image through inpainting, ensuring that the model’s output aligns
with the inpainted new image. However, this approach has two issues:

* Firstly, it must be ensured that the new image generated through inpainting does not contain the
information that needs to be forgotten. We believe this can be accomplished by incorporating an
additional adversarial discriminator using GAN training strategies or by employing reinforcement
strategies.

* Secondly, aligning the model’s output with the inpainted new image merely confuses the knowl-
edge learned by the model, increasing uncertainty during generation, which constitutes a super-
ficial form of unlearning. However, based on our experimental experience, if the goal is merely
to erase the influence of certain samples on the model, directly aligning with Gaussian noise may
yield a more pronounced unlearning effect.

C THEORETICAL VALIDATION

C.1 PROOF OF EQUIVALENCE

Given the original problem

min fg(e) S.t. f1(19) <eg, (10)
HER?

which is a constrained nonlinear programming problem. To solve it, we formulate its Lagrangian
equation:
L(0,7) = fa(0) + A(f1(0) — &) (11)

Further, we derive the KKT conditions for Eq[TT}

VoL(0%,\) =V f2(6%) + N'V[f1(0") —¢] =0

1167~ <0

A*>0

A (f1(07) —¢) = 0.
The standard Newton’s Method searches for the solution Ly(6, A) = 0 by iterating the following
equation:

)[4 Lol ™0 (920

v2,-1 \s

(12)
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where V3 denotes the Hessian matrix. However, the Newton step g; = (V3£) ™'V L cannot be
calculated directly and we also have other optimal condition in Eq.|12|introduced by the inequality
constraints. Instead, the basic sequential quadratic programming algorithm defines an appropriate
search direction g; at an iterate (¢, A¢), as a solution to the quadratic programming subproblem.

Denoting by g; = (g?,g}) the change in the variables at the current point (6;, \;), where (g?, ")
solve the Newton—-KKT system (Nocedal & Wright):

VoL (0s A)g! + VIf1(0:) — €lg) = =VoL(0:, Ar)

f1(0:) — e+ V[f1(6:) —elgf <0

A +g) >0

e+ ) (A7) ==+ VIAi(0) —lgf ) = 0.
Denoting by A\;11 = A¢ + g7, we have

VoL(0:,M)g] + VIf1(0:) — elhigr = =V fa(6r)

f1(6:) — e+ V[f1(6:) —€lgf <0
At+1 >0 15

Nei (F1(87) = =+ VIA(8) — elgf ) = 0.

It is easy to check that Eq.|15]is the optimality system of the following quadratic problem (QP)

(14)

min 2 (0)+ V£20)" g+ 597 V3L (@A) g
f1(0:) —e+ V[f1(6) —¢€]g < 0.

Setting g¢ = g, the KKT conditions for Eq. are consistent with the constraints specified in Eq.
Further, according to Theorem|I] the optimal solution for Eq. when approaching the optimal so-
lution of the original Problem (i.e., Eq.[I0), satisfies the KKT conditions of Eq.[I0] Considering that
the models discussed in this paper are all deep neural networks, based on previous studies (Welling
& Tehl 2011} [Martens| [2016; Zhang et al., 2021; |2022; 2024)), the initial guess Hessian matrix
can be approximated as an identity matrix. Additionally, for consistency with the main text (i.e.,
011 < 0y — ppgy), setting g = —g; yields the following form:

min -V, 0)" Vo (0:) =2V s (0:) g0 + g7 o

Vfi(0:)ge > f1(0;) —e.

Theorem 1. Theorem of |Robinson|(1974). Suppose that 0* is a local solution of Eq. |10 at which
the KKT conditions are satisfied for some \*. Suppose, too, that the linear independence constraint
qualification (LICQ), the strict complementarity condition, and the second-order sufficient condi-
tions hold at (0%, X*). Then if (0, M) is sufficiently close to (0*, \*), there is a local solution of the
subproblem Eq.|16|whose active set Ay is the same as the active set A (6*) of the nonlinear program

Eq.[I0|ar 6*.

(16)

A7)

C.2 BAsic COMPONENTS

Before exploring the proofs of Propositions [I] and [2] it is essential to define some fundamental
concepts and lemmas. This references some works (Boyd & Vandenberghe| 2004} Pardalos et al.,
2017;|Gong et al.,[2021) mentioned earlier; for the sake of readability, we will reiterate them here.

Penalty Function. An alternative method to evaluate the optimality of Algorithm|[I]involves the L;

penalty function given by:
Pe(0) = f2(0) + £[f1(0) — ]+, (18)

where £ > 0 is a scaling coefficient. The minima of Eq. align with the solutions to Eq. (6) for
sufficiently large values of £ (Nocedal & Wright)).

First-order KKT Condition and KKT Function. We revisit the first-order KKT condition (No-
cedal & Wright) for the constrained optimization described in Eq. (9). Assume 6* is a local optimum
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with continuously differentiable f1(#) and f2(6), and ||V f1(6*)|| # 0. There exists a Lagrange mul-
tiplier w* € [0, +00) such that:

Va0 +w*'VA1OF) =0, f1(07)<e w"(fi(8")—¢)=0. (19)
This setup highlights the importance of ||V f1(6*)|| # 0 as a constraint qualification condition.

Utilizing Algorithmﬂ]for Eq. (EI), and for n > 0, the KKT function (Gong et al.,|2021) to verify the
first-order KKT condition is defined as:

Ko (0rm0) = |V f2(00) + 0oV 100 + T[(00)] 4 + me[ = (60)] ., 20)

where 7 > 0, and [z]y = max(z,0). Itis clear that K7(6;,7;) > 0 for all §, € R? and 7, > 0,
achieving K (0;,m:) = 0iff (6, ;) satisfies the first-order KKT condition.

Second-order KKT Condition and KKT Function

In the context of Algorithmapplied to Eq. , we expect that ||V f1(6;)]| approaches zero, leading
to 7; potentially diverging to infinity. This scenario indicates a violation of the first-order KKT
condition, potentially interpreted as n* = 4oc0.

While the first-order condition (Eq. (T9)) is inadequate, the second-order KKT conditions involving
the Hessian V2 £, (6) are applicable (Dempe et al.,|[2010). Consider the relaxed form of Eq. as:
min f2(9> S.t. Vf1(9) =0. 20

0cRd

If 6* is a local minimum of Eq. (8), it coincides with a local minimum of Eq. (21)). Assuming f>(6)
and V f1(0) are continuously differentiable, with the Hessian V2 f; (f) maintaining constant rank
near 0* (Janin, |1984), the first-order KKT condition for Eq. can be formulated. There exists a
vector w* € R such that:

Vo (0%) + V2f1 (0F)w* = 0. (22)

This condition implies that V f5(6*) is orthogonal to the null space of V2 f; (#*), defining the tangent
space of the stationary manifold {6 : V f1(6) = 0} for f1().

For verifying local optimality under the constraints of Eq. (8) where ¢)(6) > 0, the KKT function is
proposed as:

Ko (61,m0) = ||V f2 (6:) + meV f1 ()1 + 74 (61) (23)
where 1(60;) = 0 asserts that 6, is stationary for f;(6), and ||V f2(6;) + n:V f1(6:)]| = O signifies
local optimality with respect to f»(#), aligning with the KKT condition for the relaxed problem
ming{fg(e) s.t. f1 (9) < 6,5}, withe; = fi (9,5)

In the analysis of Algorithm|I] a fundamental theorem concerning the behavior of the penalty func-
tion P¢(6) and the KKT function K, (6, n), given in Eqs. and (23), is essential for understanding
the algorithm’s convergence and feasibility characteristics. This lemma is stated as follows:

Theorem 2. Theorem 3.2 of \Gong et al.| (2021)). Assume Assumption || holds, for any & > 0, we
have

d
jpg(et) S —Kgfnt (Ht,nt),Vt S [0,+OO) (24)
t

This equation indicates that P¢(8,) is non-increasing w.r.t. time t provided that K¢_,,(6;,m:) > 0.
This condition is satisfied if £ is sufficiently large such that & — 1y > 0, or when the constraint is
met, i.e., f1(0;) < ¢, ensuring [1(0;)], = 0.

This lemma facilitates further deductions about the behavior of the algorithm under different set-
tings of the parameter £. For instance, setting & — —+00 allows us to demonstrate that the constraint
[f1(0:) — €], is non-increasing w.r.t. time t. This implies that fi(0;) is decreasing w.r.t. time t
outside the feasible region, and once 0y enters the feasible region, it remains therein. Conversely,
setting & = 0 reveals that f2(0;) monotonically decreases w.r.t. time t within the feasible set, pro-
gressing towards a KKT point. These observations are critical for understanding both the feasibility
and optimality properties of Algorithm[I|under different operational scenarios.

Proposition 4. Under Assumption|[I] the following two propositions hold:

1. For any time t € [0, +00), minge(o,4[¥(0s)]+ = O(7) holds.
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2. If(0) > 0 holds, then minge (o ¥ (05) < + (f1 (60) — f1) for any time t € [0, +00).

Proof of Proposition}1. At each time point ¢ € [0, +00), dividing both sides of Eq. by &£ >0
and taking £ — +-oc0 gives

%[fl (00) =], < —[¥ (6], <O.

Integrating this on time interval [0, t] gives

. I
min (0], < 7 [ 6], ds
< 7 (11 00) = <l ~ 12 (00) — <],
S % [fl (90) — E]+ . (25)
min 0], < 7 [ 0], ds < 3 (U 00) =<, ~ 11 00 —<),) < 7L ()=,
This implies that minge (o [¥(65)]4 = O(3). O

Proof of Propositiond}2. Let f7 = infycra f1(0) and f5 = infyegra f2(0). Since 1(6) > 0, by
substituting Eq. into Eq. (24), we have for any £ > 0,

d
= (2 (60) + €11 (0) —el) < [V /2 (00) +m:V o O = (€ = m) ¥ (0:), V¥t € [0,400).
Integrating both sides from O to ¢ yields:

| (198004 092 01 + 6 =) (02)) ds < (2 00) = (0) + € 1 (00) = €], — € (8 =]
< (f2(6o) — f3) + £ (f1 (6) — f1).

(26)
Taking £ — 400 in Eq. gives
t
Y (0s)ds < f1 (o) — 17, (27)
0
which implies minge(o g ¥ (65) < 1 fy ¥ (6s)ds < + (f1 (60) — f1)-
O

C.3 PROOF OF PROPOSITION[I]

Proof of Proposition[I} As 6, converges to 8* for t — +oo and given the continuity of ¢() and
V f1(0), it follows that lim;_, y o ¥ (0:) = ¢ (6*), and lims—, o0 ||V f1 (6:)]] = ||V f1 (6%)].

Given ¥(0) > 0 and ¢ = f{, Eq. 1i establishes that f0+°°1/) B dt < f1(0o) — ff < +oo.
Consequently, lim;—, 1 o, 9 (6;) = ¥ (6*) = 0.

Given 6* as a limit point of {6;}, there exists an increasing sequence {t, :n =1,2,---} such
that t, — —+oo and 6;, — 6* as n — +oo. The continuity of ¢(6) and Vf1(0) ensures
limy, s o0 9 (0,,) = ¢ (0%) = 0, and limy, s o0 |V f1 (62, = IV f1 (67)]].

Since ¢ (0*) = 0 and the sign condition of (), it implies sign (f1 (6*) — f1) = sign (¢ (6*)) = 0.
Therefore f; (0*) = f; and 0* is a minimum point of f; (). This gives lim,, 1 ||V f1 (0:,)]| =
IVf1(07)]| = 0.

Given limy_, 4 g: = 0, we deduce that lim;—, o ||V f2 (6:) + 7:V 1 (01) || = lims—s 100 ||g2]] = 0.
Additionally, employing ¥ (6) > 0, Eq. implies limy_, 1 o, K- (0, 7:) = 0 for some 7 > 0.

19



Under review as a conference paper at ICLR 2025

Combining lim;_, o ||V f2 (6) + 1V f1 (6:)]| = 0and V f; (%) = limy, 400 V1 (6,) =0, we
can derive
IV f2 (00) + 0V fr (00| = 1V f2 (6:) + 10 (V1 (0:) = V f1(67))]
= |V £2 (60) + V211 (6) (6 — )|
=[|Vf2(6) + V2 (0)) wi |-

where 6 is a convex combination of 8; and 6*, and we defined w; = n; (6; — 6*).

Define w; = (V2f; (9{5))+ V f2 (6;), where (V2 f (9,’5))+ denotes the Moore-Penrose pseudo-
inverse of matrix V2 f; (6}), which satisfies that

wp = argmin{w| st w€argmin||Vf2(6;) + V3 /i (Gg)wH} .

weRd

It follows that
[V f2(0:) + V2 f1 (01 we|| < ||V f2 (6e) + V2 f1 () wi|| = [V f2 (0:) + neV f1 (6)]] -

Given ||V fa (0:,) +ne, V1 (0, )] — 0asn — 400, we have HVfg (0;,) +V2fi (agn) wth —
0. Assuming 6;, — 6" and 0#; — 6* as n — +oo, and by the constant rank
condition and relevant corollary of Stewart (1977) (rephrased in Lemma , we deduce

(V2 (0,)" — (V2f1(6*))" and hence w;, — w* as n — +oo, where w* =
(V211 (09) " V1o (67). Thus, [V £ (6) + V21 (0 wrl| = [V f2 (67) + V21 (6%) |, Tead-
ing to ||Vf2 (0%) + V2 f1 (%) w* | = 0, which implies that 0* satisfies the second-order KKT con-
ditions for Eq. (22).

Given the convexity of f1(f) and f2(6) with respect to 6, then fo(6*) is the minimum in the feasible

set Q = {0 : f1(#) < e}, without any 6 € Q such that f5(f) < fo(0*). Consequently, 6* is a
solution to Eq. (8). According to Chankong and Haimes (Chankong & Haimes) [1982), this solution
is unique without further checking, as affirmed by theorem of Miettinen (rephrased in Lemma 3)), 6*
is Pareto optimal.

Therefore, combining the conclusions, 6* is established as both the minimum of f;(6) and Pareto
optimal, confirming its status as Pareto optimal for complete unlearning.

O

Lemma 2. Corollary 3.5 of |Stewar1 (1977). Let { A:} be a sequence of matrices converging to A,
ast — +oo. The condition lim;_, | A;L = AJ is equivalent to the condition that rank(A;) =
rank(Ay) for all t sufficiently large.

Lemma 3. Theorem 3.2.4 of |Miettinen| (1999). A point 0* € Q is Pareto optimal if it is
a unique solution of e-constraint problem (Eq. (6)) for any given upper bound vector € =

T
(E1y ey E0—1,E041y -+, EL) -

C.4 PROOF OF PROPOSITION[Z]

Proof of Proposition 2] Since 6, is stationary, 6y = —g, = 0, implying %Pg (6;) = 0forall ¢ > 0.
From Egq. , we have 4 P (0;) < —K¢_p,(0;,m;). Consequently, K¢_,, (6¢,7:) < 0 for all
& > m. Setting & = n: + 7, where 7 > 0, it follows that K (6;,m;) = 0. This implies that
6* satisfies the first-order KKT conditions for Eq. (I9), i.e., there exists a Lagrange multiplier
n* € [0, +00) such that

Vi 0") +n" Vi (0%) =0, fi(0%)<e 0" (f1(07)—e)=0.

As affirmed by theorem of Miettinen (rephrased in Lemmald)), 6, is a Pareto optimal solution.
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Lemma 4. Theorem 3.1.8 of Miettinen| (1999). (Karush-Kuhn-Tucker sufficient condition for Pareto
optimality) Let the objective and the constraint functions of problem Eq. (9) be convex and contin-
uously differentiable at a decision vector 0* € (). A sufficient condition for 6* to be Pareto optimal
is that there exist multipliers pu* > 0 and n* > 0 such that

(1) wWVfO)+n" V(o) =0
(2) n"(f1(67) —¢) = 0.

C.5 PROOF OF PROPOSITION[3]

Proof of Proposition[3F. Given that 1)(6) > 0, we recall conclusions from Proposition 2:

1
Sren[%{lt]z/}(ﬂs) < n (f1(60) — f1)-

Taking £ = 0 in Eq. (26) gives
[ IvR @) 0RO s < [ @) ds+ (200 - 55)-

To derive an upper bound for fg [V f2 (05) 4+ nsV f1 (85)]|* ds, the principal challenge lies in bound-
ing f; 1. (0) ds.

Given the assumption 0 < ¢ (6;) < o||V f1 (6) ° where § > 1, and applying Lemma we obtain:

et (00) < (allV A @)1 + 1V 2 (0)]) b (0)'F < Twr (0)'7F

where T = supgcpa (a||Vf1(0)H6_1 + ||Vf2(9)||) o5 . This leads to
t t 1
/ nst (B5) ds < T/ ¥ (05)' 73 ds
0 0

gr( tw(es)ds
0

Thus, it follows that

s€[0,t

t
win [VF2 0+ m¥A 0" < ¢ [ IV +nV A (0.)]%ds

t
<3 [ nw@)as g (ne-£)

< ST~ £1) 7 (fal60) - £).

Since Hgs||2 = ||Vf2(0s) +n:V f1 (93)||2, for any time ¢t € [0,400), we derive the following
inequalities

_1
f1(60) —ff)l *, Fa00) — 13

min ||gsH2 <T( , :

s€0,t]

Combine the conclutions above, if ¥(0) = «|Vfi(6) o

mingejo4 [|Vf1(05)]] = O (1/7,‘%) and mingep 4 [lgs| = O (1/7,‘%_'715). Hence, the exponent

, we can further assert

d controls the convergence rates of ||V f1 (6;)|| (measuring the minimization of f;(6)), and that of
|lg¢]| (measuring the minimization of f3(#)).
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)’

If ¥(0) = cln(l + ||V f1(0)]]), where ¢y < aand § = 1. Since 0 < ¥(0) < |V f1(0
|

the assumptions of Proposition {4 are satisfied. Consequently, we obtain minscp 4 ||V f1 (6
0 (eé) and min, (o [lgs]% = O (1/15%*%).

bl

O

Proof of PropositionB}2. If ¢(0) = B(f1(0) — €)°, where § = 2n + 1, n € N. According to
Proposmonl we deduce that mingepo,¢ B[(f1(0s) — )’y < < 1[f1(6p) — €]+ Consequently, we

B
obtain mingepo,¢[f1(0s) — €]y = O (1/to)
O

Lemma 5. Rewrite based on Lemma 6.1 of |Gong et al.| (2021). Let n, =
min, > {||Vf2 (0,) + 0V f1 ()| — v (0,5)} = max (Me*) ”vyjfl(f;t))ﬂzvh(e*) O) and assume
0 < (8;) < al|Vf(6)|° fora > 0and § > 1. Then

e (0:) < (VA0 + IV £2000) ) aTp(0:) ' 5. (28)

Proof of Lemma5] Given v(6;) < o[V f1(6,)]|°, we have

G P(0:)
IV (60l NG

With 1(60;) > 0, the upper bound for 7; simplifies to
max (¥(0:) = V>(0) " V11(0),0) _ (0) + VL0V /200

< a|V£(8,)]°", an < asp(0,)' 5.

"= A ) IvAEI"
Therefore,
v Ll
"= neor YO R
< (@IVAG)I" +IVA00)1) IV £1(60) |

< (all VO + IV f2(00) ) a¥ (6:) 5.

D MORE DETAILS OF EXPERIMENTS

D.1 HYPER-PARAMETER OF EXPERIMENTS

MAE. We set the learning rate to 10~* with no weight decay. Both baselines and our method
employ AdamW as the foundational optimizer with 8 = (0.90,0.95), with the distinction being
that our method necessitates some improvements on the basic optimizer. We set the input image
resolution to 224x224 and batch size to 32. Simultaneously, we set the coefficient of ¢)(6) in Phase
Ito o = 5, and the coefficient of ¢ in Phase Il to 8 = 5, followed by training for 8 epochs. Overall,
it takes an hour on an NVIDIA A40 (48G) server.

VQ-GAN. We set the learning rate to 10~* with no weight decay. Both baselines and our method
employ AdamW as the foundational optimizer with 8 = (0.90,0.95). Our method necessitates
some improvements on the basic optimizer. We set the input image resolution to 256x256 and batch
size to 16. Simultaneously, we set the coefficient of ¢)(6) in Phase I to o = 10, and the coefficient
of ¢(0) in Phase II to 3 = 10, followed by training for 10 epochs. Overall, it takes two hours on an
NVIDIA A40 (48G) server.
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Diffusion model. We set the learning rate to 10~° with no weight decay. Both baselines and our
method employ Adam as the foundational optimizer. Our method necessitates some improvements
on the basic optimizer. We set the input image resolution to 256x256 and batch size to 16. Simulta-
neously, we set the coefficient of ¢/() in Phase I to v = 1, and the coefficient of /() in Phase II to
B =1, followed by training for 4 epochs. Overall, it takes twelve hours on an NVIDIA A40 (48G)
server.

D.2 EVALUATION METRICS

IS. Following (Li et al.,[2024a), for ImageNet-1K, we directly use the Inception-v3 model check-
point to calculate the IS score. For Places-365, we use the Resnet-50 model checkpoint to calculate
IS scores (Zhou et al., 2017).

FID. Regardless of whether it is ImageNet-1K or Places-365, we directly use the Inception-v3
model checkpoint to calculate the FID score.

CLIP. Following (Li et al.,[2024a), whether it is for ImageNet-1K or Places-365, we use the ViT-
H-14 model checkpoint to calculate the clip embedding vectors of the generated images and the
ground truth images (Radford et al) |2021). Afterward, we calculate the cosine similarity between
the two vectors as the clip score.

E ROBUSTNESS TO RETAIN SAMPLES AVAILABILITY

In machine unlearning, sometimes the real retain samples are not available due to data retention
policies. To tackle this challenge, following (Li et al.| [2024a)), we assess our method using images
from other classes as substitutes for real retain samples. For instance, on ImageNet-1K, since we
have already selected 200 classes, we randomly chose some images from the remaining 800 classes
to act as a ”’proxy retain set” during the unlearning process. We incrementally reduce the proportion
of real retain samples in the retain set and increased the proportion of proxy retain samples, with the
experimental results presented in Table[3] As demonstrated, our method is largely unaffected by the
reduced availability of retain samples, indicating robust performance.

Table 3: Results of center cropping 50% of the images under different retain set usage proportions.
7 indicates higher is better, and | indicates lower is better. ‘F’ and ‘R’ stand for the forget set
and retain set, respectively. Here, all results are based on the solution with the highest degree of
unlearning completeness in Phase 1.

\ MAE \ VQ-GAN \ Diffusion Models
\ Is FID CLIP | IS FID CLIP | Is FID CLIP
| FL Rt Ft RJ F, Rt| F, Rt Ft R, F| Rtf|FL, Rf Ft Rl F| R?
Original | 2159 2183 1628 1487 088 088 2374 2406 21.80 18.17 078 085 | 1690 19.65 8212 8151 089 091
100% | 1233 1747 15460 68453 0.69 075 | 1323 2255 13921 2639 046 082 | 11.84 1847 16505 9542 055 081

80% 1232 1746 15005 73.14 070 0.73 | 13.27 2230 13849 24.83 046 081 | 1191 18.10 16732 9882 0.55 0.80
60% 1222 1742 15055 7422 070 0.73 | 13.24 2254 14035 2492 0.61 0.81 | 1206 1853 16524 9843 0.60 0.80
40% 11229 17.43 15027 73.63 0.70 0.74 | 1277 2239 141.67 2584 0.61 0.81 | 12.05 18.64 168.83 9642 0.60 0.79
20% 12.50  17.68 147.45 70.75 0.70 0.74 | 12.77 22.39 144.38 28.08 0.60 0.81 | 13.49 18.67 16826 9547 0.57 0.79

0 1221 17.68 14731 68.09 0.70 0.74 | 1239 2235 147.17 29.79 0.62 0.80 | 1324 18.76 16843 96.63 0.60 0.79

F MORE GENERATED IMAGES: BASELINES VS OURS

We conduct various generative tasks on three mainstream 121 generative models (i.e., MAE, VQ-
GAN, and the diffusion model), including image expansion, inpainting, and reconstruction, to assess
both baselines and our proposed method. Specifically, we conduct evaluations of image inpainting
and expansion tasks on VQ-GAN, image reconstruction tasks on MAE, and image inpainting tasks
on the diffusion model. The results indicate that our method can adapt to mainstream 121 generative
models and various image generation tasks.

VQ-GAN. We conduct experiments on image inpainting and expansion task unlearning on VQ-
GAN, where examples of the image inpainting tasks are illustrated in Figure [5] and examples of
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image expansion can be referred to in Appendix [Hl Our unlearning method is effective for both
image inpainting and image expansion tasks, and it significantly surpasses baselines.

Max Loss Retain Label Noisy Label Composite Loss

(a) Forget Set

Ground Truth Original Model Max Loss Retain Label Noisy Label Composite Loss

(b) Retain Set

Figure 5: VQ-GAN: generated images of cropping 50% at the center of the image. The upper part
(a) represents the forget set, while the lower part (b) represents the retain set. ”Ours” denotes the
boundary condition of unlearning obtained in Phase I, which represents the point of the highest
degree of unlearning completeness. It is evident that our method significantly outperforms baselines
in terms of the unlearning effect on the forget set, most closely approximating Gaussian noise, and
exhibits the least performance degradation on the retain set.

MAE. We conduct experiments on unlearning image reconstruction tasks on the MAE. As shown
in figure [6] our unlearning method is also effective in the task of image reconstruction, with the
effects of unlearning showing a significant advantage over baselines.
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Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

Ot R

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 6: MAE: reconstruction of random masked images. We set the proportion of the random
mask to 50%. The upper part (a) represents the forget set, while the lower part (b) represents
the retain set. “Ours” denotes the boundary condition of unlearning obtained in Phase I, which
represents the point of the highest degree of unlearning completeness.
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Diffusion model. We validate our unlearning framework on the diffusion model task for image in-
painting. As shown in figure[7} the results indicate that our method is equally applicable to diffusion
models, and the effectiveness of unlearning surpasses that of baselines.

Max Loss Retain Label Noisy Label Composite Loss

(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 7: Diffusion model: generated images of cropping 50% at the center of the image. The upper
part (a) represents the forget set, while the lower part (b) represents the retain set. “Ours” denotes
the boundary condition of unlearning obtained in Phase I, which represents the point of the highest
degree of unlearning completeness.

G MORE GENERATED IMAGES: DIFFERENT DEGREES OF COMPLETENESS

We validate the control effect of our controllable unlearning framework across multiple genera-
tive tasks in three mainstream 121 generative models. The results demonstrate that our controllable
unlearning framework can effectively control unlearning across various image generation tasks of
mainstream 121 generative models.
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VQ-GAN. We center-cropp the image by 50% and utilize the VQ-GAN for image inpainting.
Subsequently, we applied our unlearning framework to enforce unlearning. The results in Figure [§]
demonstrate the effectiveness of our method, with the control effect being very pronounced.

Ground Truth Input Original Boundary-&,in Relax-£; Relax-&; Relax-¢&3 Bound.

Model Highest Degree 25% 1 50% T 75% T Lowest Degree
(a) Forget Set

Ground Truth Input Original Boundary-&pin Relax-£; Relax-¢&; Relax-£3 Boundary-€mnax
Model Highest Degree 25% T 50% T 75% 1 Lowest Degree
(b) Retain Set

Figure 8: VQ-GAN: generated images of cropping 50% at the center of the image under different
degrees of unlearning completeness requirements. The upper half (a) represents the forget set, and
the lower half (b) represents the retain set. Our method first determines the two boundary conditions
of unlearning, and then linearly increases the value of € within its range (here, we increase by 25%
each time) to adjust the balance between unlearning completeness and model utility.

MAE. We verity the control effect of our controllable unlearning framework within the reconstruc-
tion task using the MAE. The results in Figure[9]indicate that our method can effectively control the
completeness of unlearning in image reconstruction tasks as well.
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Ground Truth Input Original Boundary-&min Relax-£&; Relax-&; Relax-£3 Boundary-&max

Model Highest Degree 25% 1 50% T 75% 1 Lowest Degree
(a) Forget Set

Ground Truth Input Original Boundary-£,,in Relax-&; Relax-&; Relax-£3 Boundary-£;,4x
Model Highest Degree 25% T 50% T 75% 1 Lowest Degree
(b) Retain Set

Figure 9: MAE: construction of random masked images under different degrees of unlearning com-
pleteness requirements. We set the proportion of the random mask to 50%. The upper half (a)
represents the forget set, and the lower half (b) represents the retain set. Our method first determines
the two boundary conditions of unlearning, and then linearly increases the value of € within its range
(here, we increase by 25% each time) to adjust the balance between unlearning completeness and
model utility.
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Diffusion model. We validate the control effect of our controllable unlearning framework within
the inpainting task of a diffusion model. As shown in Figure the findings illustrate that our
method can effectively adjust the balance between the completeness of unlearning and the utility of
the model in the context of a diffusion model.

d

Ground Truth Input Original Boundary-&,in Relax-£; Relax-&; Relax-£3 Boundary-€,ax

Model Highest Degree 25% 1 50% T 75% T Lowest Degree
(a) Forget Set

Ground Truth Input Original Boundary-&pn Relax-&; Relax-&; Relax-&3 Boundary-&max

Model Highest Degree 25% 1 50% T 75% 1 Lowest Degree
(b) Retain Set

Figure 10: Diffusion model: generated images of cropping 50% at the center of the image under
different degrees of unlearning completeness requirements. The upper half (a) represents the forget
set, and the lower half (b) represents the retain set. Our method is also effective when applied to the
diffusion model.

H ABLATION STUDY

To verify the robustness of our method on mainstream I2] generative models and various image
generation tasks, we conducted the following ablation studies: i) we vary the cropping patterns to
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demonstrate robustness across multiple image generation tasks; ii) we decrease the linear increment
size of ¢ to validate that our method allows for more fine-grained control; and iii) we alter the
cropping ratios to confirm the robustness of our method to changes in crop ratio.

H.1 MORE GENERATIVE TASKS

Similar to validating unlearning in classification models through Membership Inference At-
tacks |Choi & Na| (2023)), generative models can also be assessed for unlearning robustness by em-
ploying attack methods to reconstruct the forget set. Although there is substantial research in this
area |Kumari et al.| (2023); [Petsiuk & Saenko| (2025), it typically focuses on concept unlearning in
text-to-image generative models. In contrast, our focus is on unlearning in image-to-image gener-
ative models. Unlike unlearning a single concept, our goal is to unlearn the influence of a set of
samples or their distribution on the model. This makes it challenging to validate the effectiveness
and robustness of our method through attacks. Specifically, we validate the effectiveness and robust-
ness of our controllable unlearning framework for image extension tasks on VQ-GAN by varying
the patterns of cropping. The results indicate that our controllable unlearning framework is robust
to different cropping patterns.

H.1.1 OUTPAINTING TASK

We retain 25% of the image center and utilize VQ-GAN for image outpainting. As shown in Figure
[IT} our method produces outpainting on the forget set that is most similar to Gaussian noise, and the
outpainting performance on the retain set shows the least decline compared to the original model.

H.1.2 UPWARD EXTENSION TASK

We crop the upper half of the image, retain the lower half, and employ VQ-GAN for image exten-
sion. The results in Figure [T2] indicate that our method produces extension on the unlearning set
that closely resembles Gaussian noise, and on the retain set, the extension performance decreases
the least compared to the original model.

H.1.3 LEFTWARD EXTENSION TASK

We crop the right half of the image, retain the left half, and use VQ-GAN for image extension. As
shown in Figure [I3] our method produces leftward extension on the forget set that closest resem-
bles Gaussian noise and, on the retain set, the leftward extension performance exhibits the minimal
decrease compared to the original model.

H.2 MORE FINE-GRAINED CONTROL OF UNLEARNING COMPLETENESS

After obtaining two boundary points of unlearning, our controllable unlearning framework linearly
increases within its valid range to balance the completeness of unlearning and the utility of the
model. However, in the main paper, the increase of ¢ is by 25% each time. For example, if the range
of € is [1,9], then the sequence of ¢ values would be {3,5,7}. It is evident that the increments of &
are quite substantial, which results in a coarser granularity of control. Here, we reduce the linear
increment of ¢ to extend the effectiveness of our controllable unlearning framework across various
image generation tasks in VQ-GAN. The results show that our framework can achieve fine-grained
control.

H.2.1 OUTPAINTING TASK

We retain the central 25% of the image and utilize VQ-GAN for image outpainting. The results
in Figure[T4] show that the performance of our controllable unlearning framework on the forget set
gradually improves with the increase of €, and the extent of decline in outpainting performance on
the retain set, compared to the original model, is also reducing.
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A =

Input Original Model Max Loss Retain Label Noisy Label Composite Loss

(a) Forget Set

Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 11: Outpainting by VQ-GAN. We retain 25% of the image center. The upper half (a) desig-
nated as the unlearning set and the lower half (b) as the retain set. For each subset, we compared the
performance of both the baselines and our method on the outpainting task, where ”Ours” represents
the boundary condition of unlearning in Phase I, indicating the point of highest degree of unlearn-
ing completeness. The results show that our method significantly outperforms the baselines on the
outpainting task.
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Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss

(b) Retain Set

Figure 12: Upward extension by VQ-GAN. We retain 50% of the lower half of the image. The
upper half (a) is the forget set, and the lower half (b) is the retain set. For each set, we compare the
performance of the baselines and our method on the upward extension task, where "Ours” represents
the unlearning boundary condition in Phase I, which is the point of the highest degree of unlearning
completeness. The results suggest that our method also significantly outperforms the baselines on
the upward extension task.
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Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 13: Leftward extension by VQ-GAN. We retain 50% of the right half of the image. The
upper half (a) is the forget set, and the lower half (b) is the retain set. For each set, we compare the
performance of the baselines and our method on the upward extension task, where "Ours” represents
the unlearning boundary condition in Phase I, which is the point of highest degree of unlearning
completeness. The results suggest that our method also significantly outperforms the baselines on
the upward extension task.
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Original Boundary-&p, 3 Boundary-gmax
Model Highest Degree V" Lowest Degree

(a) Forget Set

Ground Truth Input Original Boundary-&pn \  Boundary- &y
Model Highest Degree 7 Lowest Degree

(b) Retain Set

Figure 14: Outpainting by VQ-GAN under different degrees of unlearning completeness. We retain
25% of the image center. The upper half (a) is the forget set, while the lower half (b) is the retain set.
For each part, we compare the unlearning effects of our method at different values of €. “Highest”
and "Lowest” represent the conditions of the highest and lowest degree of unlearning completeness,
respectively. We increase € 16% each time.
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H.2.2 UPWARD EXTENSION TASK

We retain the lower half of the image center and crop the upper half, employing VQ-GAN for image
extension. As shown in Figure @ results indicate that, with an increase in the value of ¢, the
upward extension effectiveness on the forget set of our controllable unlearning framework gradually
improves. Concurrently, the degree of decrease in upward extension effectiveness on the retain set,
in comparison to the original model, also diminishes.

Ground Truth Input Original Boundary-&min
Model Highest Degree

<
v

Ground Truth Input Original Boundary-&pin
Model Highest Degree

(b) Retain Set

Figure 15: Upward extension by VQ-GAN under different degrees of unlearning completeness. We
retain 50% of the lower half of the image. The upper half (a) is the forget set, while the lower half
(b) is the retain set. For each part, we compare the unlearning effects of our method at different
values of €. “Highest” and “Lowest” represent the conditions of the highest and lowest degree of
unlearning completeness, respectively. We increase € 16% each time.

H.2.3 LEFTWARD EXTENSION TASK

We retain the right half of the image and utilize VQ-GAN to extend the image from the left. The
results in Figure [T6 demonstrate that the leftward extension performance on the forget set of our
controllable unlearning framework progressively improves with the increase of ¢, and the reduction
in leftward extension performance on the retain set is also diminishing compared to the original
model.
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Ground Truth Input Original Boundary- £ D

Model Highest Degree

(b) Retain Set

Figure 16: Leftward extension by VQ-GAN under different degrees of unlearning completeness.
We retain 50% of the right half of the image. The upper half (a) is the forget set, while the lower
half (b) is the retain set. For each part, we compare the unlearning effects of our method at different
values of €. "Highest” and “Lowest” represent the conditions of the highest and lowest degree of
unlearning completeness, respectively. We increase € 16% each time.
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H.3 VARYING CROPPING PATTERNS AND RATIOS

In the preceding sections, we have demonstrated the performance of our controllable unlearning
framework under various cropping patterns, yet the cropping ratio remained constant. By altering
the cropping ratio on VQ-GAN, we validate the effectiveness of our controllable unlearning frame-
work at different cropping ratios. The results indicate that our controllable unlearning framework is
robust to different cropping ratios. Simultaneously, compared to larger cropping ratios, the extent of
variation in the images generated under our controllable unlearning framework will be smaller for
smaller cropping ratios.

H.3.1 INPAINTING TASK

We retain one-sixteenth of the image center and use VQ-GAN for image inpainting. The results in
Figure [17| show that our controllable unlearning framework significantly outperforms the baselines
in terms of unlearning effect on the forget set, most closely approximating Gaussian noise, and
exhibits a lesser decline in unlearning effect on the retain set than the baselines. Simultaneously, we
can finely control the balance between unlearning completeness and model utility.

H.3.2 DOWNWARD EXTENSION TASK

We crop the bottom 25% of the image and utilize VQ-GAN for image extension from the bottom. As
shown in Figure[T9} the results demonstrate that our controllable unlearning framework significantly
surpasses the baselines in terms of the unlearning effect on the forget set, closely approximating
Gaussian noise, and shows a lesser reduction in unlearning effect on the retain set compared to the
baselines. At the same time, we can finely adjust the balance between unlearning completeness and
model utility.

H.3.3 RIGHTWARD EXTENSION TASK

We crop the right 25% of the image and utilize VQ-GAN for image extension from the bottom. The
results in Figure 21| demonstrate that our controllable unlearning framework significantly surpasses
the baselines in terms of the unlearning effect on the forget set, closely approximating Gaussian
noise, and shows a lesser reduction in unlearning effect on the retain set compared to the baselines.
At the same time, we can finely adjust the balance between unlearning completeness and model
utility.

I T-SNE ANALYSIS FOR CONTROLLABLE UNLEARNING

In Table2]of the main paper, we present the evaluation metrics corresponding to different degrees of
unlearning completeness solutions (i.e., IS, FID and CLIP) obtained by our controllable unlearning
framework in mainstream 121 generative models. Here, we analyze the images generated at differ-
ent degrees of unlearning completeness for each corresponding model. We use T-SNE analysis to
compare the clip embedding distances between the images generated on the forget set and retain set
and the ground truth images. As shown in Figure for any model, under the highest degree of
unlearning completeness, the distance between the clip embeddings of the images generated on the
forget set by the unlearned model and the ground truth images is larger, while the distance on the
retain set is smaller. Simultaneously, as € increases, the distance between the clip embeddings of the
images generated on the forget set by the unlearning model and the ground truth images gradually
decreases (still significantly higher than the situation of the retain set), and the distance on the retain
set also gradually decreases. Lastly, among these three mainstream 12 generation model structures,
the effect of VQ-GAN is the most significant.

J EFFICIENCY EXPERIMENTS FOR CONTROLLABLE UNLEARNING
FRAMEWORK

In the main paper, we analyze the convergence efficiency corresponding to different control func-
tions ¢ (6) at each phase from a theoretical perspective, and based upon this analysis, we aim to
enhance the unlearning efficiency of our controllable unlearning framework. Here, we validate our
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Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(b) Retain Set

Figure 17: Generated images of cropping 25% at the center of the image. We crop the center 1/16
of the image. The upper half (a) is the forget set, and the lower half (b) is the retain set. For each set,
we compare the performance of the baselines and our method on the inpainting task, where ”Ours”
represents the extreme case of the unlearning boundary in Phase I, that is, the point of highest degree
of unlearning completeness.
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Ground Truth Input Original Boundary-&pin ) Boundary-¢
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(a) Forget Set

Ground Truth Input Original Boundary- &y ) Boundary-£,a,
Model Highest Degree 7 Lowest Degree

(b) Retain Set

Figure 18: Generated images of cropping 50% at the center of the image under different degrees
of unlearning completeness requirements. We crop the central 1/16 of the image. The upper half
(a) represents the forget set, and the lower half (b) represents the retain set. For each section, we
compare the effectiveness of our method’s unlearning under different values of €. Here, "Highest”
and "Lowest” indicate the conditions of the highest and lowest degree of unlearning completeness,
respectively.

39



Under review as a conference paper at ICLR 2025

-—

W F E_

Ground Truth Original Model Max Loss Retain Label

(a) Forget Set

Ground Truth Original Model Max Loss Retain Label
(b) Retain Set

Figure 19: Downward extension by VQ-GAN. We crop the bottom 25% of the image. The upper
half (a) is designated as the forget set, and the lower half (b) as the retain set. For each section, we
compared the performance of the baselines and our method on the downward extension task, where
”Ours” denotes the unlearning boundary condition in Phase I, that is, the point of highest degree of
unlearning completeness.
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Ground Truth Input Original Boundary-&pin 3 Boundary-£na
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(a) Forget Set

Ground Truth Input Original Boundary-&pin N Boundary-&y,ax

Model Highest Degree 7 Lowest Degree

(b) Retain Set

Figure 20: Downward extension by VQ-GAN under different degrees of unlearning completeness.
We crop the bottom 25% of the image. The upper half (a) represents the forget set, and the lower
half (b) represents the retain set. For each section, we compare the effectiveness of our method’s
unlearning under different values of ¢. Here, "Highest”” and "Lowest” indicate the conditions of the
highest and lowest degree of unlearning completeness, respectively.

41



Under review as a conference paper at ICLR 2025

=

-

= = =

g

- 3 -
s & -

Ground Truth Input Original Model Max Loss Retain Label Noisy Label Composite Loss Ours

(a) Forget Set

e & o e

Original Model Max Loss Retain Label

(b) Retain Set

Figure 21: Rightward extension by VQ-GAN. We crop the right 25% of the image. The upper half
(a) is designated as the forget set, and the lower half (b) as the retain set. For each section, we
compared the performance of the baselines and our method on the rightward extension task, where
”Ours” denotes the unlearning boundary condition in Phase I, that is, the point of highest degree of
unlearning completeness.
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Figure 22: Rightward extension by VQ-GAN under different degrees of unlearning completeness.
We crop the right 25% of the image. The upper half (a) represents the forget set, and the lower
half (b) represents the retain set. For each section, we compare the effectiveness of our method’s
unlearning under different values of ¢. Here, "Highest”” and "Lowest” indicate the conditions of the
highest and lowest degree of unlearning completeness, respectively.
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(C) Diffusion Model

®m  Before Unlearning: Forget Set M Before Unlearning: Retain Set x Unlearning: Forget Set x  Unlearning: Retain Set

Figure 23: T-SNE analysis between images generated by our method and ground truth images under
different degrees of unlearning completeness.

analysis on three mainstream 121 generative models. During the two different phases of controllable
unlearning, we design the form of the control function () separately.

Specifically, in Phase I, we set 1(0) = «||V f1(0)| ® where we test the convergence rates of f; 9)
and f>(0), as well as the overall convergence rate, for § = 1, § = 2,5 = 3, and § = 4. As
shown in Figure It is apparent that at Phase I for ¢ = 2, that is ¢(0) = a||V f1(0)||*, the overall
convergence rate is optimal.

In Phase II, we set ¢)(8) = B(f1(0) — €)%, where we tested the convergence rates for § = 1 and

§ = 3. Subsequently, we changed the form of 1(6) to 1(6) = B(f1(0) — )°||V f1(8)|]*, and we
tested the convergence rates for 6 = 1 and § = 3. Comparing the aforementioned scenarios, the

overall optimal convergence rate in Phase II is obtained when 1(0) = 8(f1(6) — )|V f1(8)|*.

You may include other additional sections here.
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Figure 24:

The convergence rates under different control functions (9)

. As illustrated in figure,

include three sections: MAE, VQ-GAN, and the diffusion model. Each section contains two rows,
corresponding to Phase I and Phase II, respectively. The titles on each subplot indicate the forms of

the control function ().
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